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ABSTRACT This study investigates a combined system comprising non-orthogonal multiple
access (NOMA) and beamforming in a downlink network. To fully exploit the advantages of NOMA,
user (UE) pairing and beamforming design are jointly optimized via a generalized model for UE
association, subject to energy efficiency maximization. Owing to the combination of binary variables
and nonconvex constraints, the resulting optimization problem belongs to the class of mixed-integer
nonconvex programming. An innovative algorithm, integrating the inner-approximation and Dinkelbach
methods, is proposed herein to address a nonconvex fractional function. By introducing a pairing matrix
and relaxing the binary variables into continuous ones, our approach is capable of reaching an optimal
solution, where two arbitrary UEs are optimally paired regardless of geographical or spatial constraints. For
practical scenarios, we further propose a robust design to manage the effect of channel estimation errors
under settings involving channel uncertainty. Numerical results show that our proposed designs, even with
the presence of the imperfect channel state information at the base station, significantly outperform the
conventional beamforming and existing pairing schemes.

INDEX TERMS Beamforming, non-orthogonalmultiple access (NOMA), convex optimization, user pairing,
energy efficiency, robust design.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) has garnered sig-
nificant attention from researchers for potential use in future
wireless networks, i.e., the sixth generation (6G) wireless
networks, owing to its capability of achieving superior sys-
tem throughput and its compatibility with other systems [1],
[2]. Unlike conventional orthogonal multiple access (OMA),
NOMA allows users (UEs) to share the same time-frequency
resource for data transmission. To remove the inter-user
interference, NOMA exploits either power, code or spa-
tial domain, corresponding to the three typical approaches
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of NOMA: power-domain NOMA [2], [3], code-domain
NOMA [4], [5], and spatial-domain NOMA (i.e., multiple-
input multiple-output (MIMO), massive MIMO [6]). Herein,
we focus on power-domain NOMA,1 wherein UE signals can
be superimposed with different power allocation coefficients.
In particular, higher power is allocated to UEs with poorer
channel gains to perform reliable detection at the receiver.
Meanwhile, UEs with better channel gains can suppress the
signals of other UEs with poorer channel gains through
successive interference cancellation (SIC) techniques before
detecting their own signals [7].

1Power-domain NOMA is shortly referred to as NOMA in this paper.
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A. RELATED WORKS AND MOTIVATION
To fully exploit the advantages of NOMA, the UEs must
be grouped/paired efficiently. Therefore, the issue of clus-
tering/pairing UEs has been widely investigated in recent
NOMA-related studies. The majority of papers investigated
the UE pairing strategy, where each pair consists of exactly
two UEs, based on different criteria and under different
contexts [8]–[15]. For example, the effect of UE pairing
was investigated for a cognitive radio-inspired NOMA (CR-
NOMA) system in [8], [9]. Each pair, which includes a
primary UE with a poor channel condition and a cognitive
UE with a strong channel condition, may share the same
spectrum, but different pairs are designed to transmit onto
orthogonal channels. In particular, UEs are paired based on
the matching theory to improve the system throughput, while
satisfying the minimumUE rate requirement [9]. The authors
of [10] studied a centralized radio access network (C-RAN)
utilizing NOMA in multiple sub-carriers (MSC), where
UE pairing and SIC ordering algorithms were proposed to
decrease the co-channel interference. For the NOMA-based
massive MIMO scenario, the work [11] proposed a joint
algorithm considering both UE pairing and pair scheduling
for data transmission, wherein the UE pairing is conducted
by grouping UEs with similar channel conditions based on
their channel norms. The UE pairing strategy for a NOMA
broadcast wireless network was considered in [12], [13],
in which UE pairs are assigned to different sub-channels. The
approach of [12] aims to pair two UEs with the best and worst
channel gains in the unpaired UE set until the set is empty,
whereas the approach of [13] pairs the two unpaired UEs with
the worst channel gains consecutively. In addition, a channel
gain based pairing scheme was proposed for a multiple-input
single-output (MISO) MSC NOMA system in [14], wherein
two UEs with the best and middle channel gains are paired
to employ NOMA technique. On the other hand, the distance
between UEs and the base station (BS) was used as a criterion
of the UE pairing method in [15], [16], where each pair
consists of two UEs in one of two disjoint zones, i.e., inner
and outer zones.

It is worth to mention that the works in [17]–[21] allocate
more than two UEs per NOMA group/cluster instead of mak-
ing use of UE pairing. In particular, UE clustering algorithms
are used to further exploit NOMA benefits for a full-duplex
system in [17], for a NOMA-aided massive MIMO systems
in [19], [20], and for a NOMA-aidedmmWave system in [21].
However, the use of NOMA with a group comprising more
than twoUEs is typically more challenging to implement than
UE pairing algorithms. This is because the virtual partition
of cell zones in UE clustering relies on specific practical
conditions, such as the cell size, channel conditions, and
received power threshold [18], [22].

The beamforming design issue in a NOMA-aided MISO
network has received limited attention in the literature [10],
[23]–[25]. Specifically, the minorization-maximization algo-
rithm was used for the SE optimization problem in a
MISO-NOMA system in [24]. On the other hand, the

worst-case achievable sum rate of all users was maximized
with a robust beamforming design in [25]. However, the
NOMA protocol in those works mainly rely on the SIC
ordering without taking into account UE grouping. This moti-
vates us to formulate a generalized multiuser MISO-NOMA
framework that combines beamforming and UE pairing.

Since the energy efficiency (EE) is considered as a core cri-
terion for future green cellular networks, the EE performance
of NOMA-aided systems have recently attracted attention
from the wireless community, e.g., [10], [17], [23], [26],
[27]. One of the earliest studies pertaining to EE maximiza-
tion for a NOMA system was presented in [26], where a
suboptimal power allocation scheme was proposed with the
assumption of statistical channel state information (CSI) at
the transmitter. The authors of [27] investigated a power
allocation scheme for EE optimization in a DLNOMAbroad-
cast network. As mentioned above, EE maximization was
investigated in [17] via joint sub-channel assignment and
power allocation, but for a DL NOMA-aided network using
a conventional single-input single-output framework rather
than an MU-MISO framework. Besides, a multi-objective
optimization problem of both the SE and EE was studied
for a downlink (DL) NOMA system in [23]. However, the
NOMA protocol in this paper is applied to all UEs without
adopting any clustering method, i.e., each UE utilizes SIC to
remove the interference caused by the signals of all weaker
UEs. This approach is thus difficult to implement due to high
complexity and expensive computational cost.

For a NOMA-aided C-RAN network, although the EE
maximization problem was investigated via joint sub-carrier
assignment and user pairing, as in [10], the QoS require-
ment for each UE is still left untreated. Meanwhile, a hybrid
zero-forcing (ZF) beamforming design was proposed for an
MU-MISO system in [28]. Notice that, the ZF beamformer
proposed in [28] could only remove the residual interference
completely, given that sufficient degree of freedom (DoF)
for the ZF scheme is provided, i.e., the number of BS
antennas must be at least larger than the number of UE
clusters.

