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ABSTRACT In development of the automobile industry, lightweight and safety performance are contra-
dictory, yet they are of great significance.The optimization process of auto parts is a high-dimensional
optimization problem which has a variety of regulations limits and safety tests at the same time. In order
to address this issue, hierarchical multi-objective optimization of a passenger car seat frame is carried
out in this research. Different from previous researches, in this paper, all car seat frame parts are listed
as the optimization objects and are given different optimized attributes. Meanwhile, in order to achieve
the goal of effectively reducing the sample sizes of the design of experiments, hierarchical optimization is
proposed, and the optimization process is divided into three stages. In each stage, components with different
optimized attributes are introduced into various safety tests and then conducting design of experiments.
On the other hand, through adopting the grey fuzzy logic system to assign the appropriate optimized grade,
the optimization process is simplified and the errors caused by the manual selection or unified optimization
levels are avoided. The proposed method is considered to be an universal approach to solve the lightweight
optimization of the auto parts. Design parameters of the car seat frame before and after the hierarchical
multi-objective optimization are compared, it illustrated that total mass and material cost of the seat frame
are reduced by 2.3kg (28.5%) andU13.8 (32.4%) respectively.Moreover, various comparisons are carried out
to verify the validity of the optimization method proposed in this paper. In conclusion, the proposed method
is quite promising yet with less sample points associated, is an effective mean to solve the multi-objective
optimization problems of automobile component.

INDEX TERMS Automobile seat frame lightweight, hierarchical multi-objective optimization, adaptive
design of experiments, grey fuzzy logic system.

I. INTRODUCTION
Lightweight of the auto components has many benefits, stud-
ies have shown that mass reduction in automobiles may effec-
tively improve fuel economy, ensure better dynamic handling
performance and assist the protection of environment [1].
Therefore, tremendous efforts have been made in the devel-
opment of automotive lightweight [2]–[6]. The employing of
new materials [7], [8] and topological optimization [9]–[11]
are the most commonly used methods which can conduct
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the preliminary optimization of the components. However,
deeper optimizations are needed to cope with increasingly
stringent emissions regulations. A large proportion of rel-
evant studies focused on the issues associated to body-in-
white (BIW), car doors, automotive chassis, etc. [12]–[15].
Automobile seats, accounting for 3-5% of the total vehicle
mass [16], are the direct contact medium between vehicles
and passengers. Though the seat assemblies affect the com-
fort and the safety of drivers strongly [17], [18], it has been
less noticed by researchers in previous studies. On the other
hand, the metal frame is the bearing and the heaviest com-
ponent of the automobile seat assembly, offering the greatest
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lightweight potential. However, achieving the lightweight and
ensuring the safety performance are not binary. Reckless
mass reduction may lead to increasingly broken and acci-
dents. Hence,it is also prone to a unsafe product, although the
unreasonable lightweight designs can achieve the purpose of
reducing mass in a manner. Generally, lightweight and safety
are two contradictions in the design process of automobile
seat, yet each metric has its own significance. On account of
the opposite relationship of optimization targets, this paper
considers the car seat frame optimization as a multi-objective
optimization question to achieving a reasonable balance.

Unremitting researches have been carried out in the field
of multi-objective optimization of the engineering appli-
cation and automotive components. Prakash et al. intro-
duced Taguchi-grey relational analysis method (TGRA)
to the multi-objective optimization of workpiece materials
and technological parameters, then they determined optimal
parameters for improving the surface smoothness and mate-
rial removal rate in the rock dust reinforced aluminum turning
process [19]. Wang and Cai proposed a hybrid method that
combines modified non-dominated sorting genetic algorithm
(MNSGA-II) and grey relational analysis (GRA), after which
they improved the static and dynamic performance of BIW
with a small increase on total body mass [20]. To reduce
the total mass of BIW while maintaining other mechanical
properties, Xiong et al. took the side structure of the BIW as
research object and then determined the optimal thickness-
material combination of the optimized parts based on GRA
and principal component analysis (PCA) [21]. By combining
GRA with the Analytic Hierarchy Process (AHP), Pu and
Ma solved the problem of selecting lightweight materials for
BIW and verified the feasibility of this method through an
example [22]. Meanwhile, Xiong and Zhang built optimiza-
tion models of the static and dynamic stiffness along with the
front and side crushability for the body in white (BIW). Then,
they adopted radial basis function (RBF), multi-objective par-
ticle swarm optimization algorithm (MOPSO), and modified
grey correlation analysis (MGRA) to construct a metamodel,
which solved the optimization process, and obtained the
optimal compromise scheme, respectively [23]. To sum up,
in order to solve the multi-objective optimization problems
which is characterized by many design variables and design
levels, two approaches are frequently adopted. The first
approach is AOW that can obtain a pareto front by building
surrogate models based on sample points and then introduce
optimization algorithms to perform the global optimization.
The advantage of AOW is that it can theoretically acquire a
pareto front which contains the global optimal solution of
the optimization problems. Disadvantages of AOW is that
the fitting accuracy of surrogate models must be supported
by selection experience and the number of sample points,
in addition, AOW should be matched with suitable approxi-
mation techniques, samplingmethods, and optimization algo-
rithms [24]. This makes the modeling and the solving process
of AOW relatively complicated. The second approach is MW
that adopts multi-criteria decision-making method to select

the optimal scheme in the sample points directly. The advan-
tage of MW is that it features a simple process and requires
fewer sample points. Disadvantages of MW is that since the
limits of the sample sizes and purposeless range of DoEs, the
optimal compromise scheme has a certain design margin.

