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ABSTRACT Flying robots are expected to be used in many tasks, such as aerial delivery, inspection inside
dangerous areas, and rescue. However, their deployment in unstructured and highly dynamic environments
has been limited. This paper proposes a novel approach for enabling a micro-aerial vehicle (MAV) system
equippedwith a laser rangefinder and depth sensor to autonomously navigate and explore an unknown indoor
or outdoor environment. We built a modular deep-Q-network architecture to fuse information from multiple
sensors mounted onboard a vehicle. The developed algorithm can perform collision-free flights in the real
world, while being trained entirely on a 3D simulator. The proposed method does not require prior expert
demonstrations, 3D mapping, or path planning. It transforms fused sensory data into a velocity control input
for a robot through an end-to-end convolutional neural network (CNN). The obtained policy was compared
to a simulation using the conventional potential-field method. Our approach achieves zero- shot transfer from
simulation to real-world environments that were never experienced during training by simulating realistic
sensor data. Several intensive experiments were conducted to demonstrate the effectiveness of our system for
safely flying in dynamic outdoor and indoor environments. The supplementary videos for the actual flight
tests can be accessed at http://bit.ly/2SEw8dQ.

INDEX TERMS Autonomous navigation, sensor-fusion, collision-free, deep Q-network, zero-shot transfer,
micro aerial vehicle.

I. INTRODUCTION
Micro aerial vehicles (MAVs) are widely used in various
applications in both the military and civilian domains. Owing
to their agility and maneuverability, multirotors can hover
and move freely in 3D space, making them suitable for many
applications, such as surveillance and rescue, aerial photog-
raphy, and precision agriculture [1].

Autonomous navigation and collision avoidance are fun-
damental requirements for robotic aerial systems that oper-
ate in unstructured and unknown open-world environments.
Designing an autonomous navigation system with the ability
to avoid obstacles in MAVs is a long-established research
problem [2]. It is difficult to autonomously navigate an
under-actuated aerial robot that performs specific missions
during an unstructured and unknown environment without
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colliding with obstacles. Classical approaches are primarily
based on 3D mapping, relative state estimation [3], [4], tra-
jectory optimization, and path planning [5], [6]. Neverthe-
less, conventional methods have significant limitations and
are prone to failures, particularly in unstructured, dynamic
environments where reliable state feedback is unavailable
for aerial robots. In addition, building an accurate 3D
map of an environment requires considerable computational
power. To address these problems, researchers have proposed
Deep Learning (DL) based solutions that can be realized
effectively and efficiently using current computer systems
and graphical processing units (GPUs) [7]. The success of
deep learning in solving problems in artificial intelligence
[8]–[10] motivates researchers in control and robotics to
apply the recent algorithms to common aerial robotics prob-
lems such as flight control [11] and obstacle avoidance.
End-to-end convolutional neural network (CNN) approaches
have been proposed to directly generate control inputs from
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FIGURE 1. The developed MAV platform.

raw sensory data [12], thereby reducing the complexity of
classical methods. However, most applied DL algorithms
are supervised, and structured datasets are used to train the
models. These approaches require a large amount of data and
manual labelling, which is time-consuming. To address these
limitations, reinforcement learning (RL) has been merged
with DL over the past few years, leading to a new research
area called deep reinforcement learning (DRL). Examples are
the recent Deep-Mind algorithms, deep-Q-network (DQN),
and its generic versions, such as the double DQN and dueling
DQN.More recently, policy gradient algorithms such as prox-
imal policy optimization (PPO) and the asynchronous advan-
tage actor-critic (A3C) have been proposed, for a continuous
action space [13]–[15].

These algorithms have been successfully tested in gaming
environments and have shown better performance than that
of humans. DRL algorithms are considered powerful and
promising tools for automatically mapping high-dimensional
sensor information to robot motion commands without ref-
erencing the ground truth. They require only a scalar reward
function tomotivate the learning agent through trial-and-error
interactions with the environment to find the best action for
each given state.

This paper presents a complete learning system for MAV
for autonomous navigation and obstacle avoidance in real
indoor and outdoor environments. The system uses a DQN
with a new CNN architecture to control the heading and for-
wardmotions of theMAV.A collision-free policy was learned
in a simulation environment designed using the Gazebo sim-
ulator. It was then deployed directly on a real MAV, without
any tuning.

Our system uses a Pixhawk autopilot for flight control,
two-dimensional LiDARdata, and a depth camera as the input
for the algorithm. Our algorithm allows the MAV to follow

predefined target points in the outdoor environment and avoid
obstacles by switching between mission flight and DQN
modes. All algorithms run in real time onboard the MAV
using an NVIDIA Jetson TX2 GPU. Testing was performed
in indoor and outdoor environments in simulations and the
real world.

