
Received February 25, 2022, accepted March 15, 2022, date of publication March 28, 2022, date of current version April 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162617

Task Migration Policy for Thermal-Aware
Dynamic Performance Optimization in
Many-Core Systems
BEHNAZ POURMOHSENI 1, STEFAN WILDERMANN 1, FEDOR SMIRNOV 2,
PAUL E. MEYER1, AND JÜRGEN TEICH 1, (Fellow, IEEE)
1Chair for Hardware/Software Co-Design, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
91058 Erlangen, Germany
2Distributed and Parallel Systems Group, Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Corresponding authors: Behnaz Pourmohseni (behnaz.pourmohseni@fau.de) and Stefan Wildermann (stefan.wildermann@fau.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project TRR89 Invasive
Computing (project No. 146371743).

ABSTRACT The steady downsizing of semiconductor technology nodes in recent years has led to a
rapid increase in the density of power consumption on chips which, in turn, renders temperature a major
issue for many-core systems, adversely affecting their performance, reliability, leakage, cost, etc. In this
context, task migration is a powerful technique that is widely used for controlling the temperature profile
of many-core systems under dynamic workloads with the goal to improve their performance, utilization,
reliability, etc. In this paper, we present a task migration policy for thermal-aware performance optimization
in heterogeneous many-core systems. The proposed policy is developed based on an analytical and thermally
safe power-budgeting scheme and uses Dynamic Voltage and Frequency Scaling (DVFS) for power and
thermal management of the system. Our migration policy aims at maximizing the system’s performance
and, at the same time, proactively enforcing thermal safety using DVFS. To that end, it iteratively adapts the
distribution of active cores in the system (through proper migration decisions) to maximize the thermally safe
power budget of active cores and, thereby, enable them to operate on higher frequencies without violating
their safe thermal threshold. Experimental results demonstrate that the proposed policy offers 2× higher
performance gain in comparison to existing approaches which aim at greedily reducing the average, variance,
or gradient of temperature as an indirect means to enhance performance.

INDEX TERMS Dynamic thermal management, heterogeneous, many-core systems, performance
optimization, task migration.

I. INTRODUCTION
Over the past decades, the continuous increase in the
compute-power requirements of embedded applications and
the end of Dennard scaling [1] have led to the introduction of
embedded multi/many-core systems. By integrating a large
number of processing resources (henceforth called cores) on a
single chip, many-core systems provide massive and scalable
compute power which enables the concurrent execution of
a large number of applications. To achieve compute-power
scalability, many-core systems typically follow a tile-based
organization of resources, where the cores and their necessary
peripherals, e.g., caches, are clustered into a set of tiles

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

which are interconnected via a Network-on-Chip (NoC), see
e.g. [2]–[4]. In particular, heterogeneous many-core systems
are becoming the de facto standard architectures for embed-
ded systems; The variety of different types of cores avail-
able in a heterogeneous system enables catering to diverse
processing demands of different processes and applications
and, thereby, establish an efficient execution with desirable
performance-energy trade-offs [5].

A large share of embedded systems manifest a dynamic
execution environment where (i) the mix of concurrently
executed applications may change unforeseeably, e.g., fol-
lowing user requests, and/or (ii) the applications exhibit
dynamic workload and execution characteristics. To achieve
high resource utilization, such systems rely on dynamic
resource management schemes to dynamically allocate the

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 33787

https://orcid.org/0000-0003-0350-4784
https://orcid.org/0000-0002-4324-2187
https://orcid.org/0000-0002-2715-5614
https://orcid.org/0000-0001-6285-5862
https://orcid.org/0000-0003-0619-0338


B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

compute and communication resources necessary for exe-
cuting each application at its launch time and, later, release
these resources upon a termination request [6], [7]. To that
end, these systems feature a so-called Run-time Manager
(RM) which continuously monitors the system’s state w.r.t.
the deployed applications and availability of resources. Upon
a launch request, the RM deploys the incoming applica-
tion on the currently available resources using lightweight
application-mapping heuristics whose compute overhead is
low enough for online use. It may also adapt the deployment
of running applications during their execution for, e.g., load
balancing, improving energy efficiency, or evacuating failed
resources.

While yielding massive processing power, many-core sys-
tems typically exhibit increased on-chip temperature due
to their dense integration of resources and the resulting
high density of power consumption1 [8], [9]. In fact, due
to the ongoing technology downsizing, many-core sys-
tems are strongly susceptible to hotspots which can jeopar-
dize the thermal integrity of the system, accelerate aging,
lead to transient faults, and even cause permanent system
failure [9], [10]. This renders thermal concerns particularly
crucial aspects of consideration during the design of many-
core systems as well as the dynamic management of their
resources at run time.

Dynamic systems often exhibit a dynamic temperature
profile following the changes in the activity of resources.
The temperature of each resource depends on its density
of power consumption (as its local source of heat) and the
temperature of its nearby regions (due to on-chip heat trans-
fer). To keep the system in a thermally safe state, many-
core systems employ Dynamic Thermal Management (DTM)
mechanisms which continuously monitor the thermal state of
the system and autonomously (typically at hardware level)
counteract hotspots to maintain the peak temperature of the
system below a critical threshold, see [11] for an overview.
For this purpose, they either stall the overheated resources
by means of clock/power gating and/or throttle them using
DVFS. Evidently, while preserving thermal safety, DTM
countermeasures incur performance degradation and may
cause loss of processing progress. Moreover, depending on
the system’s thermal profile, its ambient temperature, and
its packaging/cooling subsystem, the overheated regions may
require some time to cool down before becoming operational
again, resulting in an extended utilization penalty. To alle-
viate the performance and/or utilization penalty of DTM—
and, thereby, maximize the system’s performance [12] or
utilization [13] under thermal constraints—thermal consider-
ations are increasingly incorporated into many-core resource-
management and application-mapping strategies.

In view of the dynamic workload and, hence, power and
temperature profile of many-core systems, task migration

1The density of power consumption refers to the amount of power con-
sumed per unit of die area which is proportional to the amount of heat
generated as a consequence of this power consumption.

and DVFS serve as the key mechanisms used for thermal-
aware dynamic resource management. Using task migration,
the RM is enabled to dynamically modify the deployment
of running applications in the system and, thereby, adjust
the chip’s thermal profile. DVFS enables the RM to cali-
brate the power consumption of each active core for fine-
grained thermal control. As a result, many thermal-aware
resource management strategies employ temperature moni-
toring together with task migration and DVFS to reduce [14]
or even prevent [15] the occurrence of thermal violations and,
thereby, pursue the ultimate goal of optimizing the system’s
performance (and/or its utilization) by preventing situations
that lead to the activation of DTM countermeasures.

Whenmaking resource-management decisions (e.g., decid-
ing between multiple task migration options), it is typi-
cally computationally too expensive or even infeasible to
adequately assess the performance impact of an option.
Therefore, despite performance gain being their primary
goal, thermal-aware resource-management strategies chiefly
pursue an indirect objective which (i) can be attained using
lightweight evaluations and decision-making heuristics while
(ii) correlating well with performance so that its optimization
entails performance gain. In this context, thermal balance is
often viewed as a promising indirect objective to maximize
performance under thermal constraints, since enhancing ther-
mal balance enables operating the active cores on a higher fre-
quency which, in turn, often translates into performance gain.
Moreover, a migration policy for optimizing thermal balance
can be established practically, since the thermal profile of
the system can be derived through temperature measurement
(if temperature sensors are available) or using lightweight
temperature prediction methods, and migration decisions can
be made on that basis using lightweight heuristics. As a
result, a large share of thermal-aware resource-management
strategies employ task migration to relocate tasks from hot
to cold (often idle) cores (possibly coupled with DVFS to
control power consumption) to maximize thermal balance
by, e.g., minimizing the peak temperature of the chip, its
temperature gradient, temperature variance, etc.

A. MOTIVATION
The main hypothesis of this work (which is supported by
experimental evidence in Sections IV-A and V) is that ther-
mal balance as an indirect objective towards performance
optimization serves well only for homogeneous target plat-
forms; In a homogeneous system, all cores have identical
power-, thermal-, and performance inter-relations such that
different cores that operate at the same temperature (by run-
ning at the same or comparable V/F level) also yield com-
parable performance. In such a setup, maximizing thermal
balance enables increasing the average operating frequency
of active cores (without thermal violation) and, thereby,
optimize performance. This uniformity, however, does not
hold for heterogeneous systems where core instances of
different type exhibit different inter-relations between their
power-, thermal-, and performance characteristics and, hence,

33788 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

two cores of different types operating at the same tempera-
ture may exhibit substantially different performance profiles
and/or even run at substantially different frequencies while
sustaining their temperature. In fact, as will be shown later
in Sections IV-A and V,migration options that yieldmaximal
performance gain in a heterogeneous system often even lead
to increased thermal imbalance in the system.

Besides their choice of indirect objective, the performance
benefit of thermal-aware migration strategies depends also
on their ability to prevent thermal violations. While exist-
ing migration strategies are able to reduce the frequency of
thermal violations, they often cannot prevent violations com-
pletely, meaning that the system under their control may still
undergo some violations and suffer the performance penalty
of DTM counteractions, e.g., clock/power gating or throttling
of overheated regions. On the other hand, migration strategies
that are capable of preventing thermal violations chiefly rely
on conservative temperature constraints which often result in
under-utilization of the safe thermal headroom of the chip,
e.g., by operating some cores at a V/F level that is indeed
lower that the level they can maintain in a thermally safe way.
Thus, they often cannot maximally exploit the performance
potential of the system in the absence of violations.