As for the lightweight optimization of the auto seat frame,
on account of the various safety test conditions and the reg-
ulatory requirements of much local performance, seat frame
multi-objective optimization is a high-dimensional, complex,
nonlinear work with many design variables, design levels and
safety tests. Under such circumstances, it means large sample
size and the inefficient fitting process while adopting AOW.
Meanwhile,, design of experiments (DoEs) are necessary and
important when employing whether AOW or MW. To be
exact, DoEs affects the fitting accuracy of the surrogatemodel
when AOW is used, and also determines the remaining design
margin of the optimal compromise solution when MW is
used. However, rare studies focus on improving the covering
efficiency of DoEs within limited sample points. Therefore,
adaptive DoEs is proposed in this paper to solve the problem

Previous seat optimization researches tend to list some
components with high lightweight potential as optimization
object or treated the mirrored components as a object to be
optimized. Meanwhile, for the purpose of reducing the sam-
ple sizes and simplifying the optimization process [25], [26],
some studies only focused on the thickness or materials of
components to simplify the optimization problems [27], [28].
Besides, single range of DoEs and one certain safety opti-
mization test are also frequently employed. However, the
above optimizationmethod has several disadvantages. Firstly,
the universal applicability of the optimal compromise scheme
in a single safety test has not been demonstrated in other
tests. In fact, the optimal thickness-material compromise
solution based on a single test may even result in a failed
scheme that cannot meet the experimental requirements of
other tests. Therefore, the possible weak parts in the proposed
optimization process should be strengthened. Secondly, the
loading conditions of all seat frame parts are quite different
so that their strength contributions in different safety tests
vary even for symmetrically designed parts. Therefore, mir-
rored designed components should be treated as different
optimization objects and optimized separately. Thirdly, the
same design range of DoEs is not suitable for the parts with
different optimization demands. it is obviously that employ-
ing the same design range ignores the differences in strength
contributions. Hence, ranges of DoEs should be determined
based on respective characteristics.

This paper treats all parts as optimization objects and
employs adaptive DoEs to multi-objective optimize a auto-
mobile seat frame hierarchically. The first innovation of this
study is that design variable parameters including discrete
material and continuous thickness are employed. Besides,
all seat frame parts are regarded as optimization objects
separately, and the safety performances are validated under
all safety tests. The second innovation focus on promoting
the filling efficiency, grey fuzzy logic system (GFLS) who
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FIGURE 1. Flowchart of automobile seat frame hierarchical multi-objective optimization.

combines GRA and fuzzy logic system (FLS) to adaptively
conduct the DoEs are proposed. In the GFLS, GRA conducts
the dimensionless processing on the initial sequences of the
mass and energy absorption firstly. Since the strain index
of a component represents the extent of the damage to the
parts and normally the strain index changes between 0 to 1,
the sequence of strain indices are not imported to GRA.
Then, FLS calculates the specific optimized grade through
identifying the calculated grey relation coefficient (GRC) of
the mass-energy absorption sequences and the unprocessed
strain index sequence.The concepts of optimized attribute
and optimized grade are proposed. The specific optimized
grade determines the DoE range of continuous thickness vari-
ables and discrete material parameters of a single part. The
optimized attributes are acquired through estimating energy
absorption and strain indices of the frame parts under all
safety tests, determining the specific optimization means of
frame parts. Nevertheless, adopting all frame components
and multiple safety tests will lead to the growing in sam-
pling size and the sampling frequency eventually. As a solu-
tion, hierarchical multi-objective optimization is employed
to consider the purpose of the DoEs in different phases so
that more sample points are distributed around the theoreti-
cal global optimal compromise. Hierarchical multi-objective
optimization has been used in the fields like post-earthquake
medical evacuation, flight allocation and design of electric
vehicles [29]–[31]. Hierarchical multi-objective seat frame
optimization has several features and advantages:

� Different phases have respective optimization objectives
and the components to be optimized. Compared with carrying
out DoEs directly at the same time, the number of design
variables for each DoE is reduced and a large number of
invalid sample points are avoided.
� In each phase of the hierarchical optimization, the fea-

sibility of the optimization schemes is verified. The appli-
cability of the final optimization scheme in all safety test
conditions is ensured.
� the optimization objectives of each phase are clearly

defined, so as are the optimization attributes. As a result,
the hierarchical optimization process adopting GFLS can
be used to optimize other auto parts which featured with
high-dimensional and multi-objective directly.

The SFMOO is divided into three phases, namely, the pre-
processing phase, the optimizing phase and the reconstruction
phase. FIGURE 1 shows the detailed optimization flowchart.
Firstly, in the preprocessing phase, the parts whose optimized
attributes are specific test part, strong part, and weak part
are optimized in the safety test with largest strain index.
The lightest qualified scheme is adopted. Secondly, in the
optimizing phase, GRA is used to determining the optimal
compromises of local safety tests. Then, the GFLS identifies
the mass, energy absorption, and strain indices of the normal
lightweight part, the optimized strong and weak parts, after
that GFLS can export the specific optimized grades match-
ing with load conditions of components and conduct adap-
tive DoE. Thirdly, in the reconstruction phase, all optimal
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designs of global safety tests are updated to the reconstructed
frame model, performance evaluations under all safety tests
are carried out subsequently. Based on the strain indices of
each component in all safety tests, the strong and weak parts
are partially modified.

The rest of this paper is organized as follows.
Section 2 introduces typical seat safety tests and establishes
the seat finite element model. The accuracy of the estab-
lished model is validated by comparing the variation of key
measuring indicators of each test in the actual experiment
test and computer simulation. Section 3 systematically intro-
duces the mathematical model of SFMOO and the related
methodologies of GRA and GFLS, followed by the creation
of the Mamdani-based GFLS. in Section 4, the detailed def-
initions of optimized attribute, optimized grade and relevant
optimization strategy are introduced. Section 5 describes
each step of the proposed method and records the data.
In Section 6, the optimal compromise scheme is presented
and two comparisons are conducted for validating the effec-
tiveness of the proposed method. Finally, Section 7 summa-
rizes the article.