To overcome the above DoF limitations of the ZF beam-
forming and the channel gain restrictions of the greedy-based
pairing schemes (as mentioned in previous works, e.g., [11]–
[14], [28]), we aim to develop a novel approach that not
only provides an optimal solution for UE pairing with a
hybrid design of NOMA and beamforming, but achieves a
balanced tradeoff between EE performance and complexity.
Although there is a plethora of related works on the inte-
gration of NOMA and beamforming techniques, we stress
that our proposed UE pairing strategy is different from the
previous schemes in that it works in more dynamic fashion,
where two arbitrary UEs could be optimally paired regardless
of geographical or spatial constraints. In addition, by char-
acterizing the UE paring variables with an auxiliary matrix,
we reach a general framework for all UE pairing methods.
The contributions of this paper are fully described in the
following.
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B. CONTRIBUTIONS
In this study, we investigate a combined beamforming and
UE pairing scheme for a DL NOMA MU-MISO network.
Instead of using channel-gain difference for UE pairing as
the conventional UE pairing strategy, we propose a novel
method to fully exploit the association among UEs for the
efficient use of NOMA. The jointly optimized beamforming
design for a NOMA-based system results in a mixed-integer
nonconvex fractional problem, which cannot be solved using
previous approaches. Hence, a combination of relaxation and
inner-approximation (IA) methods overlaying the Dinkel-
bach framework is proposed to provide at least a local optimal
solution. Furthermore, the proposed method can be conve-
niently extended to a robust design if imperfect CSI is avail-
able.

Overall, main contributions of this paper are listed as
follows:

• First, we develop a novel hybrid NOMA-beamforming
design, wherein the NOMA beamforming and conven-
tional beamforming methods are simultaneously con-
ceived to exploit the advantages of both technologies.
When the NOMA beamforming performance deterio-
rates, the proposed design automatically switches to
the conventional counterpart. Furthermore, the proposed
design offers an optimal approach to utilize the entire
spectral resource instead of assigning UEs to sub-
channels.

• Second, we implement the UE pairing strategy in a
dynamic UE selection manner, where two arbitrary UEs
can be optimally paired in a group, rather than greedy
UE pairing based on channel conditions, i.e., channel
correlation or geometrical distance, as in [17], [18], [22],
[28].

• Third, we feature the binary variables for UE pairing
using an upper triangle matrix. This not only reduces
the number of binary variables and constraints, but may
also yield a generalized framework that is applicable to
all UE pairing methods. However, the EE maximiza-
tion with NOMA-aided beamforming designs under a
dynamic UE pairing can be classified as a mixed-integer
nonconvex fractional problem, which is highly nontriv-
ial to solve directly. Hence, we transform the problem
into a more tractable form by relaxing the binary vari-
ables into continuous ones. To address the nonconvexity
of the relaxed problem, we jointly employ the IA and
Dinkelbach transformation to attain successive convex
programming. In the end, a low-complexity iterative
algorithm is devised to obtain at least a local optimal
point for the original problem.

• Fourth, to achieve a robust design, we further extend the
proposed algorithm for EE maximization under chan-
nel uncertainty, i.e., with imperfect CSI. In this regard,
we exploit a statistical model for estimation error as an
additional condition in the original problem formulation.

FIGURE 1. An illustration of the hybrid NOMA and conventional
beamforming.

• Finally, numerical results are compared with existing
schemes in terms of EE performance and complexity
to verify the effectiveness of our proposed design. Fur-
thermore, we demonstrate that the proposedmethod pro-
vides a fast convergence speed while offering robustness
under an imperfect CSI assumption.

C. PAPER ORGANIZATION AND NOTATION
The remainder of this paper is organized as follows. Sections
II and III describe the systemmodel and problem formulation
of EE maximization, respectively. In Section IV, we pro-
pose a low-complexity iterative algorithm for EE maximiza-
tion using the IA method and Dinkelbach transformation.
Section V presents a robust design under channel uncertainty.
Numerical results are provided in Section VI, and conclu-
sions are presented in Section VII.
Notation: Uppercase and lowercase letters in bold repre-

sent matrices and vectors, respectively. xH denotes the Her-
mitian transpose of x. C and R are the spaces of all complex
and real numbers, respectively. ‖ · ‖ is the Euclidean norm.
|x| and |X| denote the absolute value of a number x and the
determinant value of a matrixX, respectively. E{·} represents
the expectation and<{.} is the real part of a complex number.

II. SYSTEM MODEL
A. DATA TRANSMISSION MODEL
We herein consider a DL NOMA network, where a BS
equipped withN antennas is located in the center of a cell and
serves K single-antenna DL UEs uniformly distributed in the
cell, as shown in Fig. 1. The k-th UE, denoted by UEk , k ∈
K , {1, 2, . . . ,K }, is associated with a channel gain vector
hk ∈ CN×1 from the BS. For a NOMApair, the SIC technique
is applied at the stronger UE, i.e., UE with the stronger
channel gain, who decodes and then subtracts the message of
the weaker UE from the received signal before decoding its
ownmessage. To conveniently employ the NOMA technique,
we first sort the channel gains of UEs in descending sequence,
then assign the indices for UEs based on this order such that
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the following condition is satisfied2:

‖h`‖2 ≥ ‖hk‖2, ∀k, ` ∈ K, ` ≤ k. (1)

The signal received at UEk can be expressed as

yk =
∑
∀`∈K

hHk w`x` + nk , (2)

where wk ∈ CN×1 is the beamforming vector from the BS
to UEk . xk is the data signal to be transmitted to UEk , where
E{|xk |2} = 1 is assumed. nk ∼ CN (0, σ 2

k ) represents the
additive white Gaussian noise. We begin by assuming that
perfect CSI is available at the BS; subsequently, a robust
design under channel uncertainty is presented based on the
proposed solution.

For decoding operations, the UEs are dynamically paired
prior to the messages sent from the BS. We introduce a new
binary variable α`,k ∈ {0, 1}, with ∀`, k ∈ K, to perform UE
pairing, described as

α`,k =



1, if UE` and UEk are paired with SIC being
executed at UE`, i.e., UE` removes the
message intended to UEk before
decoding its own message,

0, otherwise.

(3)

For notational convenience, we define a matrix α ,
[α`,k ]`,k∈K ∈ {0, 1}K×K . It is clear that when α`,k = 1, the
other users are unpaired with UE` and UEk . This implies that
all other elements on two columns ` and k and two rows `
and k must be equal to zero.

By setting w =
[
wT
1w

T
2 · · ·w

T
K

]
∈ CNK×1, the signal-

to-interference-plus-noise (SINR) for decoding the UEk mes-
sage can be expressed as

SINRk (w,α)

= min
{
SINRk,k (w,α), min

`∈K\{k}
{SINR`,k (w,α)}

}
, (4)

where SINRk,k (w,α) and SINR`,k (w,α) are the correspond-
ing SINRs for decoding UEk ’s message at UEk itself and at
UE`, which are defined as

SINRk,k (w,α) =
|hHk wk |

2

9k (w,α)
, (5a)

SINR`,k (w,α) =
|hH` wk |

2

α`,k2`,k (w)
. (5b)

The interference-plus-noise expressions in the denominators
of (5a) and (5b) are defined as

9k (w,α) ,
∑

∀k ′∈K\{k}
(1− αk,k ′ )|hkwk ′ |

2
+ σ 2

k , (6a)

2`,k (w) ,
∑

∀k ′∈K\{k}
|h`wk ′ |

2
+ σ 2

` , (6b)

2The benefits of such an arrangement of the channel gains are two-fold:
(i) under the most cases of channel gain with the pathloss involved, the SIC
is applied more efficiently at the near user than at the far user, (ii) by sorting
the channel gains, the complexity of the combination problem is significantly
reduced.

FIGURE 2. Structure of a pairing matrix.

where k ′ is used to indicate any UE different from UEk , i.e.,
UEk ′ may precede or succeed UEk , while ` denotes the index
of UEs that precede UEk in K, as defined in (1).
For simplicity, we redefine γk (w,α) , SINRk (w,α) and

γk,k (w,α) , SINRk,k (w,α). We further define γ`,k (w,α) to
be the effective SINR`,k (w,α) for decoding UEk ’s message at
UE`:

γ`,k (w,α) =
|hH` wk |

2

(α`,k + ε)2`,k (w)
, (7)

where a small number ε is used to avoid numerical failure
when divided by zero if α`,k = 0, while guaranteeing that
γ`,k (w,α) is extremely large in that case.