B. CONTRIBUTION
As a remedy to the above concerns, this paper (i) promotes a
new indirect objective for migration-based performance opti-
mization which is suitable also for heterogeneous many-core
systems and can ensure thermal safety. We then (ii) present a
migration policy which optimizes this new objective using a
lightweight heuristic, making it suitable for online use.

As for the new indirect objective, we promote the so-called
Thermally Safe Power Density (TSPD) introduced in [16].
TSPD is a system-wide (uniform) power-density constraint
that enforces thermal safety and suits both homogeneous
and heterogeneous systems. Our proposition is based on two
observations: Firstly, we experimentally demonstrate that,
compared to thermal-balance optimization, TSPD optimiza-
tion exhibits stronger correlation with performance gain in
a heterogeneous system, rendering TSPD a superior indirect
objective for thermal-aware migration policies targeting het-
erogeneous systems. Secondly, the only dynamic factor that
affects the TSPD constraint of a system is the distribution of
active and idle cores. Thus, proper migration decisions can
enable maximizing TSPD. The increase in TSPD can, in turn,
be exploited by DVFS so as to operate each active core at a
higher V/F level without exceeding the TSPD constraint and,
thereby, improve performance in a thermally safe manner.

Establishing an optimal migration policy that truly maxi-
mizes TSPD is not infeasible, since enumerating all migra-
tion options is computationally too expensive. As a remedy,
we propose a migration policy which optimizes TSPD based
on a heuristic approximation of the optimal approach which
is lightweight and, hence, practical for online use. As a result,
by maximizing the system’s TSPD constraint and exploiting
the resulting power-budget gain through DVFS, the proposed

policy optimizes the system’s performance while preventing
thermal violations and their consequent DTM-induced per-
formance penalty by construction. The experimental results
in Section V demonstrate that, by optimizing TSPD, the pro-
posed policy outperforms existing migration policies that aim
at maximizing the thermal balance in the system as an indirect
goal to maximize performance under thermal constraints.

C. ORGANIZATION
The remainder of this paper is organized as follows: Section II
provides an overview of related work on thermal-aware
resource management and task migration in many-core sys-
tems. Section III presents the systemmodel considered in this
work. In Section IV, the proposed thermal-aware task migra-
tion policy is presented. Experimental results are provided
in Section V, before the paper is concluded in Section VI.

II. RELATED WORK
In dynamic many-core systems, whenever an application
must be launched, application-mapping techniques are used
to find a (near-)optimal mapping/schedule of the incoming
application’s tasks onto the (free) resources of the many-
core platform with the goal to achieve maximized perfor-
mance (and/or utilization, energy efficiency, reliability, etc.)
while taking the chip’s thermal constraints into consideration
to avoid thermal violations. However, due to the NP-hard
nature of the application-mapping problem [17], exact opti-
mization approaches capable of finding the optimal map-
ping are computationally infeasible, limiting the practical
choices of mapping approaches to lightweight heuristics that
yield sub-optimal yet acceptable mappings. In such a set-
ting, after an application is launched or terminated, revising
the distribution of running applications in the system typi-
cally offers a significant potential for performance optimiza-
tion which can be exploited by means of task migration.
Therefore, thermal-aware application-mapping techniques
and thermal-aware task-migration techniques have become
the main cornerstones for thermal-aware dynamic resource
management in multi/many-core systems. A large body of
work exists on thermal-aware multi/many-core application
mapping, e.g. [18]–[24]. However, as this paper focuses
on the task-migration aspect of resource management, our
review of related work in the following is focused on the
state of the art in thermal-aware taskmigration inmulti/many-
core systems. An overview and taxonomy ofmulti/many-core
application-mapping techniques is provided in [5].

Thermal-aware task migration policies2 often exploit task
relocation in conjunction with DVFS for thermal manage-
ment. Here, relocating tasks between different cores enables
coarse-grained adaptation of the system’s power and ther-
mal state while DVFS enables fine-grained and localized

2Note the distinction between migration policy and migrationmechanism.
Migration policies—which are the focus of this paper—make migration
decisions, i.e., determine which migration to perform at which point in time.
Migration mechanisms—which are outside the scope of this work—specify
how a given migration (decided by the policy in use) is performed.

VOLUME 10, 2022 33789



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

adjustments therein. A large share of existing migration poli-
cies, e.g., [14], [25]–[27], and the policy proposed in this
paper exploit task relocation and DVFS in tandem.

Existing thermal-aware migration policies mostly aim at
enhancing the thermal balance in the system as an indirect
objective to enable improving performance under thermal
constraints, e.g. [14], [26], [28]–[32]. They chiefly introduce
a scheme to classify cores (based on their temperature) and/or
classify tasks (based on their compute intensity) into tem-
perature categories, e.g., hot, warm, or cold. The resulting
classification is then used in a migration policy that either
migrates the workload of hot cores to cold ones (core-level
granularity), e.g. [26], [32]–[35], or migrates hot (cold) tasks
to cold (hot) cores (task-level granularity), e.g. [29], [36].

Temperature-driven migration policies are either reactive
or proactive. Reactive policies, e.g., [26], [27], [37], oper-
ate based on temperature monitoring and trigger migrations
based on the current system temperature. Upon a thermal vio-
lation, they migrate the affected tasks from the hotspot(s) to
cold regions for an immediate execution resumption. Proac-
tive policies, e.g., [14], [15], [25], [31], [38], [39], operate
based on predicting the future thermal profile of the system
by projecting the temperature history thus far, e.g., using
machine learning techniques [14], [40]. This enables them
to proactively identify emerging hotspots and attempt to
dissolve them before they result in thermal violations. The
effectiveness of such policies is determined by the accuracy
of their thermal predictions. Some works use error correc-
tion [14] and/or online model tuning [38] to enhance their
prediction accuracy. However, as such predictions fundamen-
tally rely on the thermal history of the chip, they generally
cannot deliver a high accuracy in dynamic systems where the
future thermal profile of the system correlates only weakly
with its thermal history [29], [39].

To reduce the frequency of thermal violations or possi-
bly prevent them, most migration policies trigger migrations
based on a conservative temperature threshold (lower than
the critical threshold at which DTM countermeasures are
triggered) [14], [15], [26]. While alleviating or excluding one
source of performance penalty, this may introduce another
source of performance loss due to unnecessary task migra-
tions and, in case of DVFS, operating resources at a lower
V/F setting than what they can maintain without causing
thermal violations. To address this issue, analytical thermal
models can be used as in [16], [41] to derive accurate thermal
predictions based on the power and thermal characteristics of
the resources and the floorplan of the chip. While prevent-
ing thermal violations is beneficial in general, it is indeed
crucial for real-time systems which strongly rely on timing
predictability and, hence, may fail upon DTM activation [21].

The chip’s floorplan and the architectural properties of
its resources strongly affect the thermal characteristics of
the system. A large share of existing thermal-aware migra-
tion policies, e.g., [15], [27]–[30], [41], are applicable
to homogeneous architectures only as they do not cap-
ture the power, thermal, and performance dissimilarities

between the different types of cores in a heterogeneous
system. Moreover, some policies rely on specific assump-
tions about the chip’s floorplan which restricts their gen-
eral applicability. For instance, the policy in [41] employs
a compute-intensive analysis to obtain optimal performance
under thermal constraints. To simplify the analysis, how-
ever, it assumes a certain placement of cores and caches
on the chip. Many of the policies that consider resource
heterogeneity are restricted to specific target platforms.
For instance, the policies in [14], [26], [42] are tailored
to ARM’s big.LITTLE architecture [43]. Finally, in spite
of their effectiveness, some approaches, e.g., [12], [41],
entail a relatively high compute overhead which prohibits
their online use.

In summary, existing thermal-aware task migration poli-
cies share at least one of these properties: (i) They aim at
maximizing the system’s performance by pursuing indirect
objectives which often only weakly correlate with perfor-
mance optimization. (ii) They rely on temperature moni-
toring/prediction and, hence, either cannot prevent thermal
violations, or use conservative temperature thresholds that
may cause performance loss. (iii) They employ compute-
intensive analyses and optimization processes which render
them impractical for use at run time. (iv) They are applicable
only to homogeneous systems or a specific choice of het-
erogeneous platforms. The thermal-aware migration policy
proposed in this work addresses these concerns as it (i) uses
an analytical thermal model of the system for an accurate
prediction of its future thermal profile without requiring ther-
mal sensors or online model calibration, (ii) is lightweight
and, hence, suited for online use, (iii) aims at maximizing
the power budget of cores, which in combination with DVFS,
directly translates into performance gain, and (iv) is applica-
ble to heterogeneous many-core systems without relying on
restrictive assumptions about their architecture or floorplan.

III. SYSTEM MODEL
The taskmigration policy presented in this paper is applicable
to any multi/many-core platform for which an RC thermal
network is available, cf. [44]. In general, the target platform
consists of a set of processing cores and a set of peripheral
resources referred to as uncores. The latter includes intercon-
nects, e.g., NoC and buses, and the memory subsystem, e.g.,
L2/L3 caches, main memory, and memory controllers. Pro-
cessing cores can be homogeneous or heterogeneous. DVFS
support is taken to be available for cores so that their V/F
setting can be changed dynamically at run time. Note that
the proposed approach is agnostic to the granularity of DVFS
and, thus, is applicable to systems with core-, tile-, or multi-
tile-level DVFS support. The following presents the power
and thermal models considered in this work.