II. SAFETY PERFORMANCE TESTS, FINITE ELEMENT
MODELING AND VALIDATION
A. SAFETY PERFORMANCE TESTS
Passenger car seat safety performance tests include dynamic
and static conditions. The dynamic conditions include for-
ward collision (FC), rear collision (RC), trunk collision
(TC), etc. while static conditions include seatbelt anchor test
(SAT), headrest static strength test (HSST), seat backrest
strength test (SBST), antisubmarine pan test (APT), front ulti-
mate load (ULF), rear ultimate load (ULR), child protection
test (CPT) and low speed rear neck protection test (whiplash
test), etc. Specially, seat dynamic crash tests require dum-
mies, in this paper, the 50-percentile male dummy is used.
As shown in FIGURE 2, 50-percentile male dummy forward
collision (50FC), 50-percentile male dummy rear collision
(50RC), SAT, SBST, HSST, APT, ULF and ULR are taken
as the seat safety tests. Detailed procedures and standards
of above safety tests are mentioned in [25]. It is necessary
to point out that 50FC and 50RC are global dynamic tests
involved in investigating the overall seat performance under
the condition that the vehicle is impacted from the front
and rear directions respectively. SAT, HSST, SBST, APT,
ULF and ULR are local static tests related to inspecting
partial seat performance. Moreover, APT and ULR inves-
tigate the bearing capacity of a single seat frame, often
lead to the destruction of local seat frame parts. Meanwhile,
FEA in this paper does not involve the situation after mate-
rial fracture. Therefore, the curves of measurement points
obtained in APT and ULR may both have certain differ-
ences among actual experiments and simulations. Moreover,
the displacement of the measurement continues to change
when failure occurs in the simulation. Therefore, the test
processes are stopped in the actual test process when failure
happened.

FIGURE 2. Actual seat and introduced seat experimental tests.

B. MODELING AND ACCURACY VERIFICATION
After years of development, computer aided engineer-
ing (CAE) has been developed into an effective measure in
the field of engineering optimization. Based on the seat model
shown in FIGURE 2, the pre-processing software Hypermesh
is adopted to construct the mesh model and the LS DYNA is
employed to set up the safety simulation tests. The computer
simulation models are listed in FIGURE 3.

FIGURE 3. Seat model and computer simulation safety tests.

Although computer simulation can greatly reduce test
cost [32]–[35], an accurate FEA model is a precondition for
reliable simulation results. To validate the model accuracy of
APT, ULF and UIR, HSST, SAT, 50FC and 50RC, and SBST.
FIGURE 4 shows the performance measurements involving
points A, B, C, E, H, and angle Db for each safety test
respectively. Specifically, A is the midpoint of the front tube
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FIGURE 4. The performance measurement points of all tests.

under the seat frame pan, B is the midpoint of the backrest
upper circular tube, C is the midpoint of the headrest tube,
E is the installation position of the seat belt buckle and H is
anchor point inside the dummy, angleDb is the included angle
between side backrest and the vertical direction. The variation
trends, peak values of measurement indices obtained in simu-
lations and actual tests are the judgment criteria in the model
accuracy validation.

Based on these comparison result shown in FIGURE 5,
computer simulation result in ULF, HSST, SAT, 50FC, 50RC,
and SBST are basically consistent with the experimental
test results. Simulation results of APT and ULR have some
acceptable deviation from the actual test due to the fact that
some parts are damaged. In summary, the simulation model
and safety test established in this paper have high accuracy
and can be used for subsequent SFMOO.

III. METHODOLOGY
A. MATHEMATICAL MODEL FOR SEAT FRAME
MULTI-OBJECTIVE OPTIMIZATION
In this paper, continuous thickness parameters and discrete
material types are taken as design variables. The alternative
materials are assigned numbers Mi, i ∈ {1, 2 . . . , q} accord-
ing to their yield strength. Mathematical model of Mi has a
form, can be expressed as follows [21]:

ρi
Ei
Pi
...

 =

fρ (Mi)

fE (Mi)

fP (Mi)
...

 (1)

where, ρi,Ei,Pi is material density, elastic modulus and raw
material price, q is the number of alternativematerials, fρ (Mi)

is the mathematical expression between ρi andMi, fE (Mi) is
the mathematical expression between Ei and Mi, and fP (Mi)

is the mathematical expression between Pi and Mi.
Meanwhile, the mathematical model of SFMOO can be

expressed as follow [36]:

Minmize W = W (Ti, ρi)

FIGURE 5. Changes of measurement indicators in seat simulations and
actual experimental tests.

=

∑z

i=1
AiTiρi = W

(
Ti, fρ (Mi)

)
= W (Ti,Mi) ,

i = 1, 2, · · · , z (2)

Minmize C = C (Ti, ρi,Pi)

=

∑z

i=1
AiTiρiPi = C

(
Ti, fρ (Mi)

)
= C (Ti,Mi) ,

i = 1, 2, · · · , z (3)

Minmize P (T ,M)

= (minP1 (Ti,Mi) ,minP2 (Ti,Mi) , · · · ,

minPs (Ti,Mi)) ,

i = 1, 2, · · · , z (4)

s.t.


gj (Ti,Mi)≤0, i=1, 2, · · · , z; j=1, 2, · · · , b
T Li ≤ Ti ≤ T

U
i , i = 1, 2, · · · , z

Mi ∈ {1, 2, · · · , q} , i = 1, 2, · · · , z

(5)

where, Ti and Ai are thickness and area of the part Pi respec-
tively, T Li and TUi are lower and upper design bounds of Ti,
z represents the amount of frame parts, W and W (Ti,Mi)

is the total mass of car seat frame, C and C (Ti,Mi) is the
material cost of car seat frame, P (T ,M) is the seat perfor-
mance index vector which contains lightweight index, com-
fort index or safety index, Ps (Ti,Mi) represents the sth seat
performance index, gj (Ti,Mi) represents the jth constraint of
seat performance index, b is the number of constraints.