As illustrated in Fig. 2, assuming that the two UEs UE`
and UEk ) with ‖h`‖2 > ‖hk‖2, (i.e., ` < k) are paired to
apply the NOMA technique, we obtain the following binary
values α`,k = 1, αk,` = 0, and α`′,` = αk,k ′ = 0, ∀`′ ∈
{K|`′ ≤ ` − 1}, ∀k ′ ∈ {K|k ′ ≥ k + 1}. It is notewor-
thy that the symbol × in Fig. 2 denotes the elements with
α`′,k ′ ∈ {0, 1},∀{`′ 6= `, k ′ 6= k}. In this case, UE` would
decode UEk ’s message and remove this message from its
observation before decoding its own message. Accordingly,
the expression in (4) indicates that the SINR for the UE` is
determined by γ`(w,α) = γ`,`(w,α), since α`′,` = 0 and
γ`′,k (w,α) → ∞, ∀`′ ∈ K. Meanwhile, the SINR for UEk
becomes γk (w,α) = min

{
γk,k (w,α), γ`,k (w,α)

}
owing to

the fact that γ`′,k (w,α) → ∞, ∀`′ ∈ K\{`}. Recall that an
important criterion for our UE pairing approach is that each
UE can be paired with at most one UE. In summary, matrix
α satisfies the following linear constraints

α`,k +

`−1∑
`′=1

α`′,` +

K∑
k ′=k+1

αk,k ′ +

k−1∑
`′=1
`′ 6=`

α`′,k
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+

K∑
k ′=`+1
k ′ 6=k

α`,k ′ ≤ 1, ∀(`, k) ∈ {K ×K|` < k}, (8)

α`,k = 0, ∀(`, k) ∈ {K ×K|` ≥ k}. (9)

Remark 1: The arrangement of UEs in the descending
channel gain can reduce the number of variables in binary
matrix α. In particular, when the UEs are sorted, those with
value 1 are always allocated above the main diagonal, based
on the SIC technique in a NOMA system. Therefore, the
variable matrix α is an upper triangular matrix.

B. POWER CONSUMPTION MODEL
In this paper, power consumption includes the power for data
transmission in the form of electromagnetic radiation, oper-
ation, signal processing at each UE, and consumption at the
circuit [29], [30]. In particular, the total power consumption
in our system can be modeled as follows:

PT(w) = PD(w)+ PC, (10)

where PD(w) is the power for data processing at the UE and
transmission from the BS to all UEs, and PC is the power
consumed by the operation and circuitry.

• First, the power PD(w) for the transmission and process-
ing of data is composed of two parts as [29], [31]

PD(w) =
∑
∀k∈K

1
gPA
‖wk‖

2

︸ ︷︷ ︸
radiated power

+

∑
∀k∈K

Psk︸ ︷︷ ︸
signal processing power

. (11)

The radiated power is the power for transmitting data
from the BS to UEk using electromagnetic radiation,
with gPA ∈ [0, 1] being the power amplifier (PA)
efficiency at the BS [32]. The signal processing power
is the power consumed for data processing including
the waveform generation, synchronization, and precod-
ing/beamforming vector computation at UEk .

• Second, the power consumption for circuit operation PC
can be expressed as [29], [31]

PC = PcirBS + P
a
BS +

∑
∀k∈K

Pcirk . (12)

where PcirBS and Pcirk denote the power consumed by
circuit operation at the BS and UEk , respectively [29].
PaBS is the power consumed when the BS is in the active
mode, i.e., the power to operate the BS.

C. PROBLEM FORMULATION
From (4), the SE of UEk (in nats/s/Hz)3 is obtained as

R(γk (w,α)) = ln(1+ γk (w,α)), k ∈ K. (13)

3For the sake of optimization, we use nats/s/Hz to devise the solution,
while the SE in numerical results is presented in bits/s/Hz by scaling with
ln 2.

Subsequently, the sum SE is expressed as

FSE(w,α) ,
∑
k∈K

R(γk (w,α)). (14)

Therefore, the EE (in nats/J), defined as the ratio of the
sum throughput (in nats/s) of all UEs to the total power
consumption (in W), is expressed as

FEE(w,α) ,
BFSE(w,α)
PT(w)

, (15)

where B is the system bandwidth.
We aim to maximize the EE under the power control and

quality-of-service (QoS) requirement for each UE, formu-
lated as

max
w,α

FEE(w,α), (16a)

s.t.
∑
k∈K
‖wk‖

2
≤ Pmax

BS , (16b)

R(γk (w,α)) ≥ R̄k , ∀k ∈ K, (16c)

α`,k ∈ {0, 1}, ∀k, ` ∈ K, (16d)

α`,k = 0, ∀(`, k) ∈ {K ×K|` ≥ k}, (16e)

α`,k +

`−1∑
`′=1

α`′,` +

K∑
k ′=k+1

αk,k ′ +

k−1∑
`′=1
`′ 6=`

α`′,k

+

K∑
k ′=`+1
k ′ 6=k

α`,k ′ ≤ 1, ∀(`, k) ∈ {K ×K|` < k}. (16f)

Clearly, constraint (16b) guarantees the maximum BS trans-
mit power. Constraints (16d)-(16f) describe the criteria for
UE pairing, wherein each UE can pair with at most another
UE under the condition of the upper triangular matrix as
mentioned in Remark 1. Constraint (16c) ensures the mini-
mum per-UE rate, R̄k , ∀k ∈ K. Because of the nonconcave
objective function (16a), nonconvex constraint (16c), and
binary constraints (16d)-(16f), the problem (16a) belongs to
a mixed-integer nonconvex program; hence, it is generally
difficult to solve directly [33], [34].

III. PROPOSED SOLUTION FOR EE MAXIMIZATION
It is observed that the interference-plus-noise terms in (16a)
contain the strong compounds of binary variables and com-
plex beamforming vectors. Hence, it is highly challenging
to transform the problem into popular convex forms, such
as semi-definite programming and second-order cone pro-
gramming. To facilitate problem solving, we first relax the
binary variables in (16a), hence, constraint (16d) becomes
0 ≤ αk,` ≤ 1,∀k, ` ∈ K. Subsequently, we introduce a new
variable ωk , k ∈ K as a soft SINR for UEk , and apply it to
(13) and (14). The sum SE is simplified to

FSE(w,α) =
∑
k∈K

R(γk (w,α)) ≥
∑
k∈K

R(ωk ), (17)

with a new constraint imposed by

γk (w,α) ≥ ωk , ∀k ∈ K, (18)

VOLUME 10, 2022 35135



K.-H. Nguyen et al.: On Energy Efficiency Maximization of NOMA-Aided Downlink Networks With Dynamic User Pairing

Accordingly, the lower bound of the EE in (15) can be
expressed as

F̄EE(w,α,ω) =
B

PT(w)

∑
k∈K

R(ωk ), (19)

where ω , {ωk}∀k∈K. Therefore, the relaxed problem for
(16a) can be formulated as

max
w,α,ω

F̄EE(w,α,ω), (20a)

s.t. (16b), (16e), (16f), (18), (20b)

0 ≤ α`,k ≤ 1, ∀k, ` ∈ K, (20c)

ωk + 1 ≥ exp (R̄k ), ∀k ∈ K. (20d)

Because the new variable ω is used as an alternative for the
SINR, the nonconvex constraint in (16c) is transformed into
a linear constraint, as shown in (20d). In addition, the binary
constraints are relaxed to the linear forms shown in (16e),
(16f) and (20c). However, problem (20a) is still nonconvex
owing to the nonconcave objective function (20a) and non-
convex constraint (18), which must be approximated to solve
it.