A. POWER MODEL
The power consumed by an active core is derived using
Eq. (1) where the first summand calculates the dynamic
power consumption pdy of the core based on its switching

33790 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

activity σ ∈ [0, 1], effective capacitance Ceff, supply volt-
age V , and operating frequency f . The second summand
in Eq. (1) derives the static power consumption pst of the core
where I denotes its leakage currents.

p = σ Ceff V 2f + V I (1)

Given the V/F setting (V , f ) applied to a core, a safe
upper-bound estimate of its power consumption is derived
by (i) considering σ = 1 which yields the peak dynamic
power3 while (ii) deriving the leakage current I at the critical
temperature TDTM of the chip to obtain the peak static power,
cf. [45], [46]. The critical temperature TDTM denotes the
temperature threshold at which DTM countermeasures are
triggered to enforce thermal safety. The density of power
consumption for a core is calculated as ρ = p/α where p
denotes the power consumption derived by Eq. (1), and α
denotes the area of that core. Contrarily to cores, each uncore
is taken to operate at a fixed V/F setting and, hence, has a
fixed power consumption.

B. THERMAL MODEL
RC thermal networks are widely used for thermalmodeling of
multi/many-core platforms [16], [44]. Given a platform with
C cores and U uncores, the equivalent RC thermal network
comprises N ≥ C + U thermal nodes, each associated with
a thermal capacitance (capturing transient thermal effects)
and connected to the other nodes via thermal conductances
(modeling heat transfer). Sources of power consumption in
the platform are modeled by current sources in the network,
and the current flow in the network represents the heat flow in
the platform. The voltage at each node in the network denotes
the temperature of its equivalent node in the platform. The
ambient temperature is reflected in the network by a thermal
node with a constant temperature T∞.

In this context, the steady-state temperature of thermal
nodes can be derived using the system of equations in Eq. (2),
cf. [16]. Here, vectorsTN×1,PN×1, andGN×1 reflect the tem-
perature, power consumption, and thermal conductance with
the ambiance for the thermal nodes, respectively, and matrix
BN×N comprises pairwise thermal conductances among the
nodes in the network. Note that the entries ofB andG are con-
stant, platform-specific, and derived statically by measure-
ment [47] or simulation [44], see also [16]. Thus, T∞B−1G
is constant at a given ambient temperature T∞.

T = B−1P+ T∞B−1G (2)

The vector P of power consumption in Eq. (2) can
be decomposed into constant and varying vectors as
P = Pcore

+ Puncore
+ Pother. Here, Pcore

N×1 retains the power
values for cores, Puncore

N×1 for uncores, and Pother
N×1 for remain-

ing nodes where Pother
= 0. Hence, Eq. (2) can be refor-

mulated into Eq. (3) where the second summand given
in parentheses is constant. Thus, the steady-state temper-
ature of a node i can be derived using Eq. (4) where

3Equivalent to the dynamic power under peak workload.

b−1i,j and pj denote entries of B−1 and Pcore, respectively,
and T̂i =

∑N
j=1 b

−1
i,j (p

uncore
j + T∞ · gj) represents the con-

stant temperature contribution to node i from uncores and
the ambiance, corresponding to the second summand in the
system of equations in Eq. (3).

T = B−1Pcore
+

(
B−1Puncore

+ T∞B−1G
)

(3)

Ti =
∑N

j=1
b−1i,j · pj + T̂i (4)

C. THERMAL-AWARE POWER BUDGETING
The migration policy proposed in this paper is based on
the analytical power-budgeting concept presented in [16].
In the following, we present a brief summary of the power-
budgeting concept and analysis in [16] which is used as the
basis for the migration policy proposed in Section IV. This
approach uses power budgeting as an abstraction of the ther-
mal problem, empowered by the observation that the power
consumption of cores is the sole varying factor contributing to
the temperature of each node in the system, see Eq. (4). Given
the thermal model of the system as presented in Section III-B
and the set of cores that are currently active in the system,
the approach in [16] derives a uniform power-density bud-
get (constraint) for the active cores such that thermal safety is
preserved, i.e., Ti ≤ TDTM for each core/uncore i, as long as
this budget is not exceeded by any of the given active cores.
Note that considering a power-density budget (rather than a
power budget) enables an efficient uniform power budgeting
for heterogeneous platforms, taking into account the area- and
power-consumption disparity between different core types
and its impact on their thermal characteristics, cf. [16].
To reflect the activity of cores in the thermal model,

a binary allocation vector AC×1 is introduced in [16] which
indicates whether the core associatedwith index i = 1, . . . ,C
is active (ai = 1) or idle (ai = 0). Accordingly, Eq. (4)
is reformulated into Eq. (5) where the first summand from
Eq. (4) is decomposed into two parts capturing the impact of
active and idle cores on the temperature of each node i =
1, . . . ,N , respectively.4 For active cores (i.e., when aj = 1),
power consumption is expressed as the product of the power
density ρj and the area αj of the core, see the first summand
in Eq. (5). For idle cores (i.e., when aj = 0), the power
consumption in the sleep/off state of the core is considered,
denoted by poffj in Eq. (5).

Ti =
C∑
j=1

aj · b
−1
i,κj · ρj · αj +

C∑
j=1

(1− aj) · b
−1
i,κj · p

off
j + T̂i

(5)

Based on this model, a uniform, thermally safe power-
density constraint ρ∗ (upper bound) is derived in [16] for
active cores by considering ρj = ρ∗ for all j = 1, . . . ,C

4For notation clarity, κj is used as a one-to-one translation of each core
index j from the core index space (j = 1, . . . ,C) to the larger space of thermal
indices (1, . . . ,N ), cf. [16].

VOLUME 10, 2022 33791



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

(which becomes effective only when aj = 1) and, sub-
sequently, identifying the maximum value of ρ∗ such that
Ti ≤ TDTM for each core/uncore i. Equation (6) is, thus,
used to derive this constraint.5 Finally, the core power-density
constraint ρ∗ is examined and possibly refined to ensure that
the overall power consumed by the chip does not exceed a
predefined peak power constraint. In the rest of this paper,
we refer to the constraint ρ∗ as the Thermally Safe Power
Density (TSPD) budget in the system. Note that the above
description of the TSPD analysis is distilled to the parts
necessary for the presentation of the proposed task migration
policy. Please refer to [16] for a detailed description of the
analysis.

ρ∗(A) = min
i∈L

TDTM − T̂i −
∑C

j=1 (1− aj) · b
−1
i,κj · p

off
j∑C

j=1 aj · b
−1
i,κj · αj


(6)

IV. THERMAL-AWARE TASK MIGRATION
This section presents the proposed thermal-aware task
migration policy which aims at maximizing the system’s
performance while guaranteeing the prevention of thermal
emergencies. In this work, migration decisions are conducted
in the form of a relocation of task(s) between an active
core and an idle core (i.e., core-level migration). Moreover,
to ensure binary and process-state compatibility, migrations
are performed between source and destination cores of the
same type. The proposed migration policy is developed
based on the power-budgeting approach from [16] summa-
rized in Section III-C. Given the allocation vector AC×1
which reflects the distribution of active and idle cores in
the system, the proposed migration policy selects an active
core index s (1 ≤ s ≤ C ∧ as = 1) and an idle core index d
(1 ≤ d ≤ C ∧ ad = 0) of the same core type, where s and d
serve as the source and the destination cores of migration,
respectively. We select s and d in such a way that a maximal
increase in the TSPD budget of active cores is achieved by
migrating the task(s) that are running on s to d such that
s becomes idle and d becomes active after the migration.
Subsequently, to exploit this increased budget, the V/F setting
of each active core is adapted using DVFS to the maximum
V/F level that respects the TSPD budget of the system under
the post-migration distribution of active cores. This allows
each core to deliver the maximal performance that it can
maintain without creating a thermal violation.

A. INTUITION AND OBSERVATION
Intuitively, maximizing performance under thermal consid-
erations lies in line with maximizing the thermal balance
and, hence, minimizing the temperature gradient in the
system. This can be achieved by migrating tasks from the
hottest (active) core to the coldest (idle) core. Based on

5For notation clarity, index vectorL is used which comprises the indices of
all core/uncore blocks in the larger index space of thermal nodes (1, . . . ,N ),
cf. [16].

this or similar intuitions, several thermal-aware task migra-
tion policies have been introduced to date—referred to as
HotCold approaches in the following—which migrate tasks
between the hottest core and the coldest core, identified using
measurement- and/or prediction-based temperature monitor-
ing schemes.

While HotCold approaches perform well in reducing the
temperature gradient (improving thermal balance) in the
system and prove effective for performance optimization
in homogeneous systems, we observe that their migration
choices often do not lead to a noticeable performance gain
when applied for heterogeneous systems. In the following,
we showcase this in a motivational experiment for a hetero-
geneous many-core system with 52 cores of three different
types.6 For a large set of system utilization scenarios—each
corresponding to a unique set of active cores in the system—
we have performed thermal-aware migrations in the form of
relocating the complete set of tasks running on one (active)
core to an (idle) core of the same type. The following migra-
tion policies are considered for this purpose:
• HotCold: This policy migrates the task(s) running on
the hottest active core to the coldest idle core. Then,
it derives the TSPD budget for the new set of active cores
as described in Section III-C and, subsequently, applies
DVFS to adjust the V/F setting of active cores to the
maximum level that respects the derived TSPD budget.