The above mathematical model expresses the SFMOO
whose characteristic includes high dimension and strong non-
linearity. In SFMOO, each thickness design parameter is con-
tinuous while the material parameter is discrete. Due to the
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large number of design variables, design levels, optimization
tests and long calculation time, this paper combines GRA and
fuzzy logic system (FLS) to obtain the optimal thickness-
material scheme of reasonably design frame parts in each
safety tests.

B. STRAIN INDEX AND ENERGY ABSORPTION
This paper introduces strain index to determine the damage to
parts, calculation equation of strain index is listed as follows:

SIPi =
Spi
Epi

(6)

where, Pi is the parts number of components, SIPi is the strain
index of the part Pi, Spi represents effective plastic strain of
the part Pi and Epi represents elongation at the fracture of
corresponding material. In reality, parts will fracture when
SIPi is 1. Nonetheless, considering that linkage brackets have
the great influence on passenger comfort, the design safety
threshold of linkage brackets is set as ‘‘0.7’’. Meanwhile,
to ensure that remaining seat frame parts have a certain
designmargin, a safety threshold ‘‘0.95’’is given in the subse-
quent optimization. In other words, linkage brackets and the
remaining seat frame parts will be deemed as failure when
SIPi is greater than 0.7 and 0.95 respectively. On the other
hand, the safety threshold in this paper is not only employed
in the failure judgment of frame components but also in safety
tests. Furthermore, the values of force and torque stipulated
by corresponding test criteria are increased to 1.2 times both
in actual test and simulation, so as to ensure the reliability of
the final design scheme in actual use.

Energy absorption is the sum of energy absorbed by
the structure during the whole deformation process, and its
expression is as follows [37]. The differences of energy
absorption determine the importance of each component in
the same seat structure during different safety tests.

EA (d) =
∫ d

0
F(x)dx (7)

where, F(x) is the instantaneous impact force that is a func-
tion of impact distance normally, d is the impact distance.
In this paper, energy absorption is employed in determining
the optimized attribute and specific optimized grade of a sin-
gle component. Furthermore, energy absorption is introduced
along with strain indices to determine the optimized attribute
of a single part. Also, energy absorption, strain indices and
mass are imported into GFLS to determine the specific opti-
mized attribute of a single reasonably designed part.

C. GREY RELATIONAL ANALYSIS
The grey theory, first proposed by Deng [38], [39], is the tool
to study grey systems. Grey relational analysis (GRA) has
the characteristics of flexible and strong compatibility, is an
effective method in studying multi-objective questions with
complex relationships among variables. The basic steps of
GRA are listed as follows [40].

When the optimumof an original sequence is ‘‘large expec-
tation’’, the original sequence is normalized as follows:

x∗i (t) =
Max txi (t)− xi (t)

Max txi (t)−Mintxi (t)
(8)

When the optimum of an original sequence is ‘‘small
expectation’’, the original sequence is normalized as follows:

x∗i (t) =
xi (t)−Mintxi (t)

Max txi (t)−Mintxi (t)
(9)

When the optimumof an original sequence is a target value,
the original sequence is normalized as follows:

x∗i (t) = 1−
|xi (t)− Tar|

MAX {Max txi (t)− B,A−Mintxi (t)}
(10)

where x∗i (t) is the normalized sequence, xi (t) is the
ith value in tth original sequence,Max txi (t) is the maximum
value in tth original sequence, Mintxi (t) is the minimum
value in tth original sequence, Tar represents the target value.
i = 1, 2, 3, . . . ,m1, t = 1, 2, 3, . . . ,m2, m1 represents the
number of values in a sequence, m2 represents the number of
sequences.

All evaluation indices in this paper have the feature of
‘‘small expectation’’. Meanwhile, the reference sequence in
this paper is defined as 1, the closer the normalized sequence
is to the reference sequence, the better the performance is.

Grey relation coefficient (GRC) can determine the corre-
lation between the reference sequence and the normalized
sequences. The calculation equation of GRC is as follows:

γ
(
x∗r (t) , x

∗
i (t)

)
=

1min + µ1max

1ri (t)+ µ1max
(11)

where γ
(
x∗r (t) , x

∗
i (t)

)
is grey relation coefficient (GRC),

µ is the different coefficient whose value normally is set
as 0.5. 1ri (t) is the distance between x∗i (t) and the refer-
ence matrix x∗r (t), 1min is the minimum value in 1ri (t),
1max is the maximum value in1ri (t). Calculation equations
of 1ri (t), 1min, 1max are listed as follows respectively:

1ri (t) =
∣∣x∗r (t)− x∗i (t)∣∣ (12)

1min = min︸︷︷︸
∀i

min︸︷︷︸
∀t

1ri (t) (13)

1max = min︸︷︷︸
∀i

min︸︷︷︸
∀t

1ri (t) (14)

The following formula is adopted to calculate grey rela-
tional degree (GRG):

ϕ
(
x∗r , x

∗
i
)
=

∑n

t=1
wtγ

(
x∗r (t) , x

∗
i (t)

)
(15)

where wt is the weight of tth objective, n is the number of
optimization objectives.

