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ABSTRACT It is a challenging task for unmanned aerial vehicles (UAVs) without a positioning system
to locate targets by using images. Matching drone and satellite images is one of the key steps in this task.
Due to the large angle and scale gap between drone and satellite views, it is very important to extract fine-
grained features with strong characterization ability. Most of the published methods are based on the CNN
structure, but a lot of information will be lost when using such methods. This is caused by the limitations
of the convolution operation (e.g. limited receptive field and downsampling operation). To make up for this
shortcoming, a transformer-based network is proposed to extract more contextual information. The network
promotes feature alignment through semantic guidance module (SGM). SGM aligns the same semantic parts
in the two images by classifying each pixel in the images based on the attention of pixels. In addition, this
method can be easily combined with existing methods. The proposed method has been implemented with
the newest UAV-based geo-localization dataset. Compared with the existing state-of-the-art (SOTA) method,
the proposed method achieves almost 8% improvement in accuracy.

INDEX TERMS Cross-view image matching, geo-localization, UAV image localization, deep neural
network.

I. INTRODUCTION
The researches on remote sensing images have been a hot
topic for a long time. There is a part of research devoted
to detecting targets from remote sensing images [1]–[4].
Some other works were dedicated to semantic segmentation
of remote sensing images [5]–[8]. Another line of works
focused on the large scene images classification [9]–[12].
In recent years, the booming development of Unmanned
aerial vehicles (UAVs) has promoted the application of drones
in all walks of life. UAV is easy to operate and shoot, which
makes it popular and gradually become the main tool for
acquiring remote-sensing images. So far, most drones on the
market rely on positioning systems (e.g. GPS or GNSS) for
positioning and navigation. Cross-view geo-localization is
matching the drone images with the satellite images marked
with geographic location, which makes drone to obtain the
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current position and realize autonomous positioning without
the assistance of the positioning system.

Cross-view geo-localization is mainly to achieve image
positioning by matching images from different perspectives,
which is challenging because the appearance and view-points
are significantly different in various views. Some previous
work used some hand-designed features such as semanti-
cally labeled regions and feature translation for similarity
calculations [13]–[16]. With the rapid development of deep
learning and CNN, the method of manual features has been
replaced by neural networks autonomously extracting fea-
tures. One line of works focused on matching ground and
satellite images, and implemented the method on the two
datasets CVUSA [17] and CVACT [18]. In these two datasets,
there is an image pair, containing a panoramic ground image
and a satellite image for a location. Hu et al. [19] proposed a
Siamese architecture to do metric learning for the matching
task, which used NetVLAD [20] to encode local feature
into global image descriptors. Liu and Li [18] designed a
Siamese network which explicitly encodes the orientation
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of each pixel in the images, significantly boosting the dis-
criminative power of the learned deep features. Furthermore,
Liu et al. [21] proposed a new Stochastic Attraction and
Repulsion Embedding (SARE) loss function to minimize
the gap between the learned and the actual probability dis-
tributions. Vo and Hays [22] proposed a new loss func-
tion which significantly improves the accuracy of Siamese
and Triplet embedding networks and proved the effective-
ness of orientation supervision. Shi et al. [23] applied polar
transform to warp aerial images to align aerial and ground
views. They also designed a DSM method [24] by adopting
a dynamic similarity-matching network to estimate cross-
view orientation alignment during localization. Another line
of works focused on matching drone and satellite images,
and implemented the method on the UAV-based datasets
University-1652 [25]. Zheng et al. [25] looked at image-
retrieval tasks from a classification perspective and optimized
model by cross-entropy loss and instance loss [26]–[29].
Ding et al. [30] proposed a data augmentation method to
solve the problem of unbalanced drone and satellite image
samples in the dataset. In-spired by success of partition strate-
gies [31]–[34] in other fields, Wang et al. [35] proposed
a rotation-invariant square-ring feature partition strategy to
enable the network to fully mining contextual information.

Since transformer was proposed by Vaswani et al. [36] in
the field of NLP, it has maintained a high degree of pop-
ularity in deep learning. In recent years, excellent research
based on transformer in the Computer Vision (CV) field
has emerged one after another. With its unique self-attention
mechanism and high performance, it may even replace CNN’s
long-standing dominance in CV. At present, transformer
has penetrated into many subfields of CV, such as Image
Classification, Object Detection, Semantic Segmentation and
GAN, etc. [37]–[46].

In the field of Image Classification, Dosovitskiy et al. [37]
proposed a pure transformer network, called Vision Trans-
former (ViT), which sequences image patches and performs
very well on image classification tasks. Based on ViT,
Touvron et al. [38] introduced a teacher-student strategy
specific to transformers, called Data-efficient image Trans-
formers (DeiT). DeiT used a distillation token to ensure the
student learns from the teacher through attention, thereby
speeding up the speed of network training and reducing the
dependence on the amount of data. In the field of Object
Detection, Carion et al. [39] removed the need formany hand-
designed components and designed a transformer encoder-
decoder architecture named Detection Transformer (DETR),
which reasons about the relations of the objects and the global
image context. However, DETR has some shortcomings such
as slow convergence speed and limited feature spatial res-
olution. To solve these problems, Zhu et al. [40] proposed
Deformable DETR, whose attention modules only at-tend
to a small set of key sampling points around a reference.
Inspired by transformer, Chi et al. [41] presented an attention-
based decoder module to bridge various representations into
a typical object detector. In the other fields of CV, there

are also many excellent jobs. Zheng et al. [42] deployed a
pure transformer called Segmentation Transformer (SETR) to
encode an image as a sequence of patches andmodeled global
context in every layer of the transformer. Chen et al. [43]
developed a new pre-trained model, named image processing
transformer (IPT). IPT could be efficiently employed on low-
level computer vision task (e.g. denoising, super-resolution
and deraining). Jiang et al. [44] used two pure transformers
to build a Generative Adversarial Network (GAN). To restore
the texture information of the image super-resolution result,
Yang et al. [45] proposed a novel Texture Transformer Net-
work for Image Super-Resolution (TTSR) consisting of a
learnable texture extractor by DNN, a relevance embedding
module, a hard-attention module for texture transfer, and a
soft-attention module for texture synthesis. He et al. [46]
proposed a ViT-based pure transformer structure for pedes-
trian re-identification with embedding side information and
jigsaw patch modules which improve discrimination ability
of feature.

However, there is few transformer-based method that can
be used for cross-view matching at present and the existing
methods for extracting contextual information from drone
and satellite images are only at the block level instead of
the pixel level, which are not robust enough to offset and
scale. To fill the above gaps, we mainly made the following
contributions:

1. Different from other existing CNN-based methods, a
Swin-transformer-based structure is proposed to match UAV
and satellite images (see Sections II.B).

2. A semantic guidance module was proposed and used
to realize the feature alignment of contextual information
mining and inference stage improving the accuracy of the
model under offset and scale (see Sections II.C).

3. The method achieved outstanding performance. On var-
ious accuracy indicators of the benchmark dataset, the meth-
od greatly exceeded the existing methods (see Section III).

The rest of this paper is organized as follows. In Section II,
the methodology and materials are briefly introduced.
Section III presents the experiments and results of our
method. Discussion and conclusion are illustrated in
Section IV and Section V respectively.

II. METHODOLOGY AND MATERIALS
A. DATASETS AND EVALUATION INDICATORS
The research was implemented with University-1652,
released by Zheng et al. [25]. There are 1652 geographic
targets in 72 universities from all over the world. The dataset
of each target consists of images from three different perspec-
tives, including satellite, drone, and street views. Each target
has only one satellite-view image, about fifty drone-view
images from different filming angles and heights, and some
street-view images. This research focuses on the matching
of satellite and drone views. The performance of method
is mainly reflected in two tasks, Drone → Satellite and
Satellite → Drone. Specifically, the purpose of Drone →
Satellite is giving a drone image and finding the satellite
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image of the same place; the purpose of Satellite→ Drone
is giving a satellite image and finding all drone images of
the corresponding place. The details of data distribution in the
datasets are shown in Table 1. In the testing dataset of the
Drone → Satellite task, there was only one true-matched
satellite-view image for each drone-view image.

All geotags satellite-view images were captured from
Google Maps, which have a similar scale to that of drone-
view images and high spatial resolutions (from level 18 to
20, the spatial resolution ranges from 1.07 to 0.27 m).

Due to airspace control and high cost, it is very difficult
to collect a large number of real drone-view images, so the
drone-view images were simulated by the 3Dmodel provided
byGoogle Earth. The view in the 3Dmodel spirally descends,
and the height of view from 256 to 121.5 m, while images
were recorded at regular intervals, so as to obtain a large
number of drone images close to the real world. As shown
in Fig. 1, the blue curve represents the flight trajectory of the
drone, and the blue cylinder represents the shooting target.

TABLE 1. Statistics experimental data.

FIGURE 1. Data collection diagram.

To evaluate the performance of the proposed method,
Recall@K (R@K) [47] and average precision (AP) [48]
are selected as evaluation indicators which are two widely

used measurements. Recall@K (R@K) represents the prob-
ability that a correct match appears in the top-k ranked
retrieved results. And another metric, average precision (AP)
measures the average retrieval performance with multiple
ground truths, it is originally widely used in image retrieval.

B. OVERVIEW OF NETWORK
Difference from the other existing three branches method
[25], [30], [35] is that the proposed network is com-
posed of drone and satellite branches without street branch.
In addition, the backbone is not traditional CNN structure
(e.g. Resnet [49], VGG [50]), but is a new transformer struc-
ture Swin-Tiny [51], which has achieved good performance
in many other computer vision fields. Swin-Tiny consists of
4 layers. Each layer contains 2, 2, 6 and 2 self-attention mod-
ules respectively. The structure of the self-attention module
is shown in Fig. 2. In order to compare with other meth-
ods, schematically taking an image with the same size of
256 × 256 as that of the input of the network, the overview
of network and the forward propagation process are shown in
Fig. 2. Thewhole structure was divided into two branches, the
drone and satellite view branches, and they share the weights
of the backbone. The image is divided into 4 patches and
sent to back-bone. A feature map with a size of 64 × 768 is
obtained through Layer1 to Layer4. After being processed
by Semantic Guidance Module (details in Section II.C), the
feature map is split into several parts. Each part represents
different semantics. Average pooling operation are then per-
formed on each part, since the size of part become 1× 768.
All pooled features are sent to the classifier module, includ-
ing fully connected, batch normalization, dropout, and clas-
sification layers. The network is optimized by minimizing
cross-entropy loss in training phase. The classification layer
in classifier module will be removed in inference (details
in Section II.D).

C. SEMANTIC GUIDANCE MODULE (SGM)
Contextual information is critical to the accuracy of image
retrieval. The existing hard partition strategy is not robust
enough to offset and scale. Since a pixel-based partition strat-
egy is proposed, which shows good performance in ablation
experiments on offset and scale (details in Section III.C).

The input feature map of SGM can be expressed asM j
i , and

the size of M is 64 × 768. SGM sums M j
i along the channel

direction. The operation can be formulated as:

Mi =
∑768

j=0
M j
i i ∈ [0, 63] (1)

After the above operations, the size ofMi is 64× 1.
Normalization operation is performed onMi, and the result

is shown in Fig. 3a. The normalization operation can be
formulated as:

Mi =
Mi −Minimum(Mi)

Maximum (Mi)−Minimum(Mi)
(2)

whereMaximum andMinimum respectively stand for getting
the maximum and minimum inMi.
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FIGURE 2. Overview of the network and the structure of the self-attention module. In the self-attention module: ‘‘LN’’ means layer normalization;
‘‘W-MSA’’ and ‘‘SW-MSA’’ mean multi-head self-attention modules with regular and shifted windowing configurations, respectively. ‘‘MLP’’ means
multilayer perceptron.

Next SGM calculates the gradient between adjacent posi-
tions, and divides the feature map into different regions based
on the calculation results. Take dividing the feature map into
two parts as an example, the red arrow in Fig. 3a indicates
a position with a large gradient. SGM regards this position
as the line to divide the feature map into yellow and green
parts (shown in Fig. 3b), which represent two categories in
the image. The whole operation process can be formulated as:

iposition = argmax
(
Mi+1 −Mi

Mi

)
(3)

The overview and the result of SGM is shown in Fig. 4.
After SGM, the feature map is obviously divided into
two parts: architecture (foreground) and environment (back-
ground). This result is a good foundation for extracting con-
textual information. And we believe this partition method is
robust to offset and scale.

FIGURE 3. Values in the heatmap and the principle of SGM.

D. LEARNING STRATEGY AND LOSS FUNCTION
Average pooling is performed on each divided feature map,
and their size is reduced to 1 × 768. The operation can be
formulated as:

Yi = Avgpool (Xi) i ∈ [0, 1] (4)

where Xi stands for divided feature map, Avgpool stands
average pooling operation and Yi stands pooled vector.

FIGURE 4. Overview of SGM.

All pooled vector is sent to classifier module, which
includes fully connected, batch normalization, dropout, and
classification layers. Each vector output by module is per-
formed softmax to normalize the result to a feature space with
the value range of 0 to 1. The optimization goal is that, in this
feature space, the feature vectors of the same geographic
target have a closer distance, on the contrary, the feature
vectors of different geographic targets have a longer distance.
The network is optimized by cross-entropy loss function and
it can be formulated as:

LossCE (p, y) =

{
− log (p), y = 1
− log (1− p), y = 0

(5)

where p stands for forecast result, and y stands ground-truth
label.

The total loss in the training phase can be formulated as:

Loss =
∑n

i=0
(L iDrone + L

i
Satellite) (6)

where n stands for number of divided feature maps.
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TABLE 2. Comparison with the state-of-the-art results reported on university-1652.

In the testing phase, the classification layer in classifier
module will be removed. Since the output size of module
becomes 1 × 512. As shown in Fig. 5, two vectors are
concatenated to calculate the Euclidean distance of the image
in the feature space. The distance between two vectors can be
formulated as:

D = ‖VDrone− VSatellite‖2 (7)

where V stands for concatenated vector.

FIGURE 5. Training and testing stage.

E. IMPLEMENTATION
Training images were changed from 512 × 512 to
256 × 256 through the resize operation and augmented
with random flipping and random cropping. The batchsize

was set to 16. The backbone was initialized by loading the
weights pretrained on ImageNet-1K by Swin-Tiny. SGD was
chosen as the optimizer with momentum of 0.9 and weight
decay of 5e-4 to train the model. The model was trained for
140 epochs; the initial learning rate was 9e−4 for the back-
bone layers, and 9e−3 for the other layers. The learning rate
dropped to one-tenth of the original after 80 and 120 epochs.
In the inference phase, the similarity between images was
evaluated by calculating the Euclidean distance between
L2-normalizing feature vectors of images. All experiments
were performed with an Nvidia 3090 GPU using the PyTorch
deep-learning framework with FP16 training.

III. EXPERIMENT
A. COMPARISON WITH THE STATE OF THE ART
In Table 2, the proposedmethod is comparedwith other meth-
ods on University-1652. The method has achieved 82.14 %
R@1 accuracy and 84.72% AP on the task of Drone →
Satellite, 88.16% R@1 accuracy and 81.81% AP on the task
of Satellite→ Drone with the standard input (image size of
256× 256). The performance of themethod greatly surpasses
the existing competitive models. When choosing the model
Swin-Large with a larger amount of parameters and calcula-
tions as backbone, which is pretrained on a larger datasets
Imagenet-22K, the accuracy achieved higher. Experiments
with different input sizes shows that input images with large
resolution can obtain better matching accuracy in these two
tasks.

B. ABLATION OF SGM
In order to verify the effectiveness of SGM, the distribution
of embedding vectors after dimensionality reduction is visu-
alized. As shown in Fig. 6, the SGM splits the vectors into

VOLUME 10, 2022 34281



J. Zhuang et al.: Semantic Guidance and Transformer-Based Matching Method for UAVs and Satellite Images

two parts as expected. To explore the impact of the number of
parts divided by SGM, an ablation experiments are performed
on SGM. As shown in Table 3 and Fig. 7, the method only
achieved 79.19 % R@1 accuracy and 82.19% AP on the task
of Drone → Satellite, 86.31% R@1 accuracy and 77.69%
AP on the task of Satellite → Drone without SGM. When
SGM was adopted and divided feature map into 2 parts, the
method achieved 80.14% R@1 accuracy and 83.35% AP on
the task of Drone → Satellite, 87.59% R@1 accuracy and
80.37% AP on the task of Satellite → Drone. When the
number of parts increased to 3, model achieved the highest
R@1 and AP. As the number of parts reached 4, the accuracy
of the model dropped to 81.76 R@1 accuracy and 84.46%
AP on the task of Drone→ Satellite, 87.45% R@1 accuracy
and 81.29% AP on the task of Satellite→ Drone. From the
above phenomenon, we can judge that 3 is the best number
of parts. Meanwhile, SGM brings 2.95%, 2.53%, 1.85% and
4.12% improvements on the 4 items in the table. Among
them, the greatest improvement is the AP of the task of
Satellite → Drone, which proves that SGM is an effective
method. It makes satellite image retrieve more relevant drone
images. Furthermore, in order to better integrate each channel
of features, SE module [53] was inserted after each feature
map output from SGM, which brought an objective improve-
ment to the performance of the model.

TABLE 3. Results of ablation experiments of semantic guidance module.
‘‘2P-4P’’ means number of parts.

FIGURE 6. Examples of an embedding vector being divided into two parts
by SGM.

C. ABLATION OF OFFSET AND SCALE
In order to confirm whether the model is robust to offset
and scale or not a set of ablation experiments were designed.
Firstly, the anti-offset of images was tested on the model. The
query image was added by mirrored pixels at the edge of

FIGURE 7. (a) The effect of the number of categories on R@1. (b) The
effect of the number of categories on AP.

the image to achieve the effect of shifting the center target
building. The operation process is shown in Fig. 8. The
geographic target was shifted from 0 to 20 pixels from the
center.

The experiment result is displayed in Table 4. The results
showed that when the offset increased from 0 to 10, the model
dropped to 81.20%R@1 accuracy and 84.07%AP on the task
of Drone→ Satellite, 87.87%R@1 accuracy and 80.51%AP
on the task of Satellite→Drone. Themodel dropped less than
1% in various indicators. Even when the offset increased to
20, the model remained 79.26% R@1 accuracy and 82.22%
AP on the task of Drone→ Satellite, 85.88% R@1 accuracy
and 79.23% AP on the task of Satellite→ Drone, the decline
of accuracy was less than 3%, which proves that the model
was robust to the offset. Secondly, the robustness to scale
of the model was tested on the task of Drone → Satellite.
The drone-query images were split into three groups: short,
medium and long, which respectively represented the dif-
ferent distances of the drone between the geographic target.
As shown in Table 5, the model performs slightly worse
on long distance, only achieved 79.92% R@1 accuracy and
83.05% AP. But on short and middle distance, the accuracy
of the model exceeded the average level. We believe that it
may be caused by closer scales between the middle distance
images and satellite images. Nevertheless, there is no signif-
icant difference in the accuracy of the model on the three
different distances, which indicates that the proposed model
is robust to scale. The above two experiments show that the
proposed method may adapt to complex situations in actual
application scenarios.

D. INFERENCE WITH DIFFERENT PART
Each feature vector representing each part from SGM was
use separately in inference phase to explore the effectiveness
of contextual information extraction. Taking 3 parts in SGM
as an example, the results of the ablation experiment are
shown in Table 6. When each part was tested individually,
they showed strong performance individually. Part3 (P3, the
part with highest value in the feature map) even reached R@1
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FIGURE 8. The way of shifting drone images.

TABLE 4. Results of ablation experiments of shifting query images during
inference.

TABLE 5. Results of ablation experiments of using drone images with
different distance to the geo-graphic target to conduct retrieval. ‘‘All’’
stands for using all drone-views query images.

80.35%, AP 83.31% on the Drone→ Satellite task, and R@1
87.96%, AP 80.44% on the Satellite → Drone task. The
results of the separation experiment prove that each part of the
network had extracted effective context information. When
all parts were combined, the model achieved the highest
accuracy, R@1 82.14%, AP 84.72% on the Drone→ Satellite
task, and R@1 88.16%, AP 81.81% on the Satellite→Drone
task. Compared with the individual inference of each part,
the joint inference brought about 1% improvement in each
indicator. The results of the joint inference experiment shows
that the method of combining contextual information can
improve the retrieval accuracy of the model. However, too
much parts may cause an increase in inference time. P3 is a
good choice in a scene with high real-time requirements.

E. MATCHING ACCURACY OF MULTIPLE QUERIES
In the above experiment of Drone → Satellite task, only
a single drone view image was used to retrieve satellite
view image, which was called ‘‘single mode’’. It is believed
that a single drone view image can not provide complete
information about geographic targets. To solve this problem,
University-1652 provides a lot of drone images with different
heights and angles for each geographic target, which provides
convenience for us to retrieve satellite images based on the

TABLE 6. Results of ablation experiments of using drone images with
different distance to the geo-graphic target to conduct retrieval.

TABLE 7. Results of multiple queries.

information of multiple drone images (called ‘‘multi mode’’).
In order to verify that multiple queries can improve retrieval
accuracy, two sets of ablation experiments were designed.

In the experiments the feature of multiple queries was set
as the mean value of the single image features of a geographic
target. Table 7 shows the accuracy of our proposed method in
the two modes and comparison with other existing methods.
When the ‘‘multi mode’’ was used on proposed method for
retrieval, the model achieved 89.23% R@1 accuracy and
90.95%AP, which brought+7.09% R@1 and+6.13%AP to
the model. Compared with other methods that use the ‘‘multi
mode’’, the proposed method is also far ahead.

To further explore the impact of multiple angles and multi-
ple heights on accuracy, an ablation experiment on angle and
height were designed and the results were shown in Table 8.
‘‘Low’’, ‘‘Middle’’ and ‘‘High’’ are respectively represent
drone images in different height ranges (shows in Fig. 9).
When the height was kept in a certain range, using multi-
angle drone images combination for retrieval will improve
accuracy. The method that is called as ‘‘ALL’’ means to
combine images of multiple heights on the basis of multi-
ple angles. Compared with using a single height only, the
accuracy of multiple heights had also been improved. Since
we believe that multi-angle and multi-height queries both can
improve the model accuracy.

F. EVALUATION ON REAL DATA
To verify that the method generalizes well, the model was
evaluated on the dataset captured from our school. The model
was trained on University-1652 and was not fine-tuned on
this dataset. The dataset contains more than 50 locations and
mainly focuses the accuracy of Drone→ Satellite task. The
evaluation results of different methods are shown in Table 9.
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FIGURE 9. Flight curve of drone.

TABLE 8. Results of multiple queries about different flight height.

TABLE 9. Results of inference on real datasets.

G. VISUALIZATION OF RESULTS
The retrieval results of Satellite→Drone and Drone→ Satel-
lite tasks are displayed in Fig. 10 to prove the reliability of
proposed method. Fig. 10a shows the method proposed had a
high top-5 hit rate on Satellite→ Drone, and Fig. 10b shows
the model had a high R@1 accuracy.

To investigate the effectiveness of multiple queries, the
matching results of multiple queries and a single query is
visualized in Fig. 11. For the geographic target, the true-
matched satellite image is in the position of R@5 when a
single query is used.Whenmultiple queries are used, the true-
matched satellite image all appeared in the position of R@1.
The result proves the effectiveness of the multiple queries.
Fig. 12. shows the feature vectors of 11 classes images dis-
tributed in the Euclidean space. The same color represents the

FIGURE 10. Visualized images retrieval results. (a) Top-5 retrieval results
of Satellite → Drone. (b)Top-5 retrieval results of Drone→ Satellite. The
true matches are in green boxes, while the false matches are displayed in
red boxes.

FIGURE 11. Visualized single query and multiple queries retrieval results.

same class of images, it can be seen that the model has strong
intra-class aggregation.

IV. DISCUSSIONS
According to the experiments results on two tasks (Satel-
lite → Drone and Drone → Satellite), we deeply explored
the proposed model’s retrieval performance and compared it
with existing models. The baseline proposed using a trans-
former network as backbone showed a good performance
without extra modules and tricks. As show in Fig. 13, the
transformer can focus on more discriminative features in the
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FIGURE 12. Visualization of partial data classification results using t-SNE.

FIGURE 13. Heatmaps generated by Vgg16, Resnet50 and Swin-T.

images than CNN. Because self-attention can explicitly mine
the potential connections among patches in the whole images,
but the convolution operation of CNN is more inclined to
mine local features in the image. Since, compared with other
complex networks with CNN as the backbone, transformer
appears to be more competitive in image retrieval, which
is conducive to the transformer being able to extract more
characteristic features. Based on the strong baseline, SGM is

proposed to extract richer contextual information and achieve
feature alignment. When the feature map was divided into
too many parts by SGM, the performance of the model
declined. We conjecture that there are two reasons for this
phenomenon: (1) Too many parts may cause redundancy
of context information. (2) Too many branches will cause
network overfitting. Therefore, it is necessary to choose an
appropriate number of parts (e.g. 3 parts). In inference stage,
if there are resource constraints, it is a good choice a branch
with higher accuracy in SGM to reduce time expenditure.
In order to achieve higher precision in real scenes, a method
of multiple queries was used in the experiment. The results
prove that multiple queries can significantly improve the
accuracy of retrieval, which also guides us to allow drones
to take multi-angle and multi-height shooting of the same
geographic location to obtain more diverse features in the
real scene. Nevertheless, it is believed that the model still has
certain flaws. For example, the accuracy of SGM’s semantic
guidance in some complex scenes needs to be improved,
which is also directly related to the final matching accuracy of
themodel. How tomake better semantic guidance ismeaning-
ful and promising work, and we will conduct further research
on this problem.

V. CONCLUSION
In the paper, we proposed a transformer-based network to
match drones with satellite images, which can be used for
drone autonomous positioning without a positioning system.
A semantic guidance method is proposed to extract the con-
textual information in the image and improve the model’s
robustness to offset and scale. In the two tasks (Satellite→
Drone and Drone → Satellite) on the dataset University-
1652, the model achieved high accuracy.

The conclusion of the experiment are mainly as follows:
1. The transformer-based network is more competitive than
the CNN-base network in this task. 2. The Semantic guidance
module (SGM) can effectively mine the contextual infor-
mation in the image, and achieve feature alignment in the
inference stage, further improving the accuracy of the model.
3. Multiple queries is more accurate than single query, and it
brings a huge improvement. The proposed method therefore
achieved a precision that greatly surpasses existing methods.
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