A. CONVEXIFICATION FOR FEASIBLE SET OF PROBLEM
(17)
Theorem 1: The solution to (20a) can be obtained itera-

tively by solving the following problem at iteration (i + 1):

max
w,α,ω,µ

F̄EE(w,α,ω), (21a)

s.t. (16b), (16e), (16f), (20c), (20d), (21b)

|hH` wk |
2
≤ µ`,k , ∀`, k ∈ K, (21c)

A(i)
k,k (w|H, 9k (w(i),α(i)))

− Ā(i)
k,k (w,α,µ|H, 9

(i)
k , fk,k (α,µ))

≥ ωk , k ∈ K, (21d)

A(i)
`,k (w|H,8

(i)
`,k )

− Ā(i)
`,k (w,α,µ|H,8

(i)
`,k , f`,k (α,µ))

≥ ωk , `, k ∈ K, ` 6= k, (21e)

where µ , [µ`,k ]∀`,k∈K is introduced as a new variable,
whereas the channel matrix H , [hk ]∀k∈K ∈ CN×K , 9

(i)
k ,

9k (w(i),α(i)),8(i)
`,k , (α(i)`,k + ε)2`,k (w

(i)) and

A(i)
`,k (w|A,C) , 2

(aH` w
(i)
k ) ∗ (aH` wk )

C
, `, k ∈ K,

Ā(i)
`,k (w,α,µ|A,C, f`,k (α,µ))

,
|aH` w

(i)
k |

2

C2 f`,k (α,µ),

f`,k (α,µ) ,


σ 2
` +

∑
∀k ′∈K\{k} g

(i)
pr(1− α`,k ′ , µ`,k ′ ),

if `=k,

α`,kσ
2
k +

∑
∀k ′∈K\{k} g

(i)
pr(α`,k , µ`,k ′ ),

if ` 6=k,

with the predefined matrix A ∈ CN×K with a` being the `-
th column of A. C is a constant scalar, and X ∈ CK×K and
Y ∈ CK×K are the matrices of the variables. �

Proof: Please see Appendix B.
It is evident that the feasible set of problem (21a) is convex,

because it merely contains the linear and second-order-cone
(SOC) constraints. However, we must address the noncon-
cave objective function before deriving a solution to (20a).

B. PROPOSED ALGORITHM FOR SOLVING PROBLEM (14)
The throughput in the objective function (19) is easily
obtained as in [31, Theorem 3]:

B
∑
k∈K

R(ωk ) = B ln
( ∏
k∈K

(1+ ωk )
)
= B ln |I+�|

:= F̄SE(�), (22)

where � , diag([ω1, ω2, · · · , ωk ]). Subsequently, an auxil-
iary variable ϑ can be used for power control as the following
convex constraint:

PT(w) ≤ ϑ. (23)

Hence, the objective function (21a) can be represented as
a concave-over-linear form, i.e., F̄SE(�)

ϑ
. By applying the

Dinkelbach transformation, sub-problem (21a) at iteration
(i+ 1) can be equivalently expressed as

max
w,α,ω,µ,ϑ

F̄SE(�)− u(i)ϑ, (24a)

s.t. (16b), (16e), (16f), (20c), (20d),

(21c), (21d), (21e), (23), (24b)

where u(i) , F̄SE(�(i))
ϑ (i) is the optimal value achieved in the

previous iteration. Based on the properties of IA and Dinkel-
bach methods [35], [36], the optimality of sub-problem (21a)
and (24a) holds, resulting in the optimum of problem (20a)
at the convergence of an iterative algorithm. However, the
feasibility for sub-problem (24a) is numerically difficult to
obtain at the beginning of the loop in the algorithm, particu-
larly because of the QoS constraint (20d):

To solve problem (24a), an initial starting point
(w(0),α(0),ω(0),µ(0), ϑ (0)) is required. Hence, we solve an
alternative problem that generates a feasible point for (24a):

max
w,α,ω,µ,v

V ,
∑
∀k∈K

vk , (25a)

s.t. (16b), (16e), (16f), (20c), (21c),

(21d), (21e), (25b)

ωk + 1− exp (R̄k ) ≥ vk , ∀k ∈ K, (25c)

vk ≤ 0, ∀k ∈ K, (25d)

where v = {vk}∀k∈K is a new slack variable. It can be foreseen
that the optimal value V approximately reaches zero when the
equalities of constraints (25c) and (25d) hold. This is equiv-
alent to the fact that the QoS constraint in (20d) is satisfied;
therefore, the initial feasible point (w(0),α(0),ω(0),µ(0), ϑ (0))
can be obtained.
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When the iterative algorithm for problem (20a) terminates,
the value of α still belongs to the closed interval [0, 1], i.e.,
may not be an exact binary value (zero or one). In fact, after
a limited number of iterations, the iterative algorithm reaches
the convergence when a difference between two consecutive
objective values is tolerant. Therefore, the optimal solution
with real value of α when solving problem (20a) is not a
solution for problem (16a). To transform α obtained by
solving (20a) into a binary value, we use a rounding function:

α?k,` = bα
(i)
k,` +

1
2
c, ∀k, ` ∈ K, (26)

where bxc, x ∈ R returns the maximum integer not
larger than x. Subsequently, problem (20a) is resolved using
the fixed binary value α to obtain the optimal solution for
problem (16a). The proposed iterative algorithm for solving
the EE maximization problem (16a) under the perfect CSI
assumption at the BS is detailed in Algorithm 1.

C. CONVERGENCE AND COMPLEXITY ANALYSIS
1) CONVERGENCE ANALYSIS
The convergence behavior of the proposed algorithm reflects
the properties of the IA method and Dinkelbach transforma-
tion [35], [36]. According to [36], the optimum successive
convex problem presented in (21a) is obtained from that
presented in (24a). Therefore, problems (21a) and (24a) have
the same optimum and feasible set. LetX = (w,α,ω,µ) and
F (i) be the feasible point and feasible set of approximated
problem (21a) at iteration i, respectively. It is proven that
supX∈F (i+1) F̄EE(w,α,ω) ≥ supX∈F (i) F̄EE(w,α,ω) for a
connected set F (i) [37]. Hence, the program in (21a) mono-
tonically improves the objective values for problems (20a)
and (16a) as well as provides at least a local optimal solu-
tion satisfying the Karush-Kuhn-Tucker conditions at the
convergence. In practice, the algorithm can be numerically
terminated at a finite number of iterations when u(i+1)−u(i) <
10−3.

2) COMPLEXITY ANALYSIS
According to [38], the complexity of a convex problem can
be measured by the number of constraints and variables,
even when the objective function is not linear. As can be
seen, problem (24a) comprises (5K 2

+ K + 2) SOC/linear
constraints and (2K 2

+NK+K+1) variables. Consequently,
the per-iteration complexity for solving problem (24a) is
O((2K 2

+NK +K )2.5((5K 2
+ 3K + 1)2+ 2K 2

+NK +K )).