D. ADAPTIVE DESIGN OF EXPERIMENT
The uniform range of DoEs does not take differences in
strength contributions of each part into account. Therefore,
employing adaptive DoE identifies the design variables and
determine the design level according to the contribution of
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FIGURE 6. Flowchart of grey fuzzy logic system.

strength and energy absorption in each safety test. To be
exact, energy absorption, strain index and mass of parts are
imported to GFLS, which automatically generates sample
points according to the component characteristics in the opti-
mization phase. Different from the traditional fuzzy logic sys-
tem (FLS), GFLS can dimensionless process the initial data
sequences so that the GFLS can be applied to the optimization
process of a variety of automobile parts.

As shown in FIGURE 6, GRA and standard Mamdani
fuzzy logic system are combined as a GFLS. In this paper,
to obtain the optimized grades of components that are suitable
for different ‘‘energy absorption-mass-plastic strain’’ condi-
tions. The GRC of parts energy absorption, mass obtained by
Equation 10 along with actual strain index of frame parts are
imported into the FLS.

Mamdani firstly proposed fuzzy control based on the
fuzzy theory originally studied by Zadeh [41]–[43]. Fuzzy
logic system is an effective method to deal with ques-
tions having an imprecise and undefined boundary [44].
Another advantage of FLS is that expert knowledge and
engineer experience is important references for fuzzy logic
control [45]–[47]. Meanwhile, relevant recent researches
shows that the fuzzy set theory has wide applications in
the field of multi-criteria decision making (MCDM), linear
programming (LP), control of robot, Shortest Path planning
and dealing with uncertainty [51]–[53]. Furthermore, FLS
may exports continuous control signal based on the discrete
membership functions and fuzzy rules. The general process
of a FLS includes fuzzification, fuzzy logic inference and
defuzzification [54], [55].

In the process of fuzzification, membership func-
tions are applied to transform the exact values to vague
languages. This paper applies the triangular membership

functions, of which the advantages is simple structure and
high calculation efficiency. Calculation equation of triangular
membership function is listed as Equation 16.

f (x, a, b, c) =



0, x < a
x − a
b− a

, a ≤ x ≤ b
c− x
c− b

, b < x ≤ c

0, c < x

(16)

Detailed parameters and polylines of fuzzy inputs and
output are shown in FIGURE 7. The fuzzy inputs involve
the actual strain indices and the GRC of energy absorption
and mass. Membership functions of the input actual strain
index have five language levels, and membership functions
of the input GRC of energy absorption and mass have three
language levels. As for output variable, membership function
of optimized grade defines six grey fuzzy reasoning levels
corresponding to the basic optimized grades employed fre-
quently in engineering optimization.

Fuzzy inference is another key process in GFLS, it maps
fuzzy input set to exact output set according to the fuzzy
rules. Takagi and Sugen first comprehensively proposed the
fuzzy rules of ‘‘IF-Then’’ form [56], the general type of
‘‘IF-Then’’ is shown in Equation 17. ‘‘IF-THEN’’ rules
can model human knowledge and reasoning processes with-
out precise quantitative analysis [57]. The developed fuzzy
inference systems combined with ‘‘IF-THEN’’ rules have
been widely used in control [58], prediction [59] and
reasoning [60].

Rule : if "condition"then"restriction"

Rule1 : if "x1 is A1 and x2 is B1 and x3 is C1"then"y is D1"
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FIGURE 7. Membership functions of input and output in GFLS.

Rule2 : if "x1 is A2 and x2 is B2 and x3 is C2"then"y is D2"

· · · · · · · · ·

Rulen : if "x1 is An and x2 is Bn and x3 is Cn"then"y is Dn"

(17)

where, x1, x2, x3 are the input, y is the output, they are
all fuzzy language values. Ai,Bi,Ci,Di(i = 1, 2, · · · , n)
is the fuzzy subset designated by x1, x2, x3 on domain
X1,X ,X3 on the basis of relevant membership function
µAi, µBi, µCi, µDi(i = 1, 2, · · · , n).
According to the parameter information of membership

functions and input variables, 45(51 × 32) fuzzy rules
are defined for fuzzy inference. Equation 18 describes the
‘‘max-min’’ operation that is adopted to calculate the fuzzy
output µFi(yi) of membership functions:

µFi(yi) = (µA1 (x1) ∧ µB1 (x2) ∧ µC1 (x3))

∨ (µA2 (x1) ∧ µB2 (x2) ∧ µC2 (x3))

∨(µAn (x1) ∧ µBn (x2) ∧ µCn (x3)) (18)

Defuzzification can produce a quantitative result under the
conditions that µFi(yi) has been acquired. Currently, ‘‘center
of gravity’’ method is frequently used to transform the lin-
guistic outputs to crisp values, specific calculation equation
of the crisp value Gi is given as follows:

Gi = (
∫
s

yi · µFi(yi)dy)/(
∫
s

µFi(yi)dy) (19)

Optimized Latin hypercube sampling (OLHS) can reduce
the number of simulations on the basis of ensuring the good
orthogonality and proportional spacing [61]. OLHS offers
good space filling, uniform distribution, less tests and higher
exploration precision [62]. Since SFMOO is characterized by
many design variables and strong nonlinear qualities, OLHS
is employed to enhance the sampling efficiency. The amount
and variables of optimized components varies in each opti-
mization phase. Besides, the design purpose in each global
optimization test also varies. In this paper, multiple DoEs are

performed, to unify the standards for determining the number
of sample points, equation 20 is adopted.

N =


5 ∗ (a− 1) , preprocess phase
a2, optimizing phase
5 ∗ a, reconstruction phase

(20)

where, N is the number of OLHS sample points in each
optimization phase, a is the number of components to be
optimized in each phase.