• PerfOracle: This policy embodies a performance oracle
which performs exhaustive search to find the pair of
active and idle cores for which the migration of task(s)
from the former to the latter yieldsmaximal performance
gain. Hence, it performs a brute-force search to find
the migration option that results in maximal perfor-
mance gain. The gain here refers to the performance
gain obtained by performing the migration, deriving the
TSPD budget, and applying DVFS as described above.

• PdOracle: This policy is an oracle approach that per-
forms exhaustive search to find and perform the migra-
tion option that yields maximal increase in the TSPD
budget in the system. The obtained gain in the TSPD
budget is exploited subsequently by applying DVFS as
described above.

In the following experiment, we investigated the impact of
the migrations performed by each of these policies on the
performance of the system, its TSPD budget, and the standard
deviation of temperature across the platform.7 Throughput
(in terms of the total number of application executions per
second) is used to represent the system’s performance where
each core executes an instance of a multi-task streaming
application indefinitely. Figure 1 provides the results for
different levels of system utilization (% active cores). The
results represent the average value among 1,000 considered

6This many-core platform is also used for our experimental evaluations
in Section V. The floorplan and the thermal-, power-, and performance
characteristics of the platform are provided in Section V-A.

7See Section V-B for details of the experiment setup and the performance
evaluation scheme.

33792 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

FIGURE 1. The impact of the three investigated task migration policies,
namely, PerfOracle, PdOracle, and HotCold, on the throughput (top),
standard deviation of temperature (middle), and TSPD budget (bottom) in
the system. Each plot reflects the change observed in the respective
property when performing a single migration. At each level of system
utilization (% active cores), the reported results represent the average
value among all investigated utilization samples corresponding to that
level.

utilization samples for each utilization level. Note that
different core types typically exhibit different throughput
contributions due to their dissimilarities w.r.t. execution char-
acteristics and maximum thermally safe V/F setting.

As shown, at low system utilization levels (specifically,
up to 28%), the safe thermal headroom of the active cores is
high enough to allow every core to operate on its maximum
V/F level, so that no performance gain can be attained through
migration (see Fig. 1-top). The benefits of task migration,
thus, begin to appear at ≈30% utilization. As the system uti-
lization grows, the impact of a migration on the performance
or TSPD budget subsides. Evidently, the PerfOracle policy
offers the highest increase in throughput (see Fig. 1-top)

as it performs optimally w.r.t. performance gain. However,
as shown in Fig. 1-middle, its migration decisions often even
increase the thermal imbalance in the system. Contrarily, the
HotCold policy performs best in enhancing thermal balance
(see Fig. 1-middle) while offering the least gain in perfor-
mance (see Fig. 1-top). In fact, we have observed many
cases where HotCold even degrades performance. Such cases
are not visible in Fig. 1 as it provides average results, but
will be shown later in Section V. Both PerfOracle and Hot-
Cold policies improve the TSPD budget of active cores (see
Fig. 1-bottom) for which PdOracle delivers optimal results.
In terms of performance gain, PdOracle performs fairly com-
parable to PerfOracle while offering a middle point for ther-
mal balance improvement compared to the other two policies.

A key insight attained by the above experiment is that
maximizing the gain in the TSPD budget correlates with
optimizing the system’s performance, whereas maximizing
thermal balance does not necessarily offer a correlation
therewith. When performing several migrations consecu-
tively to improve the system’s performance even further,
another important insight is attained (which is experimentally
showcased in Section V): Although the PerfOracle policy
delivers maximal performance gain in a single migration,
due to its disregard for TSPD budget, it often drives the
system into local optima w.r.t. performance after only a few
migrations such that a subsequent migration that enhances
the performance further cannot be found. In contrast, the
PdOracle approach is able to maintain its TSPD gain for a
considerably higher number of migrations which eventually
result in a higher overall gain in the system’s performance
compared to what PerfOracle can achieve.

The above correlation observed between the optimization
of performance and optimizing the TSPD budget when per-
forming a single migration, on the one hand, and the superior-
ity of the PdOracle policy in enhancing performance through
a series of consecutive migrations, on the other hand, pro-
motes the maximization of TSPD budget as a superior indi-
rect objective for performance maximization under thermal
constraints. Evidently, the PdOracle policy operates based on
a brute-force search that is computationally too intensive to
be performed online.8 To address this issue, we propose a
lightweight migration policy which exploits the intermediate
results of the TSPD analysis to identify near-optimal migra-
tion options w.r.t. TSPD gain. This policy is presented in the
following.

B. PROPOSED TASK MIGRATION POLICY
The proposed task migration policy conducts migration deci-
sions with the objective to maximize the TSPD budget in
the system. As TSPD is a function of the distribution of
active cores in the system, we focus on core-level migrations

8The PdOracle policy exhibits a time complexity ofO(C4
+C3U ) which,

for a many-core system, is often too high for online use. This complexity
results from the exhaustiveO(C2) migration checks performed per migration
decision, where each check requires a TSPD analysis with a time complexity
of O(CN ) where N ≥ C + U , cf.Section III-C.

VOLUME 10, 2022 33793



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

where the complete set of tasks running on an active core
(migration source) are relocated to an idle core (migration
destination) so that the distribution of active cores is modified
without exposing tasks of different applications to each other.
To achieve a minimal run-time overhead, our policy exploits
the intermediate results of the TSPD analysis to identify a
proper choice for migration source and destination cores.

As detailed in Section III-C, the TSPDbudget in the system
is determined as themaximumpower-density level that can be
maintained by all active cores in the system without causing
a thermal violation. This constraint is derived based on the
current choice of active cores in the system, reflected by the
previously introduced allocation vector AC×1 where aj = 1
(aj = 0) denotes that core j is active (idle). Given A, for
each resource i ∈ L in the system, the analysis derives the
peak uniform TSPD constraint ρ∗i (A) as shown in Eq. (7),
by assuming the situation where i reaches but not exceeds
the DTM’s threshold temperature (i.e., Ti = TDTM). Then, the
TSPD budget for the system is determined as the lowest value
among all derived ρ∗i (A) constraints for different resources,
i.e., ρ∗(A) = min{ρ∗i (A) | i ∈ L}, cf. Eq. (6).

ρ∗i (A) =
TDTM − T̂i −

∑C
j=1 (1− aj) · b

−1
i,κj · p

off
j∑C

j=1 aj · b
−1
i,κj · αj

(7)

In our observations, the resource s ∈ L that restricts
the TSPD budget is always an active core. Thus, a max-
imal increase in the system’s TSPD budget can often be
achieved by switching core s off. Complementary to that,
when switching an idle core on, a minimal impact on the
TSPD budget is often observed for the idle core d that exhibits
the highest ρ∗d (A). Based on these observations, we establish
that migrating tasks from s to d and, thereafter, switching s off
and d on, can yield a maximal gain in the TSPD budget. Since
a migration between s and d may not be possible, e.g., due
to resource-type mismatch, we develop a heuristic migration
policy that generalizes the observation above by using sorted
lists of source/destination candidate cores i ∈ L w.r.t. ρ∗i (A).
This extends the decision space of the proposed policy to all
possible migrations between active and idle cores. Based on
the core ranks in the sorted lists, the migration options will
be considered in the approximate order of their impact on the
TSPD budget as detailed below.

The decision procedure of the proposed task migration
policy is elucidated in Algorithm 1. The policy takes as input
(i) the allocation vectorAC×1 = [ai], reflecting whether each
core i is active (ai = 1) or idle (ai = 0), and (ii) vector
RC×1 = [ρ∗i ] which provides the power-density constraint
ρ∗i ≡ ρ∗i (A) ∈ R+ corresponding to each core i under
allocation A, derived using Eq. (7). The entries of R are
intermediate results derived during the TSPD analysis of
the system where the TSPD budget corresponds to min{R}.
Based on these inputs, the policy (i) selects and performs
TSPD-budget-maximizing taskmigrations, (ii) applies DVFS
to maximize the V/F level of active cores under the updated
TSPD budget, and (iii) returns as output a tuple of three

Algorithm 1 Decision procedure of the proposed thermal-
aware task migration policy.
1: procedure checkRunMig(A = [ai],R = [ρ∗i ])
2: S ←

〈
i | ai = 1 ∧ ∀i, j ∈ S : i ≺

S
j→ ρ∗i ≤ ρ

∗
j

〉
3: D←

〈
i | ai = 0 ∧ ∀i, j ∈ D : i ≺

D
j→ ρ∗i ≥ ρ

∗
j

〉
4: types← {}
5: gain← 0
6: for s ∈ S do F source candidates
7: if type(s) ∈ types then
8: continue (Line 6)
9: end if
10: types← types ∪ {type(s)}
11: for d ∈ D do F destination candidates
12: if type(s) 6= type(d) then
13: continue (Line 11)
14: end if
15: Ä← A; äs← 0; äd ← 1
16: R̈← getTSPD(Ä)
17: gain← min{R̈} − min{R}
18: if gain > 0 then F migration option found
19: migrateTasks(s,d)
20: applyDVFS

(
min{R̈}

)
21: return (Ä, R̈, gain)
22: end if
23: end for
24: end for
25: return (A,R, 0) F no beneficial migration found
26: end procedure

entries: the updated allocation vector, the updated power-
density vector, and the gain obtained in the TSPD budget.