IV. ROBUST TRANSMISSION DESIGN
In Section III, the proposed design for EE maximization is
analyzed under the ideal assumption of perfect CSI, which
is typically difficult to achieve in practice. In real world
scenarios, it often happens that the channel is not known
a priori at the BS owing to the complex urban environ-
ment. The EE optimization of a system that is robust to the
imperfect CSI condition has thus attracted attention, e.g., for
a MIMO two-way relay network in [39], for a full-duplex

Algorithm 1 Proposed Algorithm to Solve Problem (16a)
Phase 1:
1: Initialization: Set i := 0 and solve (25a) to generate the

initial starting point (w(0),α(0),ω(0),µ(0), ϑ (0)).
2: repeat
3: Solve (24a) to obtain (w?,α?,ω?,µ?, ϑ?).
4: Update (w(i+1),α(i+1),ω(i+1),µ(i+1), ϑ (i+1)) :=

(w?,α?,ω?,µ?, ϑ?).
5: Set i := i+ 1.
6: untilConvergence {Obtain the optimal solution for prob-

lem (20a)}
7: Output-1: The optimal solution (w?,α?) with the con-

tinuous value of α.
Phase 2:
8: Recover the binary value of α?, using (26).
9: Repeat steps 1-6 with the fixed value α? (obtained at step

8) to compute w?.
10: Output-2: The optimal solution (w?,α?) for problem

(16a).

multi-user multi-cell MIMO network in [40], and for a MISO
non-orthogonal multiple access system in [28]. For practical
purposes, this section develops a robust design for EE opti-
mization of the proposed NOMA-aided downlink network
under channel uncertainty, which has not been considered in
the literature so far. Since the real channel hk is assumed to
be unknown, we first decompose it as [17], [28], [40]

hk = ĥk +1hk , (27)

where ĥk and 1hk are the channel estimate and estimation
error, respectively. In this section, the BS is only aware of
ĥk provided by the estimation scheme, whereas the estima-
tion error is undetermined and independent of the channel
estimate.4 Based on the estimation theory, the error can be
considered as a random variable that follows a complex Gaus-
sian distribution [41], [42], i.e., 1hk ∼ CN (0, εkI) with the
variance εk being modeled as

εk , δρ
−λ
k , (28)

where the SNR at UEk is supposed to be ρk ,
Pmax
BS

σ 2k
for the

worst-case design, δ ≥ 0 and λ > 0. It is clear that δ = 0
corresponds to the perfect CSI scenario.

The SINR at UEk under channel uncertainty can be rewrit-
ten as

γ̂k (w,α) = min
{
γ̂k,k (w,α), min

`∈K\{k}
{γ̂`,k (w,α)}

}
, (29)

where γ̂k,k (w,α) denotes the SINR for decoding UEk ’s mes-
sage at UEk itself and γ̂`,k (w,α) stands for the effective SINR
for decoding UEk ’s message at UE` (see (7)), which are

4Unless otherwise stated, the SIC procedure is assumed to be perfect in
this paper.
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expressed as

γ̂k,k (w,α) =
|ĥHk wk |

2

9̂k (w,α)
, (30a)

γ̂`,k (w,α) =
|ĥH` wk |

2

(α`,k + ε)2̂`,k (w)
, (30b)

where 9̂k (w,α) and 2̂`,k (w,α) are defined as

9̂k (w,α) =
∑

∀k ′∈K\{k}
(1− αk,k ′ )|ĥkwk ′ |

2

+

∑
∀k ′∈K

εk‖wk ′‖
2
+ σ 2

k , (31a)

2̂`,k (w) =
∑

∀k ′∈K\{k}
|ĥ`wk ′ |

2
+

∑
∀k ′∈K

ε`‖wk ′‖
2
+σ 2

` . (31b)

Subsequently, the sum SE can be rewritten as

F̂SE(w,α) =
∑
k∈K

R(γ̂k (w,α)). (32)

Therefore, a robust design problem for EE maximization can
be formulated as

max
w,α

BF̂SE(w,α)
PT(w)

, (33a)

s.t. (16b), (16d)− (16f), (33b)

R(γ̂k (w,α)) ≥ R̄k , ∀k ∈ K. (33c)

By utilizing the same steps (17)-(19) to derive (20a), the
relaxed robust design problem for EE maximization can be
expressed as

max
w,α,ω

F̄EE(w,α,ω), (34a)

s.t. (16b), (16e), (16f), (20c), (20d), (34b)

γ̂k (w,α) ≥ ωk , ∀k ∈ K. (34c)

To convexify (34a), we introduce the following proposition:
Proposition 1: By applying Theorem 1 and the steps in

(22)–(24a), the sub-problem in a successive convex program
providing a minorant maximization for problem (34a) at iter-
ation (i+ 1) is formulated as

max
w,α,ω,
µ,τ ,ϑ

F̄SE(�)− u(i)ϑ, (35a)

s.t. (16b), (16e), (16f), (20c), (20d), (23), (35b)

|ĥH` wk |
2
≤ µ`,k , ∀`, k ∈ K, (35c)

‖wk‖
2
≤ τk ,∀k ∈ K, (35d)

A(i)
k,k (w|Ĥ, 9̂

(i)
k )

−4k,k
(
w(i)
|Ĥ, 9̂(i)

k

) ∑
∀k ′∈K

εkτk ′

− Ā(i)
k,k (w,α,µ|Ĥ, 9̂

(i)
k , fk,k (α,µ))

≥ ωk , k ∈ K, (35e)

A(i)
`,k (w|Ĥ, (α

(i)
`,k + ε)2̂`,k (w

(i),α(i)))

−4`,k
(
w(i)
|Ĥ, 8̂(i)

`,k

) ∑
∀k ′∈K

ε`g(i)pr(α`,k , τk ′ )

Algorithm 2 Proposed Algorithm to Solve Problem (16a)
Under Channel Uncertainty
Phase 1:
1: Initialization: Set i := 0 and solve (36a) to generate

(w(0),α(0),ω(0),µ(0), τ (0), ϑ (0)).
2: repeat
3: Solve (35a) to obtain (w?,α?,ω?,µ?, τ ?, ϑ?).
4: Update (w(i+1),α(i+1),ω(i+1),µ(i+1), τ (i+1), ϑ (i+1)) :=

(w?,α?,ω?,µ?, τ ?, ϑ?).
5: Set i := i+ 1.
6: until Convergence {Obtain the optimal solution for

(34a)}
7: Output-1: The optimal solution (w?,α?) with the con-

tinuous value of α.
Phase 2:
8: Recover the binary value of α?, using (26).
9: Repeat steps 1-6 with α? obtained at step 8 to compute

w?.
10: Output-2: The optimal solution (w?,αar) for problem

(16a).

− Ā(i)
`,k (w,α,µ|Ĥ, 8̂

(i)
`,k , f`,k (α,µ))

≥ ωk , `, k ∈ K, ` 6= k, (35f)

where τ , [τk ]∀k∈K is introduced as a new variable, whereas
the channel estimates Ĥ , [ĥk ]∀k∈K ∈ CN×K , 9̂

(i)
k ,

9̂k (w(i),α(i)), 8̂(i)
`,k , (α(i)`,k + ε)2̂`,k (w

(i)) and

4`,k
(
w|A,C

)
,
|aH` wk |

2

C2 .

Proof: Please see Appendix C.
To derive a solution for the robust design problem (33a),

we utilize Algorithm 1 with the following modifications.
In Step 1, instead of solving (25a), the initial starting point
is generated by solving the following problem:

max
w,α,ω,µ,τ ,v

V ,
∑
∀k∈K

vk , (36a)

s.t. (16b), (16e), (16f), (20c), (25c),

(25d), (35c)− (35f), (36b)

Subsequently, the convex problem (24a) is replaced by (35a)
in Step 3, and Step 4 is performed to update the hextu-
ple variable (w(i+1),α(i+1),ω(i+1),µ(i+1), τ (i+1), ϑ (i+1)) :=
(w?,α?,ω?,µ?, τ ?, ϑ?). The customized algorithm is pre-
sented in Algorithm 2.