IV. OPTIMIZATION PART, OPTIMIZED GRADE AND
OPTIMIZATION STRATEGY
A. OPTIMIZATION PART
To improve the availability of sample points, previous multi-
objective automotive optimization studies control the number
of components to be optimized and select a part of compo-
nents as optimization objects for lightweight. As mentioned
above, car seat lightweight is a nonlinear workwhich involves
numerous components and safety tests. The importance of a
single seat frame part in different safety tests are inconsistent.
As shown in FIGURE 8, all seat frame parts are listed as
optimization objects in this paper. Table 1 records the discrete
alternative materials. Particularly, DC01 and 42CRMO4 are
dedicated materials for the seat pan and rear left linkage
bracket respectively. Hence, the materials of P15 and P19 will
not be replaced in subsequent optimization.

FIGURE 8. Frame model of car seat.

B. OPTIMIZED GRADE
Comprehensive performance contribution of all seat frame
components is discrepant. Thus, the optimization levels for
different optimized parts should be discrepancy. In pre-
vious optimization researches, the optimization level of
each part is confined on the basis of initial thickness and
material scheme. In order to distinguish the optimization
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TABLE 1. Basic information of alternative materials.

potential of different parts, as shown in Table 2, eight
foundational optimized grades are defined for selection.
Nonetheless, the foundational grades are still inaccurate and
ambiguous. For determining the specific optimized grade,
GFLS is introduced.Meanwhile, the optimized grades ‘‘−1’’,
‘‘-2’’, ‘‘5’’ in Table 2 are only employed in preprocess phase,
in which the optimization potential and reinforce demand
is greater. Therefore, the distance between each optimiza-
tion level should be set larger. Introducing optimized grades
‘‘−1’’, ‘‘−2’’, ‘‘5’’ not only reduce the sample size, but also
achieve the goal of regulatory requirement quickly.Moreover,
the thickness optimized grades of ‘‘−2’’ and ‘‘5’’ each has
5 levels, may export 5 discrete alternate thicknesses based
on the initial thickness. Also, the thickness optimized grades
of ‘‘-1’’ each has 3 levels, may export 3 discrete alternate
thicknesses based on the initial thickness. On the other hand,
the material optimized grades of ‘‘−2’’ and ‘‘-1’’ each has
3 levels, may export 3 discrete alternate material based on the
initial material. the optimized grades ‘‘5’’ are not optimizing
the parameter of materials due to large optimization potential.
Furthermore, optimized grades ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’ may
export all continuous thicknesses with an interval of 0.1 and
discrete alternate materials of an interval of 1.

C. OPTIMIZATION STRATEGY
The seat model is imported to each simulation tests for calcu-
lation, after which the energy absorption and strain indices of
all frame parts are extracted from the calculated results. The
optimized attribute of a part is determined by its analytically
energy absorption and strain indices. This paper defines five
optimized attributes. They are reasonably designed parts,
strong parts, weak parts, optimization parts, and specific test
working parts:

TABLE 2. Details of each optimized grade.

� Reasonably designed parts: the components are not bro-
ken in the seat safety performance tests except in APT and
ULR, and the strain indices reach 0.75-0.95 in one or more
tests;
� Strong parts: the components whose actual strain indices

are less than 0.1 in the seat safety performance tests except in
APT and ULR;
�Weak parts: the components are broken in the seat safety

performance tests except in APT and ULR;
� Optimization parts: the components whose strain indices

reach 0.1-0.75 in one or more seat safety performance tests;
� Specific test parts: the components that only deform under

a certain safety performance test and scarcely participate in
absorbing energy when other tests are calculated. The special
test working part in this paper only refers to the headrest tube
in the HSST.

Different part attributes mean different optimization strate-
gies. Here, the relevant optimization test of parts needs to
be considered. Then, the corresponding optimization test
and optimization strategy of optimization part are defined as
follows:
� Reasonably designed parts: Conducting no further

lightweight optimization;
� Strong parts: Firstly, strong and weak parts are optimized,

OLHS is used to carry out DoEs according to the optimized
grade ‘‘5’’ in test with the maximum part strain index, then
import the qualified design scheme with minimum total mass
into ‘‘Optimization part’’ for further optimization;
� Weak parts: Firstly, OLHS is used to carry out DoEs

according to the optimized grade ‘‘-1’’ in test with the max-
imum part strain index, If the sample points cannot meet the
requirements, the optimized grade ‘‘-2’’ will be used later.
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Then import qualified design scheme with minimum total
mass into ‘‘Optimization part’’ for further optimization;
� Optimization parts: Sample size will be greatly increased

if parts are introduced intomany seat safety performance tests
for DoEs. In addition, the optimal compromises of multiple
safety performance tests are not uniform. It must be noted
that seat safety tests can be divided into static local tests
including APT, HSST, SAT, SBST, ULF, ULR and dynamic
global tests including 50FC, 50RC. All local performance of
seat investigated in local tests have the contrast in the global
tests. E.g., HSST inspects whether the headrest can provide
effective support when the heads of a passengers moves back
forward while SBST is to investigate the support of backrest
frame when passengers lean back. Videlicet, local static test
quantitatively examines the specific performance indicators
of a seat. Therefore, optimization parts are introduced into
the global dynamic test with the maximum strain index, then
using OLHS to carry out the discrete material and continu-
ous thickness DoEs according to the part optimized grades
obtained by GFLS.
� Specific test parts: OLHS is used to carry out DoEs

according to the optimized grade ‘‘5’’ in the corresponding
specific test, then import qualified design scheme with mini-
mum total mass into the reconstructionmodel for verification.