Given A and R, the proposed policy first derives the sorted
lists of source and destination candidate cores for migration
decisions, sorted in the ascending and descending order of
power-density constraints ρ∗i , respectively, (lines 2 and 3).
Here, the notations i ≺

S
j and i ≺

D
j reflect that core i precedes

core j in the lists S and D, respectively. After deriving the
lists, in lines 6–24, we iterate through the list of migration
source candidates S (outer loop, see line 6) and destination
candidates D (inner loop, see line 11). Lines 7–9 ensure that,
for each type of core, only the first instance in the list of
source candidates is investigated, as the first instance would
offer the highest TSPD-budget gain if a migration for that
core type would be possible.9 Once a destination core d ∈ D
of the same type is found for the current source core s ∈ S, the

9Note that the migration options based on subsequent source candidates of
the same core type are not considered as they are not viable. The reason here
is that a migration option based on the first candidate may be unavailable
only in the absence of an (idle) destination core of that core type. Hence,
it becomes pointless to check further source candidates of the same core type.

33794 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

post-migration allocation vector Ä is constructed (line 15).
Subsequently, the vector R̈ of power-density constraints cor-
responding to Ä is derived (line 16) to calculate the TSPD-
budget gain corresponding to that migration (line 17). In case
of a positive gain, the migration is performed (line 19) and,
subsequently, DVFS is applied to adjust the V/F level of each
active core to the maximum level it can maintain without
exceeding the new TSPD budget min{R̈} (line 20). The pro-
cedure then terminates by returning the updated allocation
vector, the updated vector of power-density constraints, and
the attained gain (line 21). If no feasible and beneficial migra-
tion has been identified, the procedure terminates in line 25.
In terms of run-time compute overhead, the time complexity
of the proposed policy stays in the same range as that of the
TSPD analysis, i.e., O(CN ) (cf. Section III-C).10

At run time, the RM may evoke the proposed migra-
tion policy to enhance the system’s performance after every
change in the system’s utilization, e.g., after launching or
terminating applications. In case of a successful migration,
denoted by the positive gain value returned by the procedure,
subsequent migrations may be evoked to further improve the
system’s performance. As mentioned earlier, at low system
utilization levels, the TSPD budget in the system is high
enough to allow every active core to operate at its peak
V/F setting so that performing migrations offers no perfor-
mance gain even if the TSPD budget is increased. To prevent
performing migrations in such cases, the procedure of the
proposed policy may be adapted to first check whether the
current TSPD budget is lower than the peak power density
ρmax among different types of cores at their peak V/F setting
(which can be derived offline). If that is not the case, the
procedure can be terminated as every active core can already
operate at its peak V/F setting.

Note that task migration itself can impose a performance
penalty due to the overhead of relocating tasks, possible tem-
porary suspension of their execution, cache warm-up over-
heads, etc. The magnitude of this penalty chiefly depends
on the frequency of migrations and the memory scheme
of the system (since the memory scheme dictates the vol-
ume/amount of data which needs to be relocated during the
migration process).11 In our investigations, the gain in TSPD
budget (and, hence, performance) saturates with only a few
consecutive migrations, keeping the performance impact of
migrations fairly negligible. In general, however, to incorpo-
rate the impact of migration overhead in the decision process,
line 18 of the procedure may be adapted to trigger a migration
only if its gain exceeds a minimal threshold. The threshold
can be determined according to the metrics above and the

10Computing the sorted lists of cores (lines 2 and 3) introduces a time
complexity of O(C logC). Within the nested loops, the TSPD analysis
(line 16) is the most compute intensive part of the procedure with a time
complexity of O(CN ) where N ≥ C +U . The core-type checks (lines 7 and
12), however, restrict the invocation of this analysis to at most once per core
type. Hence, given T core types in the system, the proposed policy exhibits a
total time complexity of O(TCN ). This, however, simplifies to O(CN ) given
that T ≤ 4 in a typical heterogeneous many-core chip.

11A discussion of migration overhead is provided later in Section V-F.

FIGURE 2. Floorplan of the many-core platform used in the experiments.
Processing cores are denoted by squares where the core types are
reflected by color and noted on the cores. Communication resources and
shared memories are contained in the gray regions.

current system utilization to ensure that triggered migrations
always yield reasonable performance gain.

V. EXPERIMENTS
This section presents the results of a series of experiments
performed to assess the effectiveness of the proposed thermal-
aware migration policy in enhancing the TSPD budget and,
thereby, the performance of the system.

A. ARCHITECTURE AND WORKLOAD
For the experiments, a heterogeneous many-core architec-
ture is considered which comprises a total of 52 cores from
three core types (AMD K6-III, AMD K6-2, and IBM Pow-
erPC), hence C = 52. The floorplan of the chip is illustrated
in Fig. 2. The specifications and performance characteristics
of the three core types are provided by the Embedded Sys-
tem Synthesis Benchmarks Suite (E3S) [48] for a 180 nm
technology size. To adhere to the current process technology
node size, these measures are projected to a 10 nm technol-
ogy using the technology scaling factors provided by [44]
which are derived based on [49], [50]. The resulting power
and performance characteristics of the three core types are
given in Table 1. DVFS support is envisioned on a per-core
granularity which enables adjusting the V/F level of each
core with frequency steps of 50MHz with the minimum V/F
level of 0.7V at 1GHz for all cores. In terms of thermal
characteristics, the DTM threshold temperature of the chip
is set to TDTM = 80◦C, and an ambient temperature of
T∞ = 45◦C is considered. The RC thermal network of the
floorplan has been derived using the HotSpot simulator [44]
with the die characteristics listed in Table 2. This architecture
is identical to the experimental platform used in [21].

In terms of workload, we consider a streaming automo-
tive application from [48] consisting of � = 18 tasks.

VOLUME 10, 2022 33795



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

TABLE 1. Estimated power- and performance-related characteristics of
the processing cores used in the experiments, adopted from [48]
(provided for a 180 nm node size) which are projected here to a 10 nm
process technology.

TABLE 2. Temperature-related platform characteristics considered by the
HotSpot simulator [44] (default configuration) to derive the thermal
model of the platform used in the experiments.

The execution time of each task on each of the three core
types at its peak frequency is provided by [48] for a 180 nm
technology. We scale these measures to a 10 nm technology
inversely proportional to the technology scaling factor of the
peak frequency of each core type. For clarity of description in
the following, the resulting measures are taken to be summa-
rized in an execution-time matrix X�×C = [χi,j] where χi,j
denotes the execution time of task iwhen executed on core j at
its peak frequency at a 10 nm technology node.X�×C is used
in our evaluation of the system’s performance as detailed in
the following section.

B. EXPERIMENTS SETUP
In the experiments, we investigate the impact of thermal-
aware task migration policies on increasing the TSPD budget
and the performance of the system when coupled with DVFS
to maximally exploit the TSPD budget at different system
utilization levels. To that end, we have considered 50 system
utilization levels with the number of active cores ranging from
n = 2 to n = 51 (as the level with only one active core and
the one with all cores being active are out of the scope for
core-level migration decisions). For each utilization level n,
we have randomly generated 200 utilization samples where
each sample corresponds to a system state with n randomly
selected active cores and (52 − n) idle cores. Thus, a total
of 50 × 200 = 10,000 utilization samples are considered in

the experiments. In each sample, each active core is taken
to execute one instance of the 18-task automotive appli-
cation from E3S [48]. Each application instance processes
an (infinite) stream of input data in successive execution
iterations. This is a common operation mode in the embedded
domain, e.g., for signal processing applications. The inves-
tigated application deployment scheme results in a total of
18 × n tasks being deployed in the system when n cores are
active. The tasks deployed on each core are scheduled with a
First-In First-Out (FIFO) scheduling policy.12

The key performance indicator used for the evaluation of
the migration policies in our experiments is the steady-state
throughput of the system, denoting the system throughput
that is observed after the transient effects, e.g., due to cache
warm-up or task relocation, have passed. For a given system
utilization sample, the steady-state throughput is quantified
analytically using Eq. (8) in terms of the total number of
application iterations completed per second. As given in
Eq. (8), the system throughput is derived based on (i) the
allocation vector AC×1 which specifies whether each core i
is active (ai = 1) or inactive (ai = 0) and (ii) the frequency
vector FC×1 which specifies the current frequency fi applied
to each core i. The execution time of each task is taken to scale
inversely proportional to the frequency of the core executing
that task.

Throughput(A,F) =
C∑
i=1

ai ·
fi

fmaxi ·
∑�

j=1 χj,i
(8)

C. INVESTIGATED MIGRATION POLICIES
For each of the utilization samples generated as described
above, we investigate the TSPD-budget and performance gain
that can be attained using each of the following migration
policies:
• Proposed which represents the proposed migration pol-
icy presented in Section IV-B,

• PerfOracle which represents the exhaustive-search-
based oracle policyw.r.t. performance gain as introduced
in Section IV-A,

• PdOraclewhich represents the exhaustive-search-based
oracle policy w.r.t. TSPD-budget gain as introduced
in Section IV-A, and

• HotCold which represents the class of policies that
migrate tasks from hot (active) to cold (idle) cores.

Among these policies, PerfOracle and PdOracle are not prac-
tical for use at run time in a real system due their high com-
putational complexity. In our experiments, they only serve as
references (optimal policies) when considering performance
and TSPD budget, respectively, as the policy’s optimization
objective.

12Note that the decision-making procedure of the proposed migration
policy is agnostic to the choice of scheduling policy applied to each core and
the number and choices of tasks running on each active core. Its decision-
making procedure depends only on the activity state of cores, i.e., active or
idle (reflected by inputA = [ai] in Algorithm 1) and the intermediate results
of the TSPD analysis computed based on the activity state of cores (reflected
by input R = [ρ∗i ] in Algorithm 1).