V. NUMERICAL RESULTS
To evaluate the proposed methods, we consider a DL cel-
lular system comprising a centrally located BS equipped
with N antennas and K single-antenna UEs. The Monte
Carlo framework is used to investigate the performance of
the considered schemes. The channel is assumed to undergo
flat fading; the small-scale fading is modeled as a random
variable that follows a circularly-symmetric complex normal
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TABLE 1. Simulation Parameters.

distribution, i.e., h ∼ CN (0,PLBS,UEI), where PLBS,UE is
the path loss (PL) between the BS and UE with distance
dBS,UE. Other simulation parameters are shown in Table 1,
in which the power consumption and PA efficiency param-
eters are obtained from [29]. The proposed algorithms are
terminated when the difference of objective values between
two successive iterations is smaller than 10−3. To quantify
the effectiveness of the proposed scheme, we compare the
proposed scheme with the following benchmark schemes:

• Exhaustive Search for Pairing (ESP): This scheme con-
siders all possible cases of α to derive a set of sub-
problems. Subsequently, each sub-problem correspond-
ing to each value of α is solved using the proposed
algorithm. Finally, the optimal solution is selected as it
provides the best performance among the sub-problems.

• Random Pairing (RaP): In this scheme, the proposed
algorithm is utilized to obtain the beamforming vectors
for a sub-problem, wherein the UE association matrix
α is fixed by generating random values for the upper
triangle part of α.

• Beamforming design (BFD): For the conventional BFD,
α is set to an all-zero matrix; subsequently, the proposed
algorithm is used to compute the power control for
beamforming vectors.

Among these three schemes, the ESP method would yield
the highest EE, albeit having the highest complexity. Without
using UE pairing, the BFDmethod will provide the lowest EE
but require the lowest complexity due to the simple design.
RaP is considered as an intermediate solution for the two
extreme cases with a performance worse than that of ESP but
with a much lower complexity as specified in Section V-A.

A. EE PERFORMANCE AND COMPLEXITY
Fig. 3 shows the cumulative distribution function (CDF) of
the average EE of the proposed method (Alg. 1) and the three
aforementioned schemes. The CDF results are obtained with
1000 different random channel realizations. As expected, the
EE of the BFD scheme is much worse than that of the other
three NOMA-based schemes, with an EE difference from 0.2
to 1.2 Mbits/J at the midpoint. As expected, the proposed
algorithm yields an EE performance similar to that of ESP,
with an offset of 0.1 Mbit/J, while outperforming the other

FIGURE 3. Cumulative distribution function of the EE (Mbits/J).

schemes, i.e., the BFD and RaP. Under various random chan-
nel responses, Fig. 3 validates the adaption of the proposed
method for EE optimization (when compared with ESP), and
verifies the advantages of pairing schemes in NOMA-based
systems.

In addition to EE performance, computational complexity
is a key metric for evaluating the effectiveness of algorithms.
In particular, the convergence rate, which must be intuitively
investigated via simulations, is typically used as a fundamen-
tal criterion of computational complexity. Fig. 4 shows the
convergence behavior under a typical channel scenario with
different numbers of UEs, e.g., K = 6 and K = 10. It is
noteworthy that the ESP comprises many sub-problems, each
of which is equivalent to a problem using the RaP scheme.
Because the proposed algorithm is designed to generalize
the UE pairing methods, it is sufficient to consider the RaP
scheme in terms of the number of iterations while omitting
the ESP scheme. In general, in Alg. 1, the RaP and BFD
schemes require a similar number of iterations to reach the
convergence, i.e., approximately 10 iterations. The jumping
phenomenon in the convergence behavior of the proposed
algorithm is caused by the first step of phase 2, in which the
relaxed values of matrix α were recovered into binary ones.
Nevertheless, the saturation values for the objective functions
are quickly reached after about 10 iterations and remain
constant afterwards, providing a fast convergence rate.

Another crucial criterion of computational complexity is
the per-iteration complexity in terms of big-O as a function
of the number of variables and that of SOC/linear constraints
[38]. We present the comparison of Alg. 1 and considered
schemes based on this criterion in Table 2. Accordingly, the
complexity per iteration for both the ESP (in a sub-problem)
and RaP (in a problem/sub-problem) schemes is typically
expressed asO((v2.52 (c22+v2))). Meanwhile, the BFDmethod
has a similar big-O expression; however, it requires a smaller
number of constraints, i.e., K 2

+ 2K + 2. This confirms
that the order of this complexity expression is the same as
that of the complexity required by the proposed algorithm,
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TABLE 2. Comparison of Complexity.

FIGURE 4. Convergence behavior on the EE performance.

as mentioned in Section III-C. With the presence of a large
K , the per-iteration complexities for all the methods above
are comparable with each other. However, the ESP method
requires a considerably long operation time owing the large
number of sub-problems. Meanwhile, the proposed method
and other methods merely address an original problem at one
time.

B. EFFECT OF QoS REQUIREMENT
In this subsection, we present the effects of the QoS require-
ment and maximum power budget at the BS on the EE
performance. Fig. 5 shows the average EE as a function of
the minimum bit rate (or the QoS threshold), R̄, in bits/s/Hz.
As expected, the EE of all methods degrades as the minimum
bit rate R̄ increases. For the same QoS threshold, the adaptive
capability of the proposed algorithm as compared with the
BFD and RaP schemes is confirmed, providing the perfor-
mance gains of at least 0.5 Mbits/J. Intuitively, it is feasible
to obtain a good solution based on Alg. 1 for higher QoS
requirements, i.e., R̄ ∈ {1.8, 2.0}. More interestingly, Fig. 5
shows that the performance of the proposed method is similar
to that of the ESP, with a small EE loss of approximately 0.15
Mbits/J.

To further comprehend the EE behavior under changes in
the QoS requirement, we plot the CDF of R̄, as shown in
Fig. 6. It can be observed that the probabilities of obtaining a
feasible point for the four considered strategies are inversely
proportional to R̄. The 95-percentile points of the BFD and
RaP schemes are achieved at approximately R̄ = 1.6 and
2 bits/s/Hz, respectively, rendering it difficult to obtain the
feasible points. By contrast, Alg. 1 and the ESP methods

FIGURE 5. Average EE (Mbits/J) as a function of the required QoS level.

FIGURE 6. Cumulative distribution function of the required QoS.

have a 95-percentile point around 3 bits/s/Hz. These results
clearly reflect the observation in Fig. 5, thereby confirming
the advantage of the proposed scheme for the NOMA-based
system.