V. OPTIMIZATION PROCESS
As shown in FIGURE 9, the SFMOO is divided into three
phases: preprocessing phase, optimizing phase and recon-
struction phase.

A. PREPROCESSING PHASE
The first step of SFMOO is the single-objective preprocessing
of strong part, weak part and specific test working part. The
purpose of the preprocessing phase is for making the seat
frame meet the regulation requirements quickly, the single-
objective optimization can also effectively reduce the design
variables so that the sample points can get better filling
with relatively less amounts. According to FIGURE 1, after
determining the optimized attributes of a single part, the
components that need preprocessing and the corresponding
optimization tests are shown in Table 3. Meanwhile, the
Equation 20 determines the number of sample points, then 10
and 15 points are exported to 50FC and 50RC respectively for
preprocessing.

Besides, just one design variable need be optimized in
HSST, and the DoE is not required, therefore 5 sample points
are actively set. After preprocess, strong and weak parts
will be imported into the ‘‘optimization part’’ for further
optimization.

Preprocessing is a single-objective optimization, and the
selection rule of optimal scheme is the minimum total
mass while meeting the performance requirements of all
tests. Optimal qualified design scheme will be imported into
dynamic global tests for design verification. From the compu-
tation result after importing the preprocess optimal solution,

FIGURE 9. Flowchart of car seat frame optimization process.

TABLE 3. Parts need preprocessing and corresponding optimization
safety tests.

the strain indices of all frame parts do not exceed the design
thresholds and meet the requirements of all global tests.

B. PREPROCESSING PHASE
FIGURE 10 shows energy absorption of the same part in
different global dynamic tests, in the following study, normal
optimization parts are imported to the global dynamic test
with higher energy absorption for further study.

Based on the deformation of parts in dynamic tests, GRC
of energy absorption and mass for each part in corresponding
test are acquire by calculation, and then they will be imported
into GFLS along with relevant strain index. Furthermore,
different from the defined eight optimized grades, specific
optimized grade output by the GFLS is not an integer, so the
following definition is added:

If the GFLS output of the ith part is A.B, then thickness
range of the ith part is [Ti × (LLowA − B),Ti × (LUpA − B)],
and thematerial selected range is same as the roundness grade
of A.B.

Where, Ti is the plate thickness before conducting DoE,
A.B is the calculated output optimized grade, LLowA is lower
design bounds of optimized grade A, LUpA is upper design
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TABLE 4. Output information of GFLS of optimization parts.

FIGURE 10. Verified energy absorption of each part from final preprocess
model.

bounds of optimized grade A, A is the integer of A.B, B is the
decimal place of A.B.

The calculated results of optimized grade for all com-
ponents to be optimized in global safety tests are shown
in Table 4.

Hence, the P10, P12, P13, P14, P19 and P20 are exported
to 50FC for further optimization while P2, P3, P4, P7, P8,
P9, P11, P15, P16, P17 and P18 are exported to 50RC for
further optimization. Meanwhile, P1, P5 and P6 will not be
lightweight optimized since specific test part P1 has been
optimized in HSST and the strain indices of P5, P6 have
reached 0.8 when preprocessing in SBST, namely, P5 and
P6 are reasonably designed parts. Then, 36 and 121 sample

points are set to 50FC and 50RC respectively for calculation
according to the equation 20.

The study of SFMOO take lightweight, passenger com-
fort and safety performance into account. In this paper,
lightweight targets include total mass and total cost, the
comfort performance target is displacement of the point ‘‘H’’
inside the 50-percentile male dummy and the safety perfor-
mance target is determined by optimization test. In 50FC,
the adaptive performance target is Z- displacement of point
A while the adaptive performance target in 50RC is the
maximum change in backrest angle Db. The optimal tradeoff
of 50FC and 50RC sequences can be easily obtained by
using GRA.

On the anther hand, the research aim of this paper is to
optimize the seat lightweight on the basis of ensuring the
safety performance of the parts. Therefore, total mass and
total cost are more important than comfort performance target
and adaptive safety performance target. The unified weight of
total mass, total cost, comfort performance target and adap-
tive safety performance target are 0.3, 0.3, 0.2, 0.2. Through
Equation 14, the GRGs of each scheme can be calculated
after GRCs and weights has been obtained. The scheme
with biggest GRG is the optimal compromise in all example
points. Table 5, Table 6 show the GRC, GRG in 50FC and
50RC after deleting waste points. Through comparison, the
optimal compromise of 50FC is the example point 2, and the
optimal compromise of 50RC is the example point 109.

C. RECONSTRUCTION PHASE
A new seat frame is reconstructed from optimized specific
test parts, reasonably designed parts along with optimal
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TABLE 5. GRCs and GRGs of partial sample points in 50FC.

TABLE 6. GRCs and GRGs of partial sample points in 50RC.

compromises in 50FC and 50RC. It is conceivable that the
reconstructed seat will most likely contain weak or strong
parts due to the excessively weakened or conservatively
structured design, so the weak and strong parts should be
optimized again to ensure the necessary stiffness of the
reconstruction seat frame. On the basis of the simulation
results of reconstructed model in all tests, the P15 and P16
are considered as strong parts which have the largest strain
index in SBST. Moreover, P11 broken in SBST, is a weak
part.

Specific optimization process stipulates that P15 and P16
are weakened under the optimized grade ‘‘5’’. Updating the
optimal P15 and P16 scheme to the seat model and recalcu-
late. Afterwards, strengthening P11 as requested of optimized
grade ‘‘-1’’. Since the equation 20, the number of sample
points for weakening P15 and P16 is 10, the amount of sample
points for strengthening P11 is 5.

TABLE 7. The fitting accuracy from RBF.