The remainder of this paper is organized as follows.
Section II introduces related work. Section III describes the
aerial robot platform and software architecture. Section IV
describes the developed algorithms and the modular archi-
tecture. Section V presents the simulation results. Section VI
presents real-time experiments, and Section VII concludes
the paper.

II. RELATED WORK
Techniques for autonomous navigation can be classified
into map-based and mapless methods. Map-based methods
require a global or local map of the environment during
flight to make navigation decisions (e.g., [16]–[19]). Map-
less navigation primarily concentrates on autonomous nav-
igation, without building a map of the environment. It uses
computer vision techniques such as optical flow detection,
feature matching using an input image, or an image fused
with other sensors such as LiDAR (e.g., [20]–[22]). A survey
of the visual navigation methods can be found in [23]. Our
methodology is mapless. Unlike other methods, it does not
require a prior map of the environment or supervised training
or human demonstrations [24]–[26].

Deep neural networks (DNNs) have shown results for solv-
ing complex autonomous navigation problems with obstacle
avoidance ability using collected datasets for training neu-
ral networks. DNNs have been successfully applied to
autonomously following trials in an unstructured forest envi-
ronment using a monocular camera [27], [28]. A stereo-
vision algorithm was presented for high-speed navigation in
cluttered environments [29]. A CNN was used to learn a
navigation strategy by imitating expert demonstrations and
learning an end-to-end policy [30], [31]. Autonomous flight
was performed in an indoor environment for micro air vehi-
cles (MAV) using a single image by classifying the environ-
ment using deep learning modules and then estimating the
desired direction to fly (left, right, center) [32], [33].

However, these studies require a vast dataset (data-driven
approaches) or human expert demonstration to obtain the
desired policy that accomplishes the predefined task. More-
over, the complexity of acquiring a dataset limits its adoption
in aerial robotics. Researchers have merged deep learning
with reinforcement learning to overcome these problems,
which has led to DRL, in which interest is growing because
it shows excellent results in many video games [34]. It does
not need a dataset or human demonstration, and the agent
always tries to maximize the accumulated reward from the
interaction with the environment by trial and error.

Many studies have applied DRL to autonomous naviga-
tion tasks on different robotic platforms [35]–[37]. Lie [38]
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showed that a mobile robot can be trained end-to-end using an
asynchronous DRL mapless motion planner. Hong [39] used
the A3C algorithm [40] and semantic segmentation to close
the gap between simulation and the real world. The obtained
control policy was successfully tested on a ground robot.
Mirowski [41] presented goal-driven navigation with auxil-
iary depth prediction and loop closure classification tasks as
a reinforcement learning problem. Their approach showed
that the robot could avoid obstacles in a complex 3D maze
environment. Another study [42] addressed the problem of
autonomousmapless navigation in crowded sceness. A policy
gradient based reinforcement learning algorithm was used to
accomplish this task. The obtained collision-free policy was
tested using different mobile robotics platforms to perform
free-collision navigation in the real world.

Very few studies have been conducted on the application
of DRL for aerial robotics. A previous study [43] addressed
the autonomous landing of a UAV on a moving object.
Another study in [44], [45] presented amethod for controlling
a quadrotor with a neural network trained using reinforce-
ment learning technique. Singla et al. [46] presented a deep
recurrent-Q-network with temporal attention for obstacle
avoidance in an indoor environment. The end-to-end DRL
was merged with expert data for obstacle avoidance based
on monocular images [47]. The work in [48] presented an
actor-critic method that allows UAVs to execute navigation
tasks in large-scale complex environments. However, only
the method was tested in simulation environments, there is
no guarantee that it will work in the real world.

Recent research works such as [49], [50] are still limited
and only work in specific conditions like light conditions,
such as (day/night), or they require some data to be collected
by an expert pilot. These limitations motivated us to develop
a new system that could operate in different environments.
We believe that this is the first time that sensor-fusion infor-
mation has been used to develop a strategy for autonomous
navigation of an aerial robot through end-to-end DRL.

III. ROBOT PLATFORM AND SYSTEMS DESCRIPTION
In this work, a quadrotor MAV was used as an experimental
platform to validate our algorithms. This system is vulnerable
to many physical effects, such as aerodynamic effects, grav-
ity, gyroscopic effects, friction, and moment of inertia. The
quadrotor configuration is shown in figure 1.

A description of the main mathematical equations of
motion of the system is required to understand the main
dynamics of the MAV. The derivation of these equations was
performed by relying on the following hypotheses [51]:
1 The quadrotor body is rigid and symmetric
2 The propellers are rigid
3 Thrust and drag forces are proportional to the square of

the rotors speed
4 The center of mass and origin of the coordinate system

of the quadrotor structure coincide
Two reference frames are used in this study. The earth refer-
ence frame RE is defined by axes xE , yE , and zE with the zE

FIGURE 2. MAV’s control system architecture: An EKF is used for accurate
state estimation. The DQN guidance system sends velocity commands to
the high-level flight controller to adjust the MAV’s heading and position.
The low-level controller converts the desired attitude to motor commands
(M1, M2, M3, M4).

axis pointing upward, and the body-fixed frame Rb is defined
by axes xb, yb, and zb. The attitude of the quadrotor is defined
by the orientation of Rb with respect to RE by the rotational
matrix R presented in the equation 1.

R =

cφcθ sφsθcψ − sψcφ cφsθcψ + sψsφ
sφcθ sφsθsψ + cψcθ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (1)

where s(.) and c(.) stand for sin(.) and cos(.) functions, respec-
tively. Based on the Newton-Euler formulation, the rotational
and translational dynamics can be expressed as equation 2

ẍ =
(
cφsθcψ + sφsψ

) 1
m
U1
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(
cφsθ sψ − sφcψ

) 1
m
U1
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(
cφcθ

) 1
m
U1
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(
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Ixx

)
+

1
Ixx
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(
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)
+

1
Iyy
U3

ψ̈ = θ̇ φ̇

(
Ixx − Iyy
Izz

)
+

1
Izz
U4

(2)

where Ui (i = 1, 2, 3, 4) are the altitude, roll, pitch, and yaw
control input respectively. I(xx,yy,zz) is the moment of inertia
along each axis. The complete architecture of the control
system is shown in Fig. 2. The deep-Q-network plays a key
role in intelligent guidance and decision-making by sending
a suitable heading rate vyaw and the forward velocity vx to the
flight controller. To guarantee a flexible and safe hardware
platform, we designed a system using 3D computer-aided
design software, including all sensory systems. This reduces
the time and cost and increases the design accuracy and
reliability. The hardware configuration is shown in figure 1.
It includes a quadrotor MAV equipped with an open-source
Pixhawk autopilot and anNvidia Jetson TX2with anAuvidea
J120 carrier board as a companion computer for the autopilot.
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FIGURE 3. Schematic block diagram of the real-time implementation.

The developed algorithm uses a forward-facing Intel
Realsense R200 USB RGB-D camera, that provides depth
information with a maximum distance of 4 m at 30 Hz. The
Hokuyo UST-10LX scanning laser range-finder has a field of
view of 270◦, a maximum detection distance of 30 m, and
an update rate of 30 Hz. The proposed algorithm runs on an
NVIDIA Jetson TX2.

The developed MAV can be operated in both indoor and
outdoor environments. It is equipped with a forward-facing
fish-eye Intel tracking camera T265 module that provides a
V-SLAM algorithm for robust state estimation, where the vis-
ible features of the ground are used to determine the MAV’s
position, ground velocity, and orientation, which is sent to
an extended Kalman filter (EKF) that runs on the Pixhawk
to be fused with other sensor data (e.g., IMU data). We used
a LiDAR-Lite V3 laser range finder to obtain accurate alti-
tude feedback in an indoor environment. The Jetson TX2
on-board companion computer was flashed with JetPack 3.1,
and the robot operating system (ROS Kinetic) [52] was also
installed for easy hardware interface.We adopted Keras as
a deep-learning library with TensorFlow in the backend.
OpenCV was used for depth image processing. Our system
uses the following ROS drivers: the RealSense camera pack-
age for interfacing the R200 and T265 USB cameras, the
URG node for reading Hokuyo LiDAR data, and MAVROS
for communicating with the autopilot.

The human pilot can select two flight modes: auto or
manual using a radio transmitter and toggling a switch button.
If the auto mode is selected and there are no obstacle within
2 m of theMAV in an outdoor environment, the mission flight
mode will be activated to reach specific target points. If there
is an obstacles near the MAV within a distance of 2m, the
DQN flight mode will be activated. This mode uses fused
sensor data from the depth camera and LiDARmeasurements,
making the drone fully autonomous and avoiding possible
obstacles.

After the obstacle avoidance maneuver is completed, the
mission flight mode is activated again to correct the MAV
path and make it head towards the target points. In the case
of an emergency, the pilot can intervene at any time by
switching to manual flight mode, as shown in figure 3. The
simulation environments were developed using the Gazebo
simulator to train the agent realistically. All the sensors were
simulated using real specifications. In addition, PX4 provides
a software in the loop (SITL) simulation [53], which we used
for training.

IV. PROPOSED METHOD
Many classical autonomous navigation methods require prior
knowledge of the obstacle’s location or the environment map.
Our algorithm does not require mapping for navigation. This
section describes a mapless autonomous navigation tech-
nique for MAV. The goal is to determine an optimal control
input. The goal is to find an optimal control input Ut =
πcf (st ), where st is the observation from the fused sensory
data at each time step t . The control inputUt allows the MAV
to avoid obstacles during flight by following the optimal
policy, πcf .

A. PROBLEM FORMULATION
The MAV navigation problem was formulated as a Markov
decision process (MDP), where the MAV interacts with the
environment using an RGB-D camera and a LiDAR range
finder. A (DQN)with a newCNN architecture is used to solve
this problem. The proposed modular architecture contains a
collision awareness (CAM) and a collision-free control policy
module (CFCPM). The CAM is responsible for sensor fusion
and generates a robot observation st . The CFCPM takes the
observation st as input and chooses an action a ∈ A according
to the collision-free policy πcf .

B. COLLISION AWARENESS MODULE
The main objective of CAM is to process and fuse sensory
data. It then generates observation st , which is passed to the
CFCPM, as shown in Figure 4. To reduce the processing
time, the field of view of the LiDAR was limited to 90◦,
which provided a 360 laser beam ray. Using these rays,
a binary image with a size of (90, 90) pixels is created by
concatenating the rays vertically. This image contains useful
two-dimensional (2D) distance information from obstacles
within a selected field of view. The depth camera detects
tiny obstacles from which LiDAR rays are not reflected.
The raw depth image was resized to (90, 90) pixels and then
converted to a binary image to close the simulation and real-
world gaps. By combining both the sensors, small and dis-
tant obstacles can be detected. The obtained images were
fused to generate the observation st by concatenating two
consecutive images from LiDAR and two successive images
from the processed depth. Finally, the total observation st
with a size of (90, 90, 4) is obtained and can be forwarded to
the CFCPM.
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FIGURE 4. The neural networks architecture for the sensor fusion based obstacle avoidance.

C. COLLISION-FREE CONTROL POLICY MODULE
The CFCPM uses the deep Q-network algorithm to find the
optimal collision-free policy π∗cf , which allows the MAV to
select the best action a ∈ A in a given observation st ∈ S to
maximize the total future reward Rt =

∑T
τ=t γ

τ−trτ , where
γ is the discount factor.
The interaction between the MAV and the environment

includes a series of actions a, including three moving com-
mands (right, left, and forward), and observed rewards r at
time t = 1, 2, . . . ,T . During the learning process, the MAV
collects information about the environment and learns the
optimal collision-free policy π∗cf . These interactions can be
represented by a tuple (s1, a1, r2, s2, a2, . . . , sT ), where sT is
the terminal state. In our case, the MAV reached the terminal
state when the distance from the obstacle was less than 2m,
or the maximum step size is exited. The DQN algorithm
approximates the action-value function (Q-value) using a
deep CNN, as shown in figure 4. It contained two convolution
layers with a filter size of (3, 3, 16), stride size of (2, 2),
and zero-padding layer to avoid data loss. A ReLu activation
function follows each convolution layer, and then the feature
maps are transferred to the max-pooling layer to downsample
and extract the essential features. The output is forwarded to a
fully connected layer to generate three velocity commands in
the body frame Rb of the MAV. Given a collision-free policy
πcf (st ) = at , the Q-value can be represented as follows:

Q(st , at )πcf = E[Rt |st , at , πcf ] (3)

The main objective is to maximize the total future reward Rt ,
which can be achieved by maximizing the Q-value function:

Q∗(st , at ) = maxπcf E[Rt |st , at ] (4)

The optimal Q-value can be decomposed into a Bellman
equation as follows:

Q∗(st , at ) = Et+1[r + γmaxat+1Q
∗(st+1, at+1)|st , at ]

(5)

The collision awareness module provides a large obser-
vation space (90, 90, 4), which is used to approximate the
Q-value. The iterative approximation method presented in
equation 5 is not feasible in this case. To overcome this prob-
lem, the Q-value was approximated using a deep CNN such
that Q(st , at , θ) ≈ Q∗(st , at ). θ is the network weight which
is updated using reward feedback r from the environment.

Algorithm 1: Reward Function Definition
Read the LiDAR data
Resize the LiDAR data
LiDAR = [1 . . . 360]
ifMin(LiDAR) > 2m then

if action = Forward then
r = 10 ∗ ( 1

360

∑360
i=1 LiDARi)

else
r = −0.1

else
r = −10

The designed reward function is presented in Algorithm 1,
based on LiDAR measurements, ensuring safety and fast
learning. It also motivates the MAV to move forward in cases
where are no obstacles in front. Suppose that the minimum
distance from any obstacle exceeds 2m, and the selected
action moves forward. In such a case, a positive reward will
support the MAV in moving forward, rather than rotating left
or right. A small negative reward will be given