C. EFFECT OF MAXIMUM POWER BUDGET AT BS
Fig. 7 shows the change in EEwhen themaximumpower bud-
get at the BS, i.e., Pmax

BS , increases. As shown, the proposed
method outperforms both the BFD and RaP schemes while
providing an EE similar to that obtained using ESP. In partic-
ular, compared with the BFD scheme, the performance gain
of the RaP scheme at the floor level is approximately 0.4
Mbits/J, which is less than that of the proposed method, i.e.,
approximately 1.4 Mbits/J. This implies the capability of the
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FIGURE 7. Average EE (Mbits/J) as a function of the BS power budget
Pmax
BS .

proposed approach in obtaining a good solution for NOMA-
based systems. In addition, Fig. 7 shows that the EE of all
schemes reaches saturated values when the maximum power
budget is sufficiently high, i.e., Pmax

BS = 26 dBm.
To obtain insights into the EE behavior of the proposed

method, Fig. 8 shows the relationship between the sum rate
and average total power consumption, W , with respect to
different values of minimum bit rates and maximum power
budgets at the BS, e.g., R̄ ∈ [0.2, 2] bits/s/Hz and Pmax

BS ∈

{30, 38} dBm, respectively. It is noteworthy that the power
consumption is directly proportional to the minimum bit rate,
whereas the sum rate shows a reverse trend. In fact, the higher
the power resource, the greater is the degree of freedom
provided to satisfy the QoS constraint. This is verified by
the observation that the gap between Pmax

BS = 30 dBm and
Pmax
BS = 38 dBm increases with the QoS threshold, beginning

from R̄ > 1 bits/s/Hz. When R̄ < 1 bits/s/Hz, the values
of the sum rate and power consumption in the two cases of
Pmax
BS = 30 dBm and Pmax

BS = 38 dBm are similar to each
other. Consequently, the EE is unchanged, thereby depicting a
sufficient power budget. This result validates the observations
from Fig. 7.

D. EFFECT OF NUMBER OF UEs
To further investigate the effectiveness of the proposed algo-
rithm, we now evaluate the EE performance of the proposed
algorithm with respect to the number of UEs. Since the BFD
yields the worst EE performance, as mentioned at the begin-
ning of this section, we therefore consider the RaP method
as the baseline for UE pairing. In addition to the Alg. 1 and
RaP scheme, we investigate the EE of the following typical
greedy-based pairing schemes.5

• Greedy pairing for channel gain difference (GP-CGD):
This refers to the pairing scheme in [12], wherein if

5The greedy-pairingmethods based on the channel gains primarily depend
on the large-scale fading rather than on the small-scale fading, and thus, they
are good representatives of classical NOMA schemes with the UE pairing
using the statistical CSI.

FIGURE 8. Relationship between power consumption and sum rate with
R̄ ∈ [0.2,2] bits/s/Hz.

FIGURE 9. Average EE as a function of the number of UEs K at fixed
R̄ = 0.5 bits/s/Hz.

the k-th and (K − k + 1)-th UEs are paired, then it
corresponds to αk,K−k+1 = 1, 1 ≤ k ≤ bK/2c.

• Greedy pairing for dynamic zone boundary (GP-DZB):
As in the pairing scheme in [14], the boundary of the
inner and outer zones is dynamically determined using
the sorted list of channel gain. Accordingly, two sets
of UEs are established: the strong-zone set includes the
bK/2c strongest UEs from theBS, and theweak-zone set
contains the remaining K − bK/2c UEs. Subsequently,
the strongest UEs in the strong-zone and weak-zone
sets are popped out and paired to each other until the
strong-zone set is empty. This results in αk,K−bK/2c+k =
1, 1 ≤ k ≤ bK/2c.

• Consecutive paring (CoP): This refers to the pairing
scheme in [13], where two consecutive UEs are paired
with each other, and the (2k − 1)-th and (2k)-th UEs are
paired based on α2k−1,2k = 1, 1 ≤ k ≤ bK/2c.

VOLUME 10, 2022 35141



K.-H. Nguyen et al.: On Energy Efficiency Maximization of NOMA-Aided Downlink Networks With Dynamic User Pairing

FIGURE 10. Average EE (Mbits/J) as a function of stochastic error level.

Fig. 9 illustrates the behavior of the EE of different pairing
schemes when the number of UEs K changes, with a fixed
value of the minimum bit rate, R̄ = 0.5 bits/s/Hz. It is
noteworthy that Alg. 1 is generalized to all pairing schemes;
therefore, the three greedy-based methods can be straightfor-
wardly employed by changing the values of matrix α in the
proposed algorithm. As shown in Fig. 9, Alg. 1 significantly
outperforms the other pairing schemes, even in the case where
the degree of freedom is insufficient, i.e., with the number
of antennas at the BS N = 4. This gap quickly enlarges
when K increases, starting from K ≥ 6. With a high N
(N = 8), while the EE of all the five paring schemes increases
in proportion to K , the proposed method is still superior to
all greedy-based ones, thereby verifying the adaptability and
stability of UE pairing with respect to various numbers of
UEs in the cell. These simulation results confirm that the pro-
posed method enables a unified UE pairing framework that
is applicable for all greedy-based schemes as well as random
pairing. By solving the joint optimization problem, it provides
the best performance among the existing pairing schemes
under different network topologies. In addition, as afforded
by the RaP method, the GP-based and CoP schemes utilize
the pairing matrix provided for computing the beamforming
vectors, resulting in an equivalent computational complexity
in terms of big-O. This validates the advantages of the pro-
posed algorithm over existing methods for UE pairing.

E. EFFECT OF IMPERFECT CSI
In this subsection, we evaluate the effectiveness of the pro-
posed robust design under a practical scenario in the presence
of imperfect CSI. Fig. 10 presents the average EE as a func-
tion of the stochastic error level δ, where δ is described in (28)
with parameters λ ∈ {0.3, 0.4}. For simplicity, we adopt the
three aforementioned schemes, i.e., the ESP, RaP and BFD
schemes.

As shown in Fig. 10, the average EE of all four cases with
λ = 0.4 is lower than those with λ = 0.3. This shows that
the system performance degrades as the accuracy of channel
estimation decreases, i.e., with λ = 0.4. Furthermore, this
corresponds to a larger estimation error compared with λ =
0.3. Recall that δ = 0 implies perfect CSI cases. Hence, one
obtains the same EE values of each scheme at δ = 0 for any
value of λ. For each considered scheme, a gap between two
cases, i.e., λ = 0.3 (solid lines) and λ = 0.4 (dashed lines),
is observed to increase with the growth of δ. In this practical
scenario, the proposed scheme performs significantly better
than the RaP and BFD schemes, while providing an average
EE similar to that of the ESP scheme. Hence, this verifies
the robustness of the proposed algorithm against channel
uncertainty.

VI. CONCLUSION
In this paper, we formulated a generalized framework for
a hybrid design of beamforming and NOMA methods in a
DL network by constructing a matrix of UE pairing binary
variables. In fact, this auxiliary matrix facilitated the opti-
mization problem in terms of EE by reducing the number
of binary variables and constraints. Our proposed formu-
lation was devised to yield an optimal UE pairing solu-
tion, i.e., it may pair two arbitrary UEs in a cell despite
the geographical conditions. Therefore, the entire channel
spectrum can be efficiently exploited instead of splitting
it into sub-channels as in the conventional method. Given
that the EE maximization problem belongs to mixed-integer
nonconvex programming, which has scarcely been solved
by previous approaches, we thus derived a low-complexity
iterative algorithm (Algorithm 1) based on the IAmethod and
Dinkelbach transformation.

Numerical results with realistic parameters were presented
to demonstrate the effectiveness of the proposed algorithm.
The proposed algorithm achieves a significant EE gain over
two benchmark schemes, BFD and RaP, which are the tra-
ditional beamforming design and traditional UE pairing for
NOMA, respectively, while providing a fast convergence
rate and maintaining an acceptable complexity. In addition,
the advantages of the proposed algorithm over the existing
schemes were validated via simulation results based on the
QoS requirement, maximum BS power budget, and num-
ber of UEs. For the imperfect CSI scenario, we introduced
a robust design developed from the proposed algorithm,
namely Algorithm 2, to address a realistic scenario where the
channel estimation is inaccurate. An iterative low-complexity
algorithmwas verified via a stochastic estimation error model
to demonstrate its robustness and adaptability over the clas-
sical RaP and BFD schemes, while providing an EE perfor-
mance comparable to the ESP scheme.