VI. RESULT AND DISCUSSION
The design information of the seat frame in final optimum
design scheme shows that total mass and total material cost
of the seat frame before the proposed optimization are 8.0kg
and U40.8 respectively. Meanwhile, the total mass and total
material cost of the seat frame after the proposed optimization
are reduced to 5.7kg (-28.5%) and U27.6 (-32.4%). At the
same time, the seat frame still meets the performance require-
ments of various safety tests. Besides, it is necessary to further
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TABLE 8. Detailed mass, cost comparisons between the original design, the optimum compromise design from the method in this paper and the
optimum design from the comparison MW.

illustrate the advantages of the proposed seat frame hierar-
chical optimization method employing GFLS for adaptive
DoEs. Hence, taking all seat frame parts as the objects to
be optimized and setting 50FC as the verification safety test.
7 discrete material parameters and 70%∼130% continuous
thickness variables are introduced as range of DoE, the sam-
ple size is set to 200 through OLHS. Model of surrogate
model and multi-criteria decision making are both used.

A. SURROGATE MODEL EMPLOYING RBF
The high-precision surrogate model is the most important
guarantee of the reliable results when employing AOW. The
commonly adopted fitting methods in engineering applica-
tion includes response surface methodology (RSM), Krig-
ing model and radial basis function (RBF) and so on [32].
RBF is fitted with the highest precision although the it still
can not meet the requirements of subsequent optimization.
FIGURE 11 shows the fitting process and Table 7 shows
the calculation results of fitting accuracy from RBF.
R2, ME and RMSE are used to calculate the fitting accuracy.
R2 is the deterministic coefficient, the larger R2 shows the
better the fitting accuracy. ME means the maximum error,
RMSE means the root mean square error, the smaller ME

FIGURE 11. The fitting process of RBF.

and RMSE show the better the fitting accuracy. Expressly,
the RMSE and R2 reflect the overall accuracy of the sur-
rogate model while the ME represents the local accuracy
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of the model. It can be found from the Table 7, since the
displacement are nonlinear variables, the fitting accuracy of
the displacement of point H and A are unqualified so that
AOW can not obtain reliable results in the case of a few
sample points.Therefore, the multi-objective optimization of
the auto seat frame cannot be solved through AOW when
adopting few amount of sample points.

B. MULTI-OBJECTIVE DECISION-MAKING WITHOUT
ADAPTIVE DOE AND HIERARCHICAL OPTIMIZATION
Based on the 200 sample points from OLHS in 50FC,
GRA and coefficient of variation method which have been
proven an effective way by Shan [25] for the multi-objective
optimization of the auto seat frame is adopted to obtain the
optimal solution for the companion. The weights given by
coefficient of variation method are 0.209,0.261,0.260,0.270
respectively. After calculation and summary, total frame
mass and material cost of the optimal compromise acquired
through the contrast method are 7.2kg and U37.1, which
reduced by 10.2% and 9.0% compared to the original design.
Detailed mass, cost of a single component from the original
design, the optimum design obtained by proposed method
in this paper and the optimum design obtained by GRA and
coefficient of variation method are listed in Table 8.

VII. CONCLUSION AND FUTURE RESEARCHES
In this paper, all seat frame parts are taken as the optimization
objects, and a set of hierarchical seat lightweight optimization
methods are proposed. For the purpose of reducing the sample
size for design of experiments (DoEs), the seat frame multi-
objective optimization (SFMOO) is divided into three phases.
Meanwhile, employing the grey fuzzy logic system (GFLS)
for determining optimized grade of frame parts to avoid the
error caused by manual selection or same design ranges.
Subsequently, adopting optimized Latin hypercube sampling
method (OLHS) for design of experiments. Totally, 197 sam-
ple points are used, grey relational analysis (GRA) is used
to determine the optimal compromise scheme in example
points. According to relevant research results and compari-
son, following conclusions can be drawn:

(1) The proposed method in this paper decreases the total
mass and material cost by 2.3kg (28.5%) and U13.8 (32.4%)
respectively while all frame parts are optimized and a small
sample size.

(2) For the purpose of determining the specific opti-
mized grades of normal optimization parts, grey fuzzy
logic system (GFLS) and optimized Latin hypercube sam-
pling (OLHS) are combined to adaptively construct design
of experiments (DoEs). This innovation can effectively trim
the design space and improve the filling ability of the sample
points.

(3) Under the condition that a small sample sizes are
given, the conventional AOW can not build the surrogate
proxy model while the MW only obtain limited optimiza-
tion effect. Meanwhile, it can be intuitively found that
the optimal compromise of the conventional MW method

(10.2%mass reduction and 9.0% cost reduction)is worse than
that (28.5% mass reduction and 32.4% cost reduction) of the
method proposed in this paper. At the same time, the safety
performance of passenger car seat is guaranteed andmeets the
all-applied tests requirements after the seat frame hierarchical
multi-objective optimization.

(4) The proposed method in this paper is suitable for high
dimensional auto parts multi-objective optimization with the
following characteristics: multiple design variables, multiple
design levels, multiple safety tests and long calculation time.

(5) Although the validity of proposed method is verified
through comparison, it must be said that this paper applies the
unified weight. In other words, we determine the importance
of the four optimization targets through experience.Manually
defined fuzzy rules are generated from the engineer experi-
ence. Fuzzy rules can also reflect the importance of all targets
in the mind of engineers. Refining the fuzzy rules is a solution
to replace the unified weight.

(6) GFLS makes decisions on the basis of engineer experi-
ence deliberately while GRAprocesses data only based on the
internal relationship of initial sequences. Therefore,we will
implement fuzzy decision-making to improve the integration
of GFLS in further researches. This will further improve the
usability of this method.
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