33796 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

For each system utilization sample, each migration pol-
icy performs core-level migrations for as long as it envi-
sions a subsequent migration to be of advantage w.r.t. its
pursued objective. More precisely, PerfOracle successively
identifies and performs migrations that yield the maximum
performance gain and, eventually, terminates when further
performance gain cannot be attained by a subsequent migra-
tion. PdOracle performs migrations that yield the maximum
TSPD-budget gain and terminates if no further gain can be
attained through a subsequent migration. HotCold performs
migrations successively so long as temperature differences
exist between active and idle cores of each type. The termi-
nation policy of the proposed approach is similar to that of
PdOracle, see Section IV-B for details. An upper bound of
15 successive migrations is considered per utilization sample.
Most policies, however, terminate before reaching this limit.

D. RESULTS: SINGLE MIGRATION
To assess the capability of the proposed policy in enhancing
the TSPD budget and performance of the system, we have
measured the gain attained in these qualities by each of the
investigated policies when performing a single migration,
namely, their first migration for each utilization sample. For
different system utilization levels, Fig. 3 provides the results
as an average among all 1,000 considered samples corre-
sponding to each utilization level.

Figure 3-top reflects the TSPD-budget gain attained by the
investigated policies relative to the gain yielded by PdOracle
which performs optimally in maximizing the TSPD budget.
As demonstrated, the proposed policy achieves TSPD-budget
gains comparable to that of the PdOracle policy while intro-
ducing only a fraction of the compute overhead imposed by
that (see the computational complexities reported in Foot-
notes 8 and 10). On average among all utilization levels,
the TSPD-budget gain of the proposed, PerfOracle, and Hot-
Cold policies lie within the 92%, 47%, and 46% range of
the optimal gain delivered by PdOracle, respectively. This
demonstrates the effectiveness of the proposed policy in opti-
mizing the TSPD budget of the system. Among all policies,
HotCold exhibits the least impact on the TSPD budget of
the system which, as discussed in the following, results in
poor performance gain for such policies that aim at reducing
temperature gradients greedily.

Figure 3-bottom provides the performance gain attained
by each investigated policy relative to the gain yielded by
PerfOracle which performs optimally in maximizing perfor-
mance. As shown, the maximal TSPD-budget gain of PdOr-
acle enables this policy to attain a decent performance gain
which lies within the 79% range of the optimal performance
gain delivered by PerfOracle. The performance gain yielded
by the proposed policy closely follows that of PdOracle and
lies within the 71% range of the optimal gain. The perfor-
mance gain of the HotCold policies lies within the 45% of
the optimal gain, rendering this policy the least effective
approach in optimizing the system’s performance. Note that,
when performing a single migration, the PerfOracle policy

FIGURE 3. The average gain in TSPD-budget (top) and
performance (bottom) attained by each migration policy when
performing a single migration. The results are reported for different
system utilization levels (% active cores), relative to the gain delivered by
the optimal policy for the respective metric, namely, PdOracle for
TSPD-budget gain and PerfOracle for performance gain.

performs optimally in maximizing the performance gain.
Therefore, the performance gain reported in Fig. 3 could be
taken as a quantitative measure of how well the goal pursued
by each policy correlates with maximizing the system’s per-
formance under thermal constraints.

E. RESULTS: MULTIPLE MIGRATIONS
By performing multiple migrations successively, the inves-
tigated policies adapt the distribution of active cores in the
system gradually to maximally enhance the system’s TSPD
budget and/or performance. Figure 4 provides the obtained
overall gain results when the policies perform task migrations
in succession for as long as they deem a subsequent migration
beneficial w.r.t. their pursued goal as detailed in Section V-C
(yet, not exceeding 15 migrations).

Figure 4-top provides the TSPD-budget gain attained by
the policies relative to the gain yielded by PdOracle which
performs best in maximizing the TSPD budget in the sys-
tem.13 As demonstrated, the proposed policy achieves a
significant gain in TSPD budget compared to PerfOracle

13Note that, while PdOracle performs optimally in maximizing the TSPD-
budget gain in a single migration, it may yield a sub-optimal gain when
performing x ≥ 2 successive migrations even though it outperforms the other
policies. The reason here is that the search space of PdOracle is restricted to
a single swap of active and idle cores per migration. As it cannot capture the
TSPD-budget impact of multiple swaps at once, it may not find the globally
optimal sequence of migrations if that sequence contains migration choices
that are not necessarily optimal in yielding maximal TSPD-budget gain in
their respective migration step.

VOLUME 10, 2022 33797



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

and HotCold. In fact, on average among all utilization lev-
els, the TSPD-budget gain of the proposed, PerfOracle, and
HotCold policies lie within the 70%, 26%, and 29% range of
the gain delivered by PdOracle, respectively.

Figure 4-middle reflects the performance gain attained
by each policy relative to the gain yielded by PerfOracle.
Interestingly, although PerfOracle performs optimally in
maximizing performance in a single migration decision,
it almost always exhibits an inferior performance gain when
performing several migrations in sequence. The reason here
is that PerfOracle disregards thermal aspects altogether in its
migration decisions. Hence, it often drives the system into
local performance optima within only 1–2 migrations so that
subsequent migrations cannot offer any further gain in perfor-
mance. This is also reflected in Fig. 4-bottom which provides
the average number of migrations performed by each policy
before termination. On the other hand, PdOracle and the
proposed policy outperform PerfOracle by 66% and 14%,
respectively, in optimizing the system’s performance through
a series of migrations, as given in Fig. 4-middle. Among
all policies, HotCold offers the lowest gain in performance.
The observations above advocate for TSPD-budget gain as
the superior objective to be pursued in order to optimize
performance under thermal constraints.

Recall that the two oracle policies are used only as ref-
erences, since they are not viable for online use due to
their immense compute overhead. Among the two practi-
cal policies, namely, Proposed and HotCold, the proposed
policy achieves an average performance gain which is over
2× higher than what HotCold delivers. Moreover, as sug-
gested by Fig. 4-bottom, the proposed policy obtains this gain
through a considerably lower number ofmigrations compared
to HotCold. On average, the proposed policy terminates after
2–3 migrations. However, as achieving a uniform thermal
distribution in the system is fairly unlikely, HotCold never
reached its termination criterion in our experiments, so that it
was terminated by the enforced upper bound of 15migrations.
Moreover, we have frequently observed scenarios in which
HotCold gets trapped in an oscillation loop of migrating
tasks between one and the same pair of cores infinitely.
In our experiments, the overhead of migrations were taken
to be negligible. However, when the overhead accumulates
over the large (or even infinite) number of migrations trig-
gered by HotCold, it can outweigh the attained performance
gain. Note that the number of migrations triggered by Hot-
Cold can be alleviated by considering a temperature-gradient
threshold for triggering migrations and identifying oscilla-
tion cases to prevent revisiting an already visited utiliza-
tion scenario. Such remedies, however, cannot improve the
performance gain of HotCold beyond the measures reported
above.

To obtain insight into the absolute performance and TSPD
gain attained by each policy, Fig. 5 provides the distribution
of the respective gains. Considering average-case system uti-
lization ranges of 30–70%, among the two oracle policies,

FIGURE 4. The average gain in TSPD-budget (top) and
performance (middle) achieved by each migration policy when
performing a series of successive migrations. The results are reported for
different system utilization levels (% active cores), relative to the gain
delivered by the policy which performs optimally in that respect when
performing a single migration, namely, PdOracle for TSPD-budget gain
and PerfOracle for performance gain. The bottom plot provides the
average number of migrations performed by each policy before
termination (with an upper bound of 15 migrations).

PdOracle achieves an average TSPD-budget gain of 4.4%
(up to 10.5%) and an average performance gain of 1.5%
(up to 5.2%), as illustrated in Fig. 5-top and Fig. 5-bottom,
respectively. PerfOracle, on the other hand, exhibits inferior
results in both aspects, achieving an average TSPD-budget
gain of 1.5% (up to 7.3%) and an average performance gain
of 0.9% (up to 4.2%). Contrarily to that, the proposed policy
yields an average TSPD-budget gain of 3.1% (up to 9.4%)
whereas the average gain delivered by HotCold is restricted
to 1.4% (up to 9.2%). Notably, at each utilization level, the
HotCold policy even reduces the TSPD budget of the system

33798 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

FIGURE 5. The distribution of the TSPD-budget gain (top) and performance gain (bottom) attained by each migration policy when performing a series of
migrations in succession. The cross mark in each box represents the average value.

in nearly 25% of samples (see the bottom whiskers14). This
also leads to comparable observations in terms of perfor-
mance where HotCold incurs performance degradation in
nearly 25% of the samples as shown in Fig. 5-bottom. In fact,
HotCold exhibits an average performance gain of 0.5% (up to
4.0%) across the typical utilization range of 30–70%. On the
other hand, the TSPD-budget gain attained by the proposed
policy enables it to yield an average performance gain of 1%
(up to 4.4%) over the same range of utilization levels, hence,
offering a 2× higher performance gain compared to HotCold.

F. DISCUSSION AND OUTLOOK
In our experiments, the performance impact of transient
effects of task migration, e.g., the relocation overhead or
cache warm-up, is not reflected as we evaluate performance
in terms of the steady-state throughput. The impact of these
effects is typically insignificant in systems with a moderate
degree of dynamism (i.e., the rate at which new applica-
tions are deployed or running ones are terminated). In highly
dynamic systems, however, the performance impact of such
effects may become significant. The degree of imposed over-
head there depends on several factors, e.g., the frequency of

14In a box plot, the bottom whisker reflects the range of samples between
the minimal value (lower end of the whisker) and the first quartile (lower end
of the box). Thus, 25% of samples fall into the range of the bottom whisker.

migrations, the migration mechanism in use which specifies
how a given migration is performed, and the memory scheme
of the system (shared or distributed) which specifies how
much data need to be relocated between the source and
destination cores. Reflecting the absolute overheads in the
reported performance-gain results would restrict the expres-
siveness of our evaluations to the degree of dynamism, choice
of migration mechanism, and memory scheme assumed for
the target system and, hence, render the results irrelevant for
systems deviating from that choice. Therefore, we instead
report the number of migrations performed by each policy
to provide an abstract indicator of the transient performance
overhead of each policy relative to the others. Note that,
since the proposed policy relies on far fewer migrations
compared to HotCold (see Fig. 4-middle) and, thus, imposes
a far smaller migration overhead, the performance-gain gap
between the proposed policy and HotCold is expected to
grow even larger than the measures reported in Section V-E
if migration overheads are accounted for.

The experimental results give evidence that, for hetero-
geneous target systems, a task migration policy oriented
towards maximizing TSPD offers higher potential for per-
formance improvement compared to a migration policy that
aims at maximizing thermal balance. The proposed migration
policy manifests a lightweight heuristic for TSPD-oriented

VOLUME 10, 2022 33799



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

migration decisions. Among the possible directions that
the proposed policy could be extended in the future, two
directions appear particularly promising, namely, extension
towards other migration patterns and extension towards sys-
tems with QoS requirements). In the following we briefly
discuss these direction.

The proposed migration policy pursues maximizing TSPD
through migrations that relocate the complete workload of
an active core to an idle core of the same type. A possible
direction for future work is to extend this decision space
to consider other migration patterns for changing the dis-
tribution of active cores in the system, e.g., migrating tasks
between cores of different types, merging the workload of
two active cores, or offloading parts of the workload of an
active core to an idle core.

The main focus of this paper has been on the average-
case performance of the system which is a central goal
for best-effort systems. The proposed migration policy can
be adopted, however, in a real-time and/or mixed-criticality
context as well, since it fulfills a crucial prerequisite of
such systems, namely, the prohibition of thermal violations,
as pointed out in Section II. Nonetheless, incorporating it
into such systems requires careful evaluation and filtering of
the migration options to ensure seamless satisfaction of the
system’s QoS constraints, for instance, by means of an online
migration timing analysis and admission check in the case
of applications with real-time constraints (see, e.g. [51], for
details on such techniques). Extending its decision criteria
for such systems and investigating its effectiveness in such a
setting, therefore, presents another direction for future work.

VI. CONCLUSION
This paper presented a task migration policy for thermal-
aware performance optimization in heterogeneousmany-core
systems. Based on the observation that performance opti-
mization under thermal constraints correlates with maximiz-
ing the Thermally Safe Power Density (TSPD) budget in the
system, the proposed policy aims at optimizing the TSPD
budget and uses Dynamic Voltage and Frequency Scaling
(DVFS) to exploit the power-density budget of active cores
to maximize the system’s performance. The proposed policy
is developed based on an analytical power-budgeting scheme
that enforces thermal safety. Hence, by using this analysis
coupled with DVFS, it eliminates thermal emergencies by
construction. Experimental results demonstrated the supe-
riority of the proposed policy in performance optimization
under thermal constraints when compared to existing poli-
cies which aim at greedily reducing the average, variance,
or gradient of temperature as an indirect means to enhance
performance.

REFERENCES
[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and

A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very small
physical dimensions,’’ IEEE J. Solid-State Circuits, vol. SSC-9, no. 5,
pp. 256–268, Oct. 1974.

[2] Tile Processor Architecture Overview for the TILE-Gx Series, Tilera Corp.,
San Jose, CA, USA, 2012.

[3] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran,
E. Adeagbo, and B. Baas, ‘‘A 5.8 pJ/Op 115 billion ops/sec, to 1.78 trillion
ops/sec 32 nm 1000-processor array,’’ in Proc. IEEE Symp. VLSI Circuits
(VLSI-Circuits), Jun. 2016, pp. 1–2.

[4] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, ‘‘A clusteredmanycore processor architecture for embedded and
accelerated applications,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2013, pp. 1–6.

[5] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Mapping on
multi/many-core systems: Survey of current and emerging trends,’’ inProc.
Annu. Design Automat. Conf. (DAC), May 2013, pp. 1–10.

[6] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak, ‘‘A survey
and comparative study of hard and soft real-time dynamic resource allo-
cation strategies for multi-/many-core systems,’’ ACM Comput. Surveys,
vol. 50, no. 2, pp. 1–40, Mar. 2018.

[7] B. Pourmohseni, M. Glaß, J. Henkel, H. Khdr, M. Rapp, V. Richthammer,
T. Schwarzer, F. Smirnov, J. Spieck, J. Teich, A. Weichslgartner, and
S. Wildermann, ‘‘Hybrid application mapping for composable many-core
systems: Overview and future perspective,’’ J. Low Power Electron. Appl.,
vol. 10, no. 4, p. 38, Nov. 2020.

[8] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 365–376.

[9] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, ‘‘The EDA chal-
lenges in the dark silicon era: Temperature, reliability, and variability
perspectives,’’ in Proc. Annu. Design Automat. Conf. (DAC), Jun. 2014,
pp. 1–6.

[10] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, ‘‘Reliability-aware
design to suppress aging,’’ in Proc. Annu. Design Automat. Conf. (DAC),
Jun. 2016, pp. 1–6.

[11] A. K. Singh, S. Dey, K. McDonald-Maier, K. R. Basireddy, G. V. Merrett,
and B. M. Al-Hashimi, ‘‘Dynamic energy and thermal management of
multi-core mobile platforms: A survey,’’ IEEE Des. Test. Comput., vol. 37,
no. 5, pp. 25–33, Oct. 2020.

[12] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, ‘‘Thermal con-
strained resource management for mixed ILP-TLP workloads in dark
silicon chips,’’ in Proc. Annu. Design Autom. Conf. (DAC), Jun. 2015,
pp. 1–6.

[13] Y. Lee, H. S. Chwa, K. G. Shin, and S. Wang, ‘‘Thermal-aware resource
management for embedded real-time systems,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 11, pp. 2857–2868,
Nov. 2018.

[14] E. W. Wachter, C. de Bellefroid, K. R. Basireddy, A. K. Singh,
B. M. Al-Hashimi, and G. Merrett, ‘‘Predictive thermal management for
energy-efficient execution of concurrent applications on heterogeneous
multicores,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 6, pp. 1404–1415, Jun. 2019.

[15] H. Khdr, T. Ebi, M. Shafique, H. Amrouch, and J. H. Karlsruhe, ‘‘MDTM:
Multi-objective dynamic thermal management for on-chip systems,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2014,
pp. 1–6.

[16] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,
‘‘Thermal safe power (TSP): Efficient power budgeting for heterogeneous
manycore systems in dark silicon,’’ IEEE Trans. Comput., vol. 66, no. 1,
pp. 147–162, Jan. 2017.

[17] T. Blickle, J. Teich, and L. Thiele, ‘‘System-level synthesis using evolution-
ary algorithms,’’ Design Autom. Embedded Syst., vol. 3, no. 1, pp. 23–58,
1998.

[18] K. Manna, P. Mukherjee, S. Chattopadhyay, and I. Sengupta, ‘‘Thermal-
aware application mapping strategy for Network-on-Chip based system
design,’’ IEEE Trans. Comput., vol. 67, no. 4, pp. 528–542, Apr. 2018.

[19] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig, M. Shafique,
J. Teich, and J. Henkel, ‘‘Power density-aware resource management for
heterogeneous tiled multicores,’’ IEEE Trans. Comput., vol. 66, no. 3,
pp. 488–501, Mar. 2017.

[20] S. Liu, J. Zhang, Q. Wu, and Q. Qiu, ‘‘Thermal-aware job allocation and
scheduling for three dimensional chip multiprocessor,’’ in Proc. Int. Symp.
Quality Electronic Design (ISQED), Mar. 2010, pp. 390–398.

33800 VOLUME 10, 2022



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

[21] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich, and
J. Henkel, ‘‘Thermally composable hybrid application mapping for real-
time applications in heterogeneous many-core systems,’’ in Proc. IEEE
Real-Time Syst. Symp. (RTSS), Dec. 2019, pp. 220–232.

[22] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel, ‘‘Power-
and cache-aware task mapping with dynamic power budgeting for many-
cores,’’ IEEE Trans. Comput., vol. 69, no. 1, pp. 1–13, Jan. 2019.

[23] M. Ansari, J. Saber-Latibari, M. Pasandideh, and A. Ejlali, ‘‘Simultaneous
management of peak-power and reliability in heterogeneous multicore
embedded systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 3,
pp. 623–633, Mar. 2020.

[24] J. Saber-Latibari, M. Ansari, P. Gohari-Nazari, S. Yari-Karin,
A. M. H. Monazzah, and A. Ejlali, ‘‘READY: Reliability- and deadline-
aware power-budgeting for heterogeneous multicore systems,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 4,
pp. 646–654, Apr. 2021.

[25] H. Wang, M. Zhang, S. X.-D. Tan, C. Zhang, Y. Yuan, K. Huang, and
Z. Zhang, ‘‘New power budgeting and thermal management scheme for
multi-core systems in dark silicon,’’ in Proc. 29th IEEE Int. Syst.-on-Chip
Conf. (SOCC), Sep. 2016, pp. 344–349.

[26] Y. G. Kim, M. Kim, J. Kong, and S. W. Chung, ‘‘An adaptive thermal
management framework for heterogeneous multi-core processors,’’ IEEE
Trans. Comput., vol. 69, no. 6, pp. 894–906, Jun. 2020.

[27] M. S. Mohammed, A. A.M. Al-Kubati, N. Paraman, A. A.-H. Ab Rahman,
and M. N. Marsono, ‘‘DTaPO: Dynamic thermal-aware performance opti-
mization for dark silicon many-core systems,’’ Electronics, vol. 9, no. 11,
p. 1980, Nov. 2020.

[28] A.Merkel, F. Bellosa, and A.Weissel, ‘‘Event-driven thermal management
in SMP systems,’’ in Proc. 2nd Workshop Temperature-Aware Comput.
Syst. (TACS), 2005, pp. 1–10.

[29] Y. Ge, P. Malani, and Q. Qiu, ‘‘Distributed task migration for thermal
management in many-core systems,’’ in Proc. 47th Design Autom. Conf.
(DAC), 2010, pp. 579–584.

[30] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici,
‘‘Dynamic thermal management in 3D multicore architectures,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Apr. 2009, pp. 1410–1415.

[31] A. K. Coskun, T. S. Rosing, and K. C. Gross, ‘‘Proactive temperature
management inMPSoCs,’’ inProc. Int. Symp. Low Power Electron. Design
(ISLPED), Aug. 2008, pp. 165–170.

[32] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini,
D. Atienza, and G. De Micheli, ‘‘Thermal balancing policy for streaming
computing on multiprocessor architectures,’’ in Proc. Design, Autom. Test
Eur., Mar. 2008, pp. 734–739.

[33] D. Cuesta, J. Ayala, J. Hidalgo, D. Atienza, A. Acquaviva, and E. Macii,
‘‘Adaptive task migration policies for thermal control in MPSoCs,’’ in
Proc. IEEE Annu. Symp. VLSI (ISVLSI). Dordrecht, The Netherlands:
Springer, 2011, pp. 83–115.

[34] X.Wang, A. K. Singh, and S.Wen, ‘‘Exploiting dark cores for performance
optimization via patterning for many-core chips in the dark silicon era,’’
in Proc. 12th IEEE/ACM Int. Symp. Netw.-on-Chip (NOCS), Oct. 2018,
pp. 1–8.

[35] M. Prakash Gupta, M. Cho, S. Mukhopadhyay, and S. Kumar, ‘‘Thermal
investigation into power multiplexing for homogeneous many-core proces-
sors,’’ J. Heat Transf., vol. 134, no. 6, Jun. 2012.

[36] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose,
‘‘Thermal-aware task scheduling at the system software level,’’ in Proc.
Int. Symp. Low Power Electron. Design (ISLPED), 2007, pp. 213–218.

[37] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, ‘‘Heat-and-run: Lever-
aging SMT and CMP to manage power density through the operating
system,’’ ACM SIGOPS Operating Syst. Rev., vol. 38, no. 5, pp. 260–270,
Dec. 2004.

[38] I. Yeo, C. C. Liu, and E. J. Kim, ‘‘Predictive dynamic thermal management
for multicore systems,’’ in Proc. Annu. Design Autom. Conf. (DAC), 2008,
pp. 734–739.

[39] A. K. Coskun, T. S. Rosing, and K. C. Gross, ‘‘Utilizing predictors for effi-
cient thermalmanagement inmultiprocessor SoCs,’’ IEEETrans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 10, pp. 1503–1516,
Oct. 2009.

[40] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii,
R. Sankaran, and P. Beckman, ‘‘Machine learning-based temperature pre-
diction for runtime thermal management across system components,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 405–419, Feb. 2018.

[41] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, ‘‘Performance optimal
online DVFS and task migration techniques for thermally constrained
multi-core processors,’’ IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 30, no. 11, pp. 1677–1690, Nov. 2011.

[42] R. Kumar, A. Sachan, A. Gogoi, and B. Ghoshal, ‘‘Application phase
behavior-guided thermal management of embedded platforms,’’ IEEE
Embedded Syst. Lett., vol. 12, no. 4, pp. 121–124, Dec. 2020.

[43] P. Greenhalgh, ‘‘Big.LITTLE processing with arm cortex-a15 & cortex-
a7,’’ ARM, Cambridge, U.K., White Paper, 2011.

[44] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, ‘‘HotSpot: A compact thermal modeling methodology
for early-stage VLSI design,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 5, pp. 501–513, May 2006.

[45] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. London, U.K.: Pearson, 2015.

[46] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu,
M. J. Irwin, M. Kandemir, and V. Narayanan, ‘‘Leakage current:
Moore’s law meets static power,’’ Computer, vol. 36, no. 12, pp. 68–75,
Dec. 2003.

[47] T. J. Eguia, S. X.-D. Tan, R. Shen, E. H. Pacheco, and M. Tirumala,
‘‘General behavioral thermal modeling and characterization for multi-core
microprocessor design,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2010, pp. 1136–1141.

[48] R. Dick. (2010). Embedded System Synthesis Benchmarks Suite (E3S).
[Online]. Available: http://ziyang.eecs.umich.edu/ dickrp/e3sdd/

[49] (2019). International Technology Roadmap for Semiconductors (ITRS).
[Online]. Available: http://www.itrs.net/

[50] R. Borkar, M. Bohr, and S. Jourdan, ‘‘Advancing Moore’s law in
2014,’’ Intel, Santa Clara, CA, USA, 2014. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/
presentation/advancing-moores-law-in-2014-presentation.pdf

[51] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich, ‘‘Real-time task
migration for dynamic resource management in many-core systems,’’ in
Proc.Workshop Next Gener. Real-Time Embedded Syst. (NG-RES), vol. 77.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, pp. 5:1–5:14.

BEHNAZ POURMOHSENI received the B.S. and
M.S. degrees in electrical engineering from Shahid
Beheshti University, Iran, in 2011 and 2013,
respectively, and the Ph.D. degree in computer
science from Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Germany, in 2021.
She is currently a Research Engineer at the Cor-
porate Research Center, Robert Bosch GmbH,
Germany. Her research interests include system-
level design automation, performance analysis,

and resource management for dynamic distributed systems with real-time
requirements, in particular, embedded multi/many-core systems.

STEFAN WILDERMANN received the Diploma
and Ph.D. (Dr.-Ing.) degrees in computer sci-
ence Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU), Erlangen, Germany, in 2006 and
2012, respectively. He leads the Reconfigurable
Computing Group, Computer Science Depart-
ment, FAU. Since then, he has been a Research
Assistant, a Lecturer, and a Group Leader with the
Chair of Hardware/Software Co-Design, FAU. His
current research interests include reconfigurable

computing and system-level design automation for embedded systems.

VOLUME 10, 2022 33801



B. Pourmohseni et al.: Task Migration Policy for Thermal-Aware Dynamic Performance Optimization

FEDOR SMIRNOV was born in Udomlja, Russia,
in 1989. He received the B.S. and M.S. degrees
in mechatronics and the Ph.D. degree in com-
puter science from Friedrich-Alexander Univer-
sität Erlangen-Nürnberg (FAU), in 2014 and 2019.
Since January 2020, he has been a Postdoctoral
Researcher at the Computer Science Faculty, Uni-
versity of Innsbruck. His research interests include
multi-objective constrained optimization problems
and the design automation of distributed systems,

with a particular emphasis on cloud-edge and automotive applications.

PAUL E. MEYER was born in Feuchtwangen, Bavaria, Germany, in 1996.
He received the B.S. degree in communication and information technology
from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen,
Germany, in 2020. From 2019 to 2021, he was a Student at the Fraunhofer
Gesellschaft IIS, Erlangen. Since 2021, he has been a Software Developer at
sepp.med gmbh, Röttenbach, Germany.

JÜRGEN TEICH (Fellow, IEEE) received the
M.S. (Dipl.-Ing.) degree (Hons.) from the Uni-
versity of Kaiserslautern, Germany, in 1989, and
the Ph.D. (Dr.-Ing.) degree (summa cum laude)
from the University of Saarland, Saarbrücken,
Germany, in 1993. From 1998 to 2002, he was
a Full Professor with the Electrical Engineering
and Information Technology Department, Univer-
sity of Paderborn, Germany. He is with Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU),

Germany, where he is directing the Chair for Hardware/Software Co-
Design, since 2003. Since 2010, he has been a Principal Coordinator of
the Transregional Research Center 89 ‘‘Invasive Computing’’ funded by
the German Research Foundation (DFG). He has edited two text books on
Hardware/Software Co-Design and a Handbook on Hardware/Software Co-
Design (Springer). His current research interests include electronic design
automation of embedded systems with emphasis on hardware/software co-
design, reconfigurable computing, and multi-core systems. He is a member
of the Academia Europaea, the Academy of Europe, the National Academy
of Science and Engineering (acatech), and the German Society of Humbold-
tians. He serves on the Editorial Board of journals, including ACM Trans-
actions on Design Automation of Electronic Systems, ACM Transactions on
Embedded Computing Systems, and IEEE Design and Testmagazine. He has
organized various ACM/IEEE Conferences/Symposium as a Program Chair,
including CODES+ISSS’07, FPL’08, ASAP’10, and DATE’16. He was the
Vice General Chair of DATE 2018 and the General Chair of DATE 2019.

33802 VOLUME 10, 2022