APPENDIX A
AUXILIARY FUNCTIONS FOR INNER APPROXIMATIONS
We first introduce the following two approximate functions
that are useful for the proofs in Appendices B and C:
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• The function |x|2/ywith (x, y) ∈ R2
++ has a lower bound

around a feasible point (x(i), y(i)), as provided in [43],
i.e.,

|x|2

y
≥ 2

x(i)x
y(i)
−
|x(i)|2

(y(i))2
y. (A.1)

• For a product function gpr(x, y) , xy, an upper bound
of gpr(x, y) around a feasible point (x(i), y(i)) can be
obtained by applying [44, Eq. (B.1)] as

gpr(x, y) ≤
y(i)

2x(i)
x2 +

x(i)

2y(i)
y2 , g(i)pr(x, y). (A.2)

APPENDIX B
PROOF OF THEOREM 1
For a nonconvex problem with the nonconcave objective
function and nonconvex constraints in the form of problem
(20a), it is possible to transform the problem into a successive
program with sub-problems having feasible sets by applying
the inner convex approximation [45]. In particular, the fea-
sible set in (20a) is nonconvex owing to the nonconvexity
of (18). Therefore, the remainder of the proof is to address
the nonconvex constraint (18). First, constraint (18) with the
minimum function γk (w,α) on the left-hand side (LHS) can
be expressed as two sub-constraints:{

γk,k (w,α) ≥ ωk , ∀k ∈ K, (B.1a)
γ`,k (w,α) ≥ ωk , ∀`, k ∈ K, ` 6= k. (B.1b)

Subsequently, by applying (A.1) to the LHSs of (3) and
(3), the lower bounds of γk,k (w,α), ∀k ∈ K and
γ`,k (w,α), ∀`, k ∈ K, ` 6= k at iteration (i + 1) are
formulated as
γk,k (w,α) ≥ A(i)

k,k (w|H, 9
(i)
k )

−Ã(i)
k,k (w,α|H, 9

(i)
k , ϒk,k (w,α|H)), (B.2a)

γ`,k (w,α) ≥ A(i)
`,k (w|H,8

(i)
`,k )

−Ã(i)
`,k (w,α|H,8

(i)
`,k , ϒ`,k (w,α|H)), (B.2b)

where the nonconvex function Ã(i)
k,k (w,α|A,C, ϒ`,k (w,α))

is expressed as

Ã(i)
`,k (w,α|A,C, ϒ`,k (w,α|A))

,
|aH` w

(i)
k |

2

C2 ϒ`,k (w,α|A), (B.3)

ϒ`,k (w,α|A)

,


∑
∀k ′∈K\{k}(1− α`,k ′ )|a

H
` wk ′ |

2

+σ 2
` , if ` = k,∑

∀k ′∈K\{k} α`,k |a
H
` wk ′ |

2,

+α`,kσ
2
` , if ` 6= k.

(B.4)

Clearly, the nonconvexity of Ã(i)
k,k (w,α|A,C, ϒ`,k (w,α))

is caused by the nonconvexity of ϒ`,k (w,α). Therefore,
ϒ`,k (w,α) must be convexified. In this regard, the upper

bounds of ϒ`,k (w,α) corresponding to cases in (B.3) are
given as

ϒ̃`,k (w,α,µ) ,


σ 2
` +

∑
∀k ′∈K\{k}(1− α`,k ′ )µ`,k ′ ,

if ` = k,
α`,kσ

2
` +

∑
∀k ′∈K\{k} α`,kµ`,k ′ ,

if ` 6= k,
(B.5)

with an SOC constraint imposed as:

|hH` wk |
2
≤ µ`,k , ∀`, k ∈ K. (B.6)

By applying (A.2) to (B.5), the upper bound of ϒ`,k (w,α)
can be derived as

f`,k (α,µ) ,


σ 2
` +

∑
∀k ′∈K\{k} g

(i)
pr(1− α`,k ′ , µ`,k ′ ),

if ` = k,

α`,kσ
2
` +

∑
∀k ′∈K\{k} g

(i)
pr(α`,k , µ`,k ′ ),

if ` 6= k.
(B.7)

Finally, the LHSs of (3) and (3) are linearly approximated as
γk,k (w,α) ≥ A(i)

k,k (w|H, 9
(i)
k )

−Ā(i)
k,k (w,α,µ|H, 9

(i)
k , fk,k (α,µ)), (B.8a)

γ`,k (w,α) ≥ A(i)
`,k (w|H,8

(i)
`,k )

−Ā(i)
`,k (w,α,µ|H,8

(i)
`,k , f`,k (α,µ)). (B.8a)

This results in constraints (21d) and (21e) with constraint
(B.6) expressed as (21c), thereby completing the proof.

APPENDIX C
PROOF OF PROPOSITION 1
To convexify problem (34a), we must address the feasible set
and objective function. As shown, the feasible set of problem
(34a) is nonconvex owing to the nonconvex constraint (34c),
whereas the objective function performed as a ratio function
of sum-log over quadratic form is nonconcave.

First, we address constraint (34c). Similar to (3), we can
rewrite (34c) as{

γ̂k,k (w,α) ≥ ωk , ∀k ∈ K, (C.1a)
γ̂`,k (w,α)≥ωk , ∀`, k ∈ K, ` 6= k. (C.1b)

By adopting (3), the lower bounds for the LHSs of (B.8) can
be derived as

γ̂k,k (w,α) ≥ A(i)
k,k (w|Ĥ, 9̂

(i)
k )

−4k,k (w(i)
|Ĥ, 9̂(i)

k )
∑
∀`∈K εk‖w`‖

2

−Ã(i)
k,k (w,α|Ĥ, 9̂

(i)
k , ϒk,k (w,α|Ĥ)), (C.2a)

γ̂`,k (w,α) ≥ A(i)
`,k (w|Ĥ, 8̂

(i)
`,k )

−4`,k
(
w(i)
|Ĥ, 8̂(i)

`,k

)
α`,k

∑
∀k ′∈K ε`‖wk ′‖

2

−Ã(i)
`,k (w,α|Ĥ, 8̂

(i)
`,k , ϒ`,k (w,α|Ĥ)), (C.2b)
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By applying (A.2) and the same steps (B.5)–(B.8), the LHSs
of (B.8) can be convexified as

γ̂k,k (w,α) ≥ A(i)
k,k (w|Ĥ, 9̂

(i)
k )

−4k,k
(
w(i)
|Ĥ, 9̂(i)

k

)∑
∀k ′∈K εkτk ′

−Ā(i)
k,k (w,α,µ|Ĥ, 9̂

(i)
k , fk,k (α,µ)), (C.3a)

γ̂`,k (w,α) ≥ A(i)
`,k (w|Ĥ, 8̂

(i)
`,k )

−4`,k
(
w(i)
|Ĥ, 8̂(i)

`,k

)∑
∀k ′∈K ε`g

(i)
pr(α`,k , τk ′ )

−Ā(i)
`,k (w,α,µ|Ĥ, 8̂

(i)
`,k , f`,k (α,µ)), (C.3b)

with newly introduced variables µ , [µ`,k ]∀`,k∈K and τ ,
[τk ]∀k∈K, thereby satisfying the following convex constraints:

|ĥH` wk |
2
≤ µ`,k , ∀`, k ∈ K, (C.3a)

‖wk‖
2
≤ τk ,∀k ∈ K. (C.3b)

It is clear that (B.8) and (C.3a) results in constraints (35c) –
(35f) for problem (35a). Finally, the objective function
(34a) can be straightforwardly addressed using (22) – (24a),
thereby yielding problem (35a).
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