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ABSTRACT Verification and validation of automated driving systems’ safety are some of the biggest
challenges for the introduction of automated vehicles into the market. Scenario-based safety assessment
is an efficient and repeatable method to test the systems’ safety before their deployment in the real world.
However, even with limited traffic situations identified as critical to the system behavior, there is still an open
range of parameters to describe each situation. Thus, defining specific parameter ranges is crucial to realize
the scenario-based safety assessment approach. This study proposes a method to parameterize scenarios
extracted from real-world traffic data, analyze their distribution and correlation, and incorporate them into the
definition of reasonably foreseeable parameter ranges through the contextualization of resulting ranges with
reasonable risk acceptance thresholds from different fields and international environments. Representative
values can be selected from these specific parameter ranges to extract specific concrete scenarios applicable
for the systems safety assessment. The applicability of the proposed method is demonstrated using parameter
ranges obtained to define two sets of 960 cut-in and 6,442 deceleration scenarios extracted from a new
set of traffic data collected from Japanese highways under the SAKURA initiative. The outcomes will
enable comparisons with traffic data from other countries and inform automated driving system developers,
standardization bodies, and policymakers to develop automated vehicle safety assessments applicable
internationally.

INDEX TERMS Automated vehicles, traffic data analysis, event detection, logical scenarios, risk
acceptance, safety, highway, verification and validation methods, naturalistic driving data.

I. INTRODUCTION

A. MOTIVATION

Automated driving systems (ADS), under their opera-
tional domain, shall not cause reasonably foreseeable and
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preventable traffic accidents [1]. Appropriate guidelines
and methodologies that consider reasonably foreseeable
and preventable traffic situations have been proposed
to evaluate ADS safety and readiness to operate in
real-world traffic. One such effort is the scenario-based
testing approach that aims to generate a limited num-
ber of critical test cases from an unlimited number
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of real-world situations for system verification and
validation [2]-[6].

A growing body of literature recognizes the importance of
addressing how to find the set of representative scenarios for
the scenario-based testing of ADS [7]-[13]. However, most
prevalent research focuses on one or some aspects within the
scenario-based approach. Currently, there is no methodology
to support a scenario generation process that uses a specific
data source to build a scenario database from specific testing
scenarios selected and executed for ADS assessment. This
study proposes a method to address the previously mentioned
issue through the incorporation of a reasonably foreseeable
perspective, defined as forecastable by experts examination
of real-world data and evidences, or by attentive human
drivers in situ [14], to select the most representative test
cases to evaluate ADS safety and behavior in the specified
range [15], [16].

To realize the scenario-based approach from the stand-
point of reasonably foreseeable events, we incorporated
the frequency of real traffic situations to define reasonably
foreseeable scenarios based on predefined risk exposure
standards [23], [24]. The fundamental of our method resides
in the availability of real-world driving data. Selected
scenarios can be extracted from this data to generate logical
scenarios defined with kinematic parameter ranges. Real-
world driving data collected with infrastructure sensors,
drones, and test vehicles has long been used as sources
to generate scenarios for the safety assessment of driver
assistance and automated driving systems [17], [18]. Hence,
real-traffic monitoring and naturalistic driving data collected
from Japanese highways between 2017 and 2020 as a data
source were used for this study.

B. RELATED WORK

Numerous safety-assessment approaches exist to assess the
functional and operational safety of ADS [19]-[22]. One
evaluation concept implements ADS that can outperform
humans by a defined factor, such as a particular test on
miles/kilometers to be driven by the automated vehicle (AV).
The underlying assumption being AVs subjected to such
evaluations will reduce the current figure of road traffic
crashes [23]. Nevertheless, road traffic crashes are still
occurring at high rates; accordingly, the expected reduction
of accidents by ADS is unclear. Nonetheless, this evaluation
method implies that ADS may be introduced in the real
world, provided they cause fewer accidents than a human
driver [24]. However, it is infeasible to obtain a statistically
valid argument for real-world tests due to the required
distance to be driven by the AV [25].

Previous research developed an approach to conduct a
passive form of real-world testing for ADS assessment. In this
approach, the automated driving function is installed in an
actual testing vehicle and provided with the real-world inputs
of the sensors, without access to the actuators of the test
vehicle, i.e., the so-called shadow mode testing [10]. The
system’s performance can then be evaluated based on its
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decisions toward real traffic situations. However, hazardous
situations created by the surrounding traffic are not the
only safety issue the AV encounters; hazards created by the
inappropriate action of the AV and interaction with its users
also have detrimental impacts on traffic safety [26], [27].
To clarify, the actual actions of the AV directly influence
how AV users and other road users act and interact with
the AV on the road and may be different from passive
actions. Consequently, the results are limited to system
validation [28].

Another safety-assessment approach is to limit the Oper-
ational Design Domain (ODD) to the minimum extent,
such as a closed test track and a well-controlled roadway
with the maximum safety measures [29]. Once traffic
situations are significantly reduced, they can accurately
conduct ADS safety validations in a safe, economical, and
feasible way [30]. Following the safety assessment result, the
ODD can gradually be increased. Although such a staged
introduction of AV is promising and currently adopted by
international regulations for Automated Lane Keep Systems
(ALKS), there is a risk of automated driving vehicles
affecting the frequency of scenario occurrences as well as
the likelihood and severity of road traffic crashes [31], [32].
To address these limitations, researchers proposed a traffic-
simulation-based approach through the development of a
framework to simulate an extensive road network with
hundreds of vehicles and pedestrians to investigate the effects
of ADS on overall traffic safety [33], [34]. Nevertheless,
these approaches are not deemed suitable for fully automated
driving vehicles, which lack fallback drivers and operate in
an unlimited ODD.

Scenario-based safety approaches have been primarily
applied to evaluate the safety of complex systems in
aviation and nuclear power plants [35], [36]. Similar testing
principles have also been developed to test drones [37].
In the automotive domain, the scenario-based approach
models the interaction between the subject vehicle and the
surrounding traffic participants and objects. This modeling
attempts to categorize and structure the complex real-traffic
patterns into a finite number of manageable patterns (i.e.,
functional scenarios) and parametrize each pattern with the
corresponding variable ranges (i.e., logical scenarios). From
the defined logical scenarios, specific combinations of values
are extracted (i.e., concrete scenarios) and applied for ADS
safety assessment. National projects worldwide [38]-[42]
adopted this approach to assess the ADS performance as a
complement to Functional Safety [19], Safety of the Intended
Functionality (SOTIF) [20], Objects and Events Detection
and Response (OEDR) [21], [22], and Cybersecurity [43].

Focusing on functional scenarios that can provide mean-
ingful information for the ADS development and safety
validation, scenario-based testing aims to reduce the test
scope and induce critical ADS behavior. However, the
traffic environment is an open parameter space; thus, logical
scenarios may assume indefinite parameter ranges even
with limited operational domains, such as highways, and
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FIGURE 1. Steps of the proposed method and study approach.

limited typical functional scenarios. For example, cut-in or
deceleration scenarios may occur with an extensive range of
relative distance and velocity parameters. It is challenging to
decide which range needs to be considered in scenario-based
testing and how it can be defined for ADS safety validation.
This study attempts to specify accident-free range through
the definement of a specific border of reasonably foreseeable
parameter ranges where the ADS must perform safely.

Defining preventable ranges, which incorporate avoidable
events achievable by a competent and careful human driver
and state-of-the-art technology, is out of the scope of this
study. Therefore, the data analysis does not include highly
critical driver behaviors and crash or near-crash data.

C. RESEARCH CONTRIBUTION

This study contributes to the development of socially accept-
able and reliable ADS safety assessment methodologies. The
specific aim is three-fold:

1) To propose a method that parameterizes scenarios
extracted from real-world driving data and later
incorporates the results of parameters distribution and
correlation into the definition of reasonably foreseeable
parameter ranges.

2) To apply the proposed method to define parameter
ranges for specific scenarios extracted from a traffic
dataset collected in Japanese highways while providing
detailed information to enable replication of the method
in other countries/environments.

3) To contextualize the method proposed and the resulting
parameter ranges with risk acceptance thresholds
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considered acceptable in different international envi-
ronments and fields.

Il. METHODOLOGY

Defining reasonably foreseeable parameter ranges for
scenario-based testing enables the test to identify the most
representative scenarios and determine the criticality of the
scenarios based on specific parameter values, such as relative
speed and distance. The proposed method implements
sequential steps to process real-world traffic data to quantify
and define reasonably foreseeable scenario parameter ranges
considering the minimum risk acceptance, as illustrated in
Figure 1.

1) Data acquisition is to acquire traffic data from a
real-world driving traffic database. The method is
applicable to various real-traffic data, such as naturalis-
tic driving data from instrumented vehicle recordings,
fixed roadway cameras, and drones.

2) Scenario generation is to produce vehicle behavior
data to delineate the interaction between a subject
vehicle and surrounding vehicles. Specific vehicle
behaviors are preferably identified based on standard-
ized methodologies. The selection process of specific
functional scenarios is also specific to the scope of the
study.

3) Scenario parameterization is to define the required
parameter ranges and limitations to define the targeted
logical scenarios based on the generated types of vehi-
cle behaviors. A Logical scenario represents a func-
tional scenario with representative vehicle parameter
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ranges relative to surrounding traffic. Each parameter
has a probability density of occurrence, and a distri-
bution calculation notes the cross-correlation between
parameters.

4) Scenario extraction is to extract the targeted scenes
from the traffic data based on the defined parameter
ranges that will identify and quantify the defined
logical scenarios.

5) Parameter range evaluation is to extract parameter
values that represent the behavior of all vehicles in the
targeted logical scenarios. All parameters are defined
and processed to extract and accumulate values for each
parameter.

6) Parameters distribution and correlation are to estimate
parameter distribution to analyze and determine cor-
relations between different parameters. The parameter
distribution characteristic is investigated to reach
concrete scenarios defined with the exact parameter
values.

7) Concrete scenarios generation is to set parameter
ranges for concrete scenarios contextualized with
risk acceptance thresholds considered acceptable in
different international environments.

A. TRAFFIC DATA ACQUISITION

Data for this study were collected from real driving on
limited-access highways in Japan. Highways from which
the traffic data were collected are specifically designed to
accommodate motor vehicles circulating at high speeds and
controlled with tollgates where uninterrupted traffic may
merge and leave only at selected locations. The data were
acquired from three sources: 1) expert drivers who performed
more than 1,047 hours of recorded driving on highways with
an instrumented vehicle; 2) real-world traffic data recorded
by fixed cameras over highways; and 3) averaged drivers
who performed 350 hours of recorded driving on expressways
using instrumented vehicles, as detailed in Table 1.

In Japan, there are two types of limited-access highways
(see Appendix A in the supplementary material). Type-1
is an interstate highway known as the national expressway
connecting prefectures [44]. Type-2 is an intra-city highway
known as the urban expressway running above local roads
in some of Japan’s largest urban areas. For interstate
highways, the legal speed limit is usually 100 km/h; however,
most vehicles tend to drive at speeds between 100 and
120 km/h [45]. For intra-city highways, the speed limit is
usually 80 km/h [46]. Traffic on these highways is usually
denser than interstate highways; thus, the traffic may move
significantly slower than the set speed limit. Such road traffic
conditions and speed limits affected the speed range of the
collected data, resulting in comparatively lower speed ranges.

B. SCENARIOS GENERATION AND PARAMETERIZATION

The current international efforts (e.g., ISO/WD 34502 [47])
to standardize an engineering framework and process of
ADS scenario-based testing incorporate the possibility of
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FIGURE 2. Cut-in (top) and deceleration (bottom) scenario models.

structuring a specific number of functional scenarios for
highway-driving by considering different categories of AV
actions: lane change and lane keep. Due to the difficulty of
covering all described functional scenarios and practically
exemplifying the proposed method’s application, we focus
on two critical scenarios: cut-in and deceleration. In both
scenarios, a subject vehicle conducts a lane-keep on a
multi-carriage highway, while a challenging vehicle cuts
in or decelerates in front of it, as illustrated in Figure 2.
The selection arises from the significant impact of these
two scenarios on highway safety. In addition to the high-
frequency occurrence and the potential safety impact of these
scenarios, the selection also related to ease of such scenarios
extraction from the data collected with infrastructure cameras
and instrumented vehicles. The interaction occurs between
two vehicles (i.e., a subject vehicle and a challenging
vehicle).

A lane-keep cut-in maneuver involves two vehicles trav-
eling in the same direction on two adjacent lanes when
the preceding vehicle moves laterally from its lane toward
the main lane of the following vehicle (subject vehicle),
as shown in Figure 2-top. The extracted cut-in logical
scenarios are described with the longitudinal velocity (Ve0)
of the subject vehicle, longitudinal and lateral velocities (Vo0
and Vy respectively) of the cut-in vehicle, the relative velocity
(Ve0-Vo0), and the initial longitudinal and lateral distances
between vehicles (dx0 and dy0 respectively), as listed in
Table 2. The parameters considered the initial value when
a cut-in maneuver started except for the Vy, in which the
maximum value was considered.

A lane-keep deceleration maneuver involves two vehicles
traveling in the same lane and direction; it starts when
the leading vehicle starts to reduce its speed constantly
below the speed of the following vehicle (subject vehicle),
as shown in Figure 2-bottom. A rear-end impact may occur
if both vehicles continue traveling at the same speed range.
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TABLE 1. Measurement tools characteristics and sensors set up for each data source used to collect the traffic data.

Attributes

Source-1

Source-2

Source-3

Producers

Instrumented Vehicle

Fixed Location Camera

Instrumented Vehicle

The main purpose of data
acquisition

To collect driving behaviors of vehicles
traveling on the expressway (within the
instrumented vehicle’s vicinity)

To collect driving characteristics at
multiple points on the expressway

To understand regular driver behavior on
the expressway (driving operations, visual
actions, safety precautions when
anticipating danger, etc.)

Data gathering period

Nov. 2018 to Mar. 2020

Jul. 2018 to Mar. 2020

Jan. 2017 to Mar. 2018

Data coverage areas

Metropolitan express way (Tomei/SHIN-
TOMEI Expressway and Shimizu JCT-

Metropolitan express way (Daisan
Keihin Road and Tomei

14 locations in Japan (Hokkaido, Miyagi,
Fukushima, Gunma, Saitama, Kanagawa,

Tokyo IC) Expressway) Nagano, Shizuoka, Mie, Aichi, Tokyo,
Osaka, Hyogo, Fukuoka)
Number of lanes per 1-4 2-3 1-4
direction
Road side construction No No No

Traffic condition

Varying from free flowing to traffic jam

Varying from free flowing to traffic
jam

Varying from free flowing to traffic jam

Weather condition

Sunny/cloudy/rainy/windy, no

Sunny/cloudy, no precipitation

Sunny/cloudy/rainy/windy, no

precipitation precipitation
Data volume (hours) 2,968 31 350
Lidar 360° (from 4 unites) unavailable unavailable
§ Camera 360° (from 6-10 units) 2-4 units, Bird’s-eye view, 360° 360° (Front: 80°x3, Side: 120° x 2, Rear:
z § (from building rooftops or 120°)
<= overpasses)
s 5 Mobileye Available unavailable available

Information processing

Vehicles and trajectory data are captured
and extracted based on the Lidar cloud
point data.

Vehicles and trajectory data are
captured and extracted based on
camera data.

Numerical data are acquirable for targets
driving in front of the vehicle using
Mobileye. Side and following vehicles’
data are logically digitized.

Vehicles Position

Precisions Target trajectory accuracy (Lateral: 10 cm; | Target trajectory accuracy (Lateral: Unknown (Depends on commercialization
Longitudinal: 50 cm) 10 cm; Longitudinal: 50 cm) level and development accuracy)
% Depends on the data state % Depends on footage location
Recording frequency Total: 10 fps 30 or 60 fps Total: 10 fps
Frame per second (fps) or Hz | Image: 30 fps Image: 30 fps
LiDAR: 10 Hz IMU: 10 Hz
IMU: 10 Hz MOBEYE: 12.5-16.67 fps
MOBEYE : 10.64-10.87 fps
Subject Vehicle GNSS/IMU Camera (4K) GNSS/IMU
Position
Distance between From Lidar data Camera (4K) From mobileye data
vehicles (point cloud data)
Surrounding From Lidar data Camera (4K) Mobileye
Vehicle (point cloud data)
Acceleration
Surrounding Autoware (Mobileye) Camera (4K) Mobileye

Road information

BJeP JUIWINSBIN

- Road shape and lane marking condition
- Pseudo-curvature

- Subject vehicle’s distance to the lane
marking

- Road shape and lane marking
condition

- Curvature, gradient (longitudinal
section and transverse direction

- Each vehicle’s distance to the lane
marking

- Pseudo-curvature
- Subject vehicle’s distance to the lane
marking

measurement range

- 70 m in front and behind of subject
vehicle

- 50 m on either side of the subject vehicle
% The range depends on the weather
condition

150-350 m of the road section

-70 m in front and behind of subject
vehicle

% Sensor range unknown on either side of
the subject vehicle

C. SCENARIOS EXTRACTION

The parameters used to define the extracted deceleration
logical scenarios are the initial longitudinal velocity (Ve0) of
the subject, the decelerating vehicle’s longitudinal velocity
(Vo0), the relative velocity (VeO - Vo0), the initial longitudinal
distance between vehicles (dx0), and the maximum decel-
eration rate (Gx_max), as listed in Table 2. The parameters
considered the initial value when a deceleration maneuver
started except for the Gx_max, in which the maximum value
was considered.

VOLUME 10, 2022

Cut-in and deceleration logical scenarios were extracted
based on specific parameter range values used to define
both scenarios (See Table 3). While the duration of the
cut-in scenarios was between two and 16 s, the duration
of deceleration scenarios was larger than zero s and lower
than 120 s. During the duration of each scenario, the subject
vehicle was traveling straight forward without changing lanes
or accelerating when it encountered a cut-in or a decelerating
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TABLE 2. Parameters, notation, units, and types of value used to define
cut-in and deceleration scenarios.

Parameters Notations Unit Cut-in Deceleration
Subject Ve0 km/h | Initial Initial Value
vehicle Value

longitudinal

velocity

Challenging- Vo0 km/h | Initial Initial Value
vehicle Value

longitudinal

velocity

Relative Ve0-Vo0 m/s Initial Initial Value
longitudinal Value

velocity

Relative dx0 m Initial Initial Value
longitudinal Value

distance

Relative dy0 m Initial —

lateral Value

distance

Challenging Vy m/s Maximum —

vehicle lateral value

velocity

Deceleration Gx_max m/s’ — Maximum
rate value

vehicle. Longitudinal distances between vehicles considered
were set to positive values equal to or lower than 100 m
in consideration of sensor ranges and safety metrics [48].
The considered lateral speed of the cut-in vehicle was set to
positive values equal or lower than 5 m/s, considering road-
to-tire grip limits in lateral motion [49].

Unlike functional scenarios that are usually theoretically
described abstractly and linguistically [50], logical scenarios
are described with kinematic and environmental parame-
ters [51]. Although all parameters that describe the logical
scenario are required, road geometry and weather parameters
were eliminated to reduce the influencing parameters. For
example, to avoid the influence of a road’s curvatures on the
vehicles’ lateral velocity when traveling straight forward, the
extracted scenarios were limited to highway sections with a
road curvature of 0.0002 (1/m) or less. The consideration of
scenarios that occurred on curved road sections requires more
complex data processing approaches that combine the relative
vehicle behaviors with road geometry. A second reason is
to reduce the difference between interstate highways (more
straight sections and less curved sections) and intra-city
highways (fewer straight sections and more curved sections)
in terms of the intended traveling speed and driving behavior.
In the same context, the potential impact of weather on
traffic intensity, demand, and safety [52], [53] and driving
behavior [54] have also been excluded. Thus, this study
only describes cut-in and deceleration logical scenarios with
vehicle kinematic parameters.

The cut-in scenarios were extracted under the conditions
that the longitudinal speed of the subject vehicle is higher than
the challenging vehicle’s longitudinal speed. The longitudinal
distance between them is between 0 and 100 m. The
maneuver starts when the lateral speed of the challenging
vehicle increases from zero and ends when the lateral speed
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source-1 and source-3, X can be the instrumented vehicle or a vehicle in
the adjacent lane recorded by the instrumented vehicle that meets the
extraction conditions. For source-2, X can be any vehicle that meets the
extraction conditions within the recording range.

returns to zero, with the challenging vehicle driving straight
forward in front of the subject vehicle. In the absence of other
vehicles between them, the lateral velocity of a challenging
vehicle remains constant in the same direction as the subject
vehicle once it enters the lane of the subject vehicle from
an adjacent lane, as shown in Figure 3. These conditions
may contribute to limit the number of the extracted cut-in
scenarios.

Consideration of a deceleration scenario was made when
a vehicle’s headway distance was reduced due to a pre-
ceding vehicle’s deceleration instead of the acceleration of
the following vehicle, as shown in Figure 3. Decreasing
the challenging vehicle’s longitudinal velocity reduces the
longitudinal distance to the following subject vehicle in
the absence of any vehicle between both vehicles. The
maneuver starts when a challenging vehicle’s longitudinal
velocity starts decreasing (the acceleration rate increases
in minus), and the subject vehicle synchronizes its speed
accordingly. The maneuver ends when the longitudinal
velocity stops decreasing, and the acceleration rate value
returns to zero. Note that the initial longitudinal velocity of
the decelerating vehicle could be lower/greater than or equal
to the initial longitudinal speed of the subject vehicle so that
the relative longitudinal distance may decrease/increase or
remain unchanged during the maneuver.

D. PARAMETER DISTRIBUTIONS AND CORRELATIONS

First, the characteristics of each parameter range were
analyzed, showing the distribution of each scenario parameter
range to investigate the general driving behavior and quantify
the parameter ranges. The distribution of each parameter
is estimated numerically and iteratively by optimizing (i.e.,
minimizing) the least squared error between measured
data and the estimated beta distribution. Here, the out-
of-measurement range is excluded from the least squared
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TABLE 3. Scenarios extraction conditions and scenario start and end
values.

Scenario Extraction condition Start/end Value
-The cut-in vehicle’s lateral ~ Start: the cut-in vehicle’s
velocity remains constant in  lateral velocity increases
the same direction. from 0 m/s (Positive

. -The cut-in vehicle enters value to the right of the
Cut-in

the subject vehicle’s lane
from an adjacent lane in the ~ End: the cut-in vehicle’s
absence of other vehicles lateral velocity returns to
between them. 0 m/s

Start: the decelerator
vehicle’s acceleration
decreases from 0 m/s’
(starts to take a negative
in front of the subject value)

vehicle on the same lane in ~ End: the decelerator

the absence of other vehicle’s acceleration
vehicles between them. returns to 0 m/s?

subject vehicle)

-The decelerator vehicle’s
acceleration is a continuous
negative value.

. -The decelerator vehicle is
Deceleration

error calculation. It enables estimation of the occurrence
frequency beyond measurement range (i.e., extrapolation).
This approach may cover both sensor range limitation and
extreme edge cases of parameters. Scenario criticality was
also evaluated using safety indicators and metrics, such as
time to collision (TTC). Second, the correlations between
parameter ranges were analyzed to evaluate the impact of
each parameter on the challenging vehicle behavior during
the maneuver. Correlations between every two parameters
were determined using a two-dimensional distribution map
for all parameters. Each parameter range in the X-axis is
examined for all parameter ranges in the Y-axis, as detailed
in Appendix B in the supplementary material.

E. PARAMETER RANGE EXTRAPOLATION

Traffic conditions broadly vary with time [32]. Hypothet-
ically, a large amount of actual traffic data from multiple
sources within a specific timeframe may not ensure that
undetected cases during the observation time window do not
indicate that they may not occur afterward. This reasoning
raises the need for a methodology that assumes that events
outside the observed parameter ranges may occur and can
be defined to set the parameter ranges. Conversely, if limits
of parameter ranges are not set or overextended, unrealistic
events may occur. Therefore, parameter ranges must define
dynamically possible traffic characteristics.

A possible method to reduce the possibility of edge cases
outside the actual parameter ranges and data collection bias
is to calculate the frequency of occurrence of each parameter,
quantitatively set it within a specific confidence interval
of that distribution, and extrapolate the interval based on
the fitted distributions. Data extrapolation incorporates a
specific range of extreme parameter ranges that the real-world
traffic data measurements could not observe. Therefore,
data distribution techniques are applied to fit the limited
data distribution, and extrapolation techniques are applied to
ranges outside the collected (Figure 4).
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F. DERIVATION OF REASONABLY FORESEEABLE
PARAMETER RANGES

Scenario-based testing that accounts for reasonably fore-
seeable parameter ranges can avoid rare and hypothetical
cases or extreme vehicle behaviors unlikely to be relevant
within the ADS capabilities in its operational domain.
Scenarios with reasonably foreseeable parameters are viewed
as extensions of forecastable events that are more likely to
occur within a specific ODD and period. These are considered
the upper and lower limit of the parameter range, influenced
by the variation of social acceptance and the minimum
risk acceptance between countries, as shown in Figure 5.
Although rare cases can be excluded, quantitative thresholds
cannot be defined because social acceptance levels may differ
among domains and regions.

Based on models that account for the behavior of the
surrounding traffic into ADS, the assessment should cover
adequate functional scenarios that can thoroughly assess the
long-term effect of ADS behavior on the environment and
all road users. The selection of functional scenarios should
have robustness and constancy, considering the number
of modeling parameters required to describe the logical
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TABLE 4. Breakdown of cut-in and deceleration scenarios according to
data source and vehicle speed ranges.

Scenarios Veo Datasets Total
(km) source-1 source-2  source-3
Cut-in <60 28 25 4 57
>60 55 147 701 903
Deceleration <60 862 0 0 862
>60 5,880 0 0 5,380

scenarios to avoid excessive scenario complexity and
build-up of the interacting parameters. Based on the defi-
nition of logical scenario and the distribution of parameter
ranges, the surrounding traffic behavior can be consid-
ered within the reasonably foreseeable parameter ranges.
Technically, cumulative probability from the most frequent
combination is calculated numerically and added up to the
threshold. At the same time, it is difficult to determine the rare
combinations of multi-dimensional parameters theoretically.
Parameter combinations within the threshold are considered
reasonably foreseeable.

Ill. RESULTS

Table 4 provides an overview of the extracted cut-in and
deceleration scenarios from each data source. The cut-in
scenarios were extracted from all three sources, whereas the
deceleration scenarios were extracted solely from source-1.
The measurement vehicles of source-1 are equipped with
Lidar sensors with higher abilities to accurately detect distant
start points of decelerating vehicles compared to the over-
highway fixed camera of source-2 and the measurement
vehicles of source-3. However, since a cut-in maneuver
was only selected when the cut-in vehicle’s initial velocity
was lower than the subject vehicle’s velocity (VeO - Vo0
> 0), the cut-in scenarios sample size was significantly
smaller than that of the deceleration scenarios. For the
deceleration scenario, although only expert drivers drove the
instrumented vehicles, data from random drivers have also
been included because the instrumented vehicles could also
capture deceleration events against vehicles in the adjacent
lanes.

The traffic data were first collected at all speed ranges
(VeO0 > 0 km/h). Hence, Japan expressways from which
the data were collected are designed to accommodate motor
vehicles circulating at high speeds [44], [45]. Therefore, the
collected data were divided into low and high-speed range
categories based on the subject vehicle’s velocity (Ve0) at
which the cut-in and deceleration maneuvers occurred. It is
apparent from Table 3 that very few maneuvers occurred at
speed ranges lower than 60 km/h compared with speed ranges
equal to or greater than 60 km/h. The lower-speed traffic
data were collected during unusual conditions, such as dense
traffic during rush hours, traffic jams due to traffic crashes,
and near tollgates [S5]-[57]. To analyze and understand
lower-speed traffic data requires considering external param-
eters of traffic and road conditions. Furthermore, research
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into the car-following behavior in expressways observed a
significant difference in driving behavior between the low
and high-speed ranges [58]. This study considered scenarios
when maneuvers occurred at speed ranges equal to or greater
than 60 km/h.

In the first subsection, the distributions of parameter ranges
have been calculated and analyzed, clarifying the density of
each parameter to quantify the frequency of the cut-in and
deceleration parameter ranges. This process is necessary to
determine the risk exposure and incorporate the results with
the annual risk acceptance to define reasonably foreseeable
parameter ranges.

A. DISTRIBUTION OF PARAMETER RANGES

1) LANE-KEEP CUT-IN

Figure 6 shows the distribution of each parameter range of
cut-in scenarios. The sensors and cameras scanned lanes
for vehicles up to 70 m in front of the subject vehicle
while driving at velocities equal to or higher than 60 km/h.
The results show that the cut-in maneuvers occurred at
subject vehicle velocities ranging from 60 to 137.9 km/h and
at cut-in vehicle velocities ranging from 43 to 128 km/h.
The relative longitudinal velocity and distance ranged from
0.01 to 50 km/h and 8 to 70 m, respectively.

The initial longitudinal velocity results of the subject
vehicle(Figure 6: top-left) show that increasing the driving
speed leads to an increase in the density of cut-in maneuvers
up to speed ranges between 100 and 110 km/h; from thereon,
the density decreases as the speed increases beyond 110 km/h.
There could be two explanations for such driving behaviors.
One is related to the impact of traffic rules and the maximum
speed limit on the frequency of cut-in scenario occurrence
at a high driving speed range. The other is related to
the influence of the surrounding driving behavior on the
individual driving speed. Traffic rules and the surrounding
environmental factors might affect the density of cut-in
scenario maneuvers at speeds greater than 110 km/h. Such
effects are expected and should be considered when the data
is collected within a specific time. Hence, an extrapolation
from observations of limited duration has been applied.

The relative longitudinal velocity results (Figure 6: top-
right) depict that the tendency of drivers to perform cut-in
maneuvers increases when the relative velocity decreases.
Considering the scenario extraction condition that the subject
vehicle velocity must be higher than that of the cut-in vehicle,
the drivers tend to cut in front of faster vehicles more often
when the speed difference is less than 10 km/h. Although
some drivers cut in front of a faster vehicle with a speed
difference of more than 50 km/h, the relative distance was
significant, and the drivers might judge that it is safe to change
lanes [59].

Figure 6: bottom-left shows that the number of cut-in
maneuvers increases as the relative longitudinal distance
increases. The shortest longitudinal distance between vehi-
cles was 8.3 m and is associated with the smallest number
of cut-in scenarios. The largest longitudinal relative distance
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was approximately 69 m and is associated with the most
significant number of cut-in scenarios. Lane-change crash
statistics reveal that the most common crashes are likely to
occur in the range from 1.2 m in front of the cut-in vehicle to
approximately 9 m behind the cut-in vehicle [60]. Therefore,
it can be inferred that most drivers tend to maintain a safe
longitudinal distance during cut-in maneuvers.

The cut-in lateral velocities (Figure 6: bottom-right) ranged
between 0.2 and 2 m/s, which can be judged as a smooth
lane change maneuver [61]. The peak value of the lateral
velocity is around 1 m/s. Comparing the results of lateral
velocity with the longitudinal velocity of the cut-in vehicle
indicates that the lateral acceleration rate of the vehicle
reduces at higher speeds more than 100 km/h and reaches the
peak value at speeds from 70 to 100 km/h. In consideration
of the cut-in direction, there were 818 maneuvers from
the left of the subject vehicle and 167 maneuvers from
the right of the subject vehicle. The most significant Vy0O
values were 3.15 m/s and 2 m/s for cut-in maneuvers
from the right and left, respectively. Noting that the largest
VyO0 values were not associated with higher vehicle speeds,
it would be better to investigate safety indicators that
incorporate the relation between parameters, such as the
TTC. The TTC between vehicles has been considered to
distinguish between critical and normal driving behavior
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between vehicles. It can be a measure for rating the severity of
traffic conflicts and a cue for decision-making in traffic. This
study calculates the TTC value as the relative longitudinal
distance between vehicles divided by the relative longitudinal
velocity.

Analyses were conducted for the relative velocity and
distance in TTC to further understand the management of
the rearward distance of the driver during cut-in maneuvers.
The shortest TTC value was 3 s as reached while the velocity
of the subject vehicle was 97 km/h, the relative longitudinal
distance was 18.8 m, and the relative velocity was 16 m/s. The
TTC values indicate that as the relative velocity increases,
the relative distance also increases such that the TTC value
remains within a relatively safe range. TTC values appear
to depend on the speed and relative distance of the vehicle,
and there was no critical cut-in maneuver detected with the
recorded speed range. It appears that only 1 % of drivers
performed the cut-in maneuver with a TTC value of less
than 5 s. Approximately 83 % of the drivers preferred a
distance of more than 30 m rearward, a relative velocity of
less than 30 km/s, and a TTC of more than 7.5 s for the
subject vehicle to initiate a cut-in maneuver. The overall
cut-in data set analysis revealed that the vast majority of
the extracted scenarios were neither high in urgency nor
severity.
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2) LANE-KEEP DECELERATION

Figure 7 shows the distribution of the four parameters used to
define the logical deceleration scenarios. The overall analysis
revealed that all deceleration maneuvers occurred at a speed
slower than 104 km/h. Results of the subject vehicle’s initial
longitudinal velocity (Figure 7: top-left) revealed that 40%
of the deceleration events occurred at speed ranges between
70 and 80 km/h. Considering the speed limit and the velocity
of the subject vehicle during the deceleration scenarios
may indicate that the deceleration events occurred in denser
traffic. However, the type of highway (e.g., inter-state
versus intra-state) may also influence driving behavior in
longitudinal vehicle control. The maximum density (75%) of
the maneuvers occurred when the initial relative longitudinal
distance (Figure 7: top-right) ranges between 30 and 50 m
(time headway > 2 s), which can also be regarded as not
highly critical situations.

The largest value of the maximum deceleration rate
(Figure 7: bottom-right) was 4 m/s> when the subject vehicle
velocity was approximately 75 km/h, and the relative distance
(Figure 7: bottom-left) was less than 50 m. The smallest value
of the maximum deceleration rate was 0.0001 m/s> when the
subject vehicle speed was less than 70 km/h, and the relative
distance was less than 30 m. Although the subject vehicle
speed was above 60 km/h for the selected maneuvers, the
deceleration rate values are below 2.5 m/s2, which are within
the comfortable range [62]. A general statistical inspection
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of the data set may conclude that the maximum deceleration
rate depends not on the speed range or relative distance.
However, the driver’s deceleration frequency may increase as
the vehicle velocity decreases.

Further inspection with the TTC parameter between the
subject and decelerating vehicle revealed that the shortest
TTC was 2.5 s as reached when the subject vehicle’s
velocity was 68 km/h, the relative velocity was 7.6 km/h,
and the relative distance was 5.2 m. Although a decelerating
maneuver with TTC less than 3 s can be highly critical and
likely to result in rear-end collision, the deceleration rate is
very low, 0.005 m/s”. In total, approximately 99% of the
deceleration maneuvers occurred at TTC values more than
6 s with a relatively low Gx-max value, which revealed that
these maneuvers were also uneventful. In conclusion, the
drivers tend to maintain a safer distance to the vehicle in
front to have enough time to react. Thus far, these results
may not be enough to highlight the impact of each parameter
on the management of the driver of other parameters.
The following section investigates the correlation between
parameters, highlighting the influence of each parameter in
terms of safety envelope.

B. PARAMETER RANGE CORRELATIONS

Regression analysis was used to predict the correlation
between parameter ranges. A linear regression model uses
one parameter range as an explanatory variable in the X-axis.
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calculations.

The mean and standard deviation of the other parameter
ranges as objective variables in the Y-axis are applied to all
parameter ranges separately for each type of scenario. The
same analysis is also performed by reversing the relationship
between the two parameters. The slope and intercept values
are illustrated in the figures for each correlation. T-tests were
used to analyze the significance of the relationship. Based on
the regression analysis results, it is evaluated whether every
two parameters correlate based on the superiority of the slope
value (when t > 1.96). If the slope is superior, the mean or
standard deviation of the parameter-Y will change with (the
class value of) the parameter-X; therefore, it is determined
that correlation must be considered.

1) LANE-KEEP CUT-IN

The correlation analysis between the parameter ranges of the
cut-in scenario in scatter plots is in Figure 8. The analysis
indicated significant correlations between VeO and VeO-Vo0,
dx0, and Vy such that the relative velocity and distance tend
to increase, and the lateral velocity decreases as the subject
vehicle’s velocity increases. These relationships may be
explained by considering safe driving behaviors to maintain
larger time headway between vehicles at higher speed ranges.
In line with previous studies and consideration of vehicle
dynamics, it is evident that the head angle of the cut-in vehicle
decreases when it performs lateral maneuvers at higher speed
ranges [63]. This maneuver is to maintain a balance between
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vehicle speed, yaw, roll, and pitch angles. However, the
correlation results between VeO and Vy are contradictory
to previous findings by Thal (2020), in which there was
no correlation observed. While Thal (2020) considered all
speed ranges of the subject vehicle, only high-speed ranges
(Ve0 > 60) are considered in this study. It can, therefore,
be concluded that the correlation between Ve0 and Vy is
sensitive to the range of Ve(.

The second row of Figure 8 highlights significant correla-
tions between Ve0-Vo0 and Ve0 and dx0. Both the velocity of
the subject vehicle and relative longitudinal distance increase
when the difference between the subject vehicle and the
velocity of the cut-in vehicles increases. However, Ve0-Vo0
and Vy are not correlated. These results indicate that the
lateral velocity is dependent on the speed of the vehicle and
is not influenced by the behaviors of the other vehicle.

The third row in Figure 8 shows significant correlations
between dxO and VeO, Veo-Vo0, and Vy. The apparent
associated trend of increase in the velocity of the subject
vehicle and relative velocities with the increase in dx0 further
confirms the strong correlation between Ve0, Ve0-Vo0, and
dx0 as well as its dependency dx0O on the changes in Ve0
and Ve0-Vo0 values. Although the analysis indicates that Vy
is affected by the increase in dxO0, this correlation is weak
and could result from the indirect effect of the vehicle speed.
Comparing Vy data from the third row with the data from
the first and fourth rows in Figure 8 shows that the Vy is
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FIGURE 9. Deceleration scenario: Cross correlations between parameter ranges (Ve0; Ve-VoO0; dx0; Gx_max).

negatively correlated with Ve0, but it does not correlate with
dx0 or other variables.

Overall, the analysis of parameter correlations for the
logical cut-in scenarios indicates strong correlations amongst
the interacting parameters. The analysis also highlights that
while some parameters are dependent on the potential conflict
with the surrounding traffic (e.g., Ve0-VoO and dx0), other
parameters, such as the lateral velocity, depend more on
driving behavior and safety and are less affected by the other
road users.

2) LANE-KEEP DECELERATION

The results obtained from the correlational analysis of the
deceleration scenarios parameter ranges are presented in
Figure 9. For the VeO, the analysis highlights significant
correlations with dx0 and Gx_max. The relative longitudinal
distance increases with subject vehicle velocity, which is
explained by the driving behavior and the tendencies of
the driver to maintain safe time headway between vehicles.
Although the analysis indicates that VeO and Gx_max are
correlated with consideration to the mean values (T (i) =
7.96), further statistical tests, which consider the slope and
intercept, revealed a weak correlation (T (o slop) = 1.87;
T (o intercept) = 4.03). Together and compared to Gx_max
data, the analysis of the fourth row in Figure 9 concludes that
the deceleration rate is an independent variable and is more
related to the decisions of the driver in consideration to the
front traffic as opposed to the following traffic.
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Correlations were found between Ve0O-VoO and VeO and
dx0, but not between Ve0-VoO and Gx_max. On average,
VeO and dx0O showed a clear increase associated with the
Ve0-VoO increase. This correlation is dependent on the
driving behavior of the drivers of the subject vehicle in terms
of vehicle speed harmonization and safety in consideration of
the decelerating behavior of the vehicle [64]. This conclusion
is also supported by the significant correlations in the
third row of Figure 9. From the fourth row in Figure 9,
no significant increase or decrease in Gx_max can be seen.

In summary, these results show that the cut-in scenario
parameters are more correlated than the deceleration scenario
parameters. A vehicle is entering the driving course of another
vehicle in the cut-in scenario; therefore, both vehicles must
harmonize their speed and relative distances. The drivers of
the challenging vehicle usually plan and respond according
to the traffic ahead for the decelerating scenarios. In contrast,
the drivers of the following vehicle must harmonize with the
preceding decelerating vehicle [65].

C. OCCURRENCE FREQUENCY OF PARAMETER RANGES

The occurrence frequency of an arbitrary parameter combi-
nation can be derived based on the results of the correlational
analysis and causal relation of parameters. For example, the
occurrence frequency derivation of cut-in scenarios can be
summarized as follows. First, the initial relative speed and
distance frequency are calculated with an arbitrary subject
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vehicle speed, Ve(. Second, the correlated frequency of the
initial relative speed and distance is defined as pi(Vrel,
dx) depending on Ve(, as shown in Figure 10 top. Third,
the maximum lateral speed frequency is defined as p2(Vy)
depending on Ve0, as shown in Figure 10 bottom. The
occurrence frequency of the cut-in parameter combination is
determined as P.,;—i; = p1 X p». Here, p1 and p; represent
the combined frequency of the initial relative speed and
distance and the frequency of the maximum lateral speed
under a specific range of Ve0, respectively.

Similarly, the occurrence frequency of deceleration scenar-
ios can be summarized through the calculation of the initial
relative speed and distance frequency with the assumption
of an arbitrary speed of the subject vehicle VeO. With
the correlated frequency being contingent to the VeO, the
initial relative speed and distance are defined as p3(Vrel,
dx), whereas the frequency of the maximum deceleration is
defined as p4(Gx). The occurrence frequency, represented by
the deceleration parameter combination, is defined as Pger =
p3 X pa. Here, p3 and p4 represent the combined frequency of
the initial relative speed and distance under a specific range
of Ve0 and the frequency of the maximum deceleration rate,
respectively.
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IV. DISCUSSIONS

This study was designed to contribute to the development
of socially acceptable safety assurance methodologies to test
automated driving vehicles. The first aim was to propose a
method that incorporates real-world traffic monitoring data
into the definition of reasonably foreseeable parameter ranges
for AV test scenario generation. The Scenario-based approach
is the main focus of the proposed method to assess the safety
of the intended functionality. This method presented sequen-
tial steps to identify the most relevant AV safety assessment
scenarios. Since this is a great challenge and an important
issue for future research and road traffic safety, this study
provided detailed information to enable method replication
in different countries and environments, disregarding the data
collection sources and types of scenarios.

This study set out with the second aim of applying
the method to define parameter ranges for cut-in and
deceleration scenarios based on a set of traffic data collected
on Japanese highways for the current purpose. The data
set comprised three different sources acquired with both
instrumented vehicles and fixed cameras over road sectors
between 2017 and 2020. The algorithms detected 903
cut-in and 5,880 deceleration maneuvers observed. Each

37755



IEEE Access

H. Nakamura et al.: Defining Reasonably Foreseeable Parameter Ranges Using Real-World Traffic Data

scenario was defined with kinematic parameter ranges,
such as longitudinal and lateral velocities, relative velocities
and distance, and deceleration rate. The data analysis
resulted in interesting findings regarding the distribution
of parameter ranges, maneuver frequency, and parameters
correlation.

The entire data set analysis revealed no crash occurrences
for both scenarios, and the vast majority of the maneuvers
were neither high in urgency nor high in severity. Given
that lane change crashes are rare events on Japanese
highways [66] and lane change crashes are a relatively small
subset of all crashes [61], not observing a crash during the
data collection period is reasonable for the cut-in scenarios.
It is somewhat surprising that no crash was noted in the
deceleration data.

To what extent does the collected data correspond to the
general real-traffic driving behavior is influenced by several
humans, vehicular, and environmental factors. Moreover,
the road type and structure may also influence the driving
behavior and driver’s safety management, notably in the
scenarios where the subject vehicle is the instrumented
vehicle driven by expert drivers who are aware that their
driving behavior was monitored and later investigated.
Research has also observed differences between professional
and non-professional drivers’ reaction time and safety man-
agement [52]. Furthermore, the extracted scenarios involved
cars and did not include trucks, buses, and motorcycles. The
distribution of parameter rages was extrapolated to cover
some rare and unusual events to reduce the effect of such
influential factors.

Correlations among parameters were investigated to under-
stand driving behavior and highlight parameters with a
significant effect on the frequency of each scenario. The
analysis indicated that the cut-in scenario parameters are
more correlated than the deceleration scenarios’ parameters
because cut-in drivers have to monitor objects in the adjacent
lane behind their vehicles before cut-in initiation. Therefore,
the cut-in drivers make decisions and synchronize their speed
based on the traffic stream in the adjacent lane. For the
deceleration scenario, the decelerating drivers make their
decisions either in response to the front vehicle driving
behavior or on their own with no or limited consideration of
the rear vehicles. Caution should be taken as these findings
are limited to straight road sections with limited access to
highways and may not be generalized for other types of
roadways.

An interesting finding is that the most correlated param-
eters are velocity and relative distance for both scenarios.
When a vehicle’s velocity is 60 km/h or greater, the results
indicated that the frequency of cut-in scenarios increased
at a speed range greater than 100 km/h. In contrast, the
deceleration scenario frequency reached its maximum speed
range between 75 and 85 km/h. However, the frequency
increased as the relative longitudinal distance increased,
and the relative velocity approached zero in both scenarios.
These findings suggest that reasonably foreseeable parameter
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ranges may be inferred using the relative velocities and
distance values.

The third aim of this study was to contextualize the
proposed method and the resulting parameter ranges with
risk acceptance thresholds that are considered acceptable
in different international environments for quantification of
“reasonably foreseeable” or “‘relevant exposure’. According
to the International Safety Standard ISO/IEC Guide 51, safety
assessment methods must indicate the safety of autonomous
driving systems by covering various situations deemed “rea-
sonably foreseeable”. In general, “‘reasonably foreseeable”
relates to the frequency of specific risk encounters. However,
possible hazard occurrence must be considered, regardless
of infrequent encounters. For example, in Japan and the
USA, the nuclear reactor-related acute mortality risk may
not exceed 0.1% [67], [68]. In 2001, the Japanese mortality
risk was 7.7 x 1073/year, with cancer accounting for 1/3
(2.4 x 10 3/year). This rate refers to not exceeding a
value of approximately 10~%/year. Stringent railway risk
assessment, with Japanese high-speed trains (Shinkansen)
as the strictest, occurs at the design stage with accident
probability occurrence 1076 times/year [69].

The AV safety evaluation threshold value can be conceived
with the predefined risk evaluation reference [70]. While
nuclear power plant accident hazards are extensive and
innumerable, car crash occurrences on highways are limited
to the location and amount to lesser damage. Hence, the
cut-in/deceleration parameter ranges are considered with the
assumption that the annual individual encounter probability
threshold value is 10~°. The measurements for time, length,
and cut-ins are currently measured in the Source-1 database.

Under the premise that most frequent professional drivers
(such as highway bus drivers) perform an average of 8 hours
aday, 240 days a year [71], these drivers encounter 3,867 cut-
ins per year. The substitution in equations 1 and 2 excludes
parameter ranges with an annual encounter probability of
107° or less. Probability P and Expectation E are arbitrary
combinations of cut-ins below p percentile, which occur more
than once in a year, can be derived as follows:

P=1-(1-p (M
E=) (-p" =np @

Here, n is the number of cut-ins or decelerations per year.

To consider reasonably foreseeable parameter ranges,
we converted the distributions provided in the previous
section to annual occurrence probabilities with the equation.
Based on occurrence frequency Pcys—i, and Pg.. described
in the results section and conversion to an annual expected
value, reasonably foreseeable parameter ranges can be
expressed in Figure 11. The Green area represents that 99%
of the cut in the parameter combination occurs within the
range, the yellow area represents 99.7%, and the red area
represents the 1—10~* percentile (107° times per year). For
example, the cut-in scenarios in the red area occur with a
lateral speed of more than 2.6 m/s, a relative distance less
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FIGURE 11. An example of reasonably foreseeable parameter ranges for
cut-in (top) and deceleration (bottom) scenarios based on risk exposure
that a driver may encounter on Japanese highways.

than 5 m, and a relative speed of more than 25 km/h, while in
the orange area occur with a lateral speed more than 2.2 m/s,
arelative distance closer than 20 m, and a relative speed more
than 30 km/h.

Similarly, the drivers may encounter decelerations
5.62 times/h (10783 times/year). Hence, reasonably param-
eter ranges for both scenarios are defined with relevant
exposure, as shown in Figure 11. It is noteworthy that
encountering events refers to the exposure rate and not the
risk value. Therefore, the defined range.

These results indicate that a driver on Japanese highways
is likely to encounter a cut-in with a relative speed of 40 km/h
from 30 m or closer less than 10~° times per year. Similarly,
a driver may encounter deceleration events with a relative
speed of 20 km/h from 20 m or closer less than 10~ times per
year. Note that actual parameter ranges must be determined
based on each country’s social acceptance; the threshold can
be varied by the assumption of driving hours and acceptable
exposure.

V. CONCLUSION

This study proposed a method to parameterize scenarios
extracted from real-world traffic monitoring data and later
incorporated the results of parameters distribution and corre-
lation into the definition of reasonably foreseeable parameter
ranges. Focusing on the probability of hazards arising from
the surrounding traffic’s impact on AV performance and
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safety, we applied the proposed meth to define parameter
ranges for cut-in and deceleration scenarios extracted from
Japanese highways while providing detailed information to
enable replication in other countries and environments. Using
analytical tools, calculations for the minimum range of the
most relevant parameter ranges, along with the assessment of
the associated risk exposure for each type of logical scenario,
were performed to define a finite number of reasonably
foreseeable parameter ranges. In turn, this renders a wide
range of test cases to be diminished and modeled to enable
the AV safety assessment to be implemented with the most
representative test cases exhibiting ADS behavior.

We contextualize the resulting parameter ranges with
risk acceptance thresholds considered acceptable in different
environments (i.e., railway transport) and domains (i.e.,
nuclear power plants) to identify the most representative test
cases for scenario-based testing covering critical and non-
critical situations. Defining reasonably foreseeable parameter
ranges based on the risk acceptance and relevant exposure
significantly limits the number of traffic situations required
to ensure ADS safety. Such an approach will prove useful in
expanding our understanding of scenario-based assessment
conductions based on broader traffic situations and traffic
data acquired from other countries.

Notwithstanding that, cross-international studies involving
real-world traffic data are also needed to compare the
findings. Real-world traffic datasets from different countries
can be extracted, processed, and compared provided that a
consistent methodology is applied. The scenario extraction
and parameterization approach developed in this study can
be applied to store the parameter set of each scenario as a
concrete scenario to investigate similarities and correlations
as well as differences across different datasets to find
factors that can affect the safety assessment methodology in
different countries. Conversely, with the spread of automated,
autonomous, and connected vehicles, an iterative implemen-
tation of the proposed method shall update the test cases to
incorporate the changes that may be induced by the vehicles
in the real traffic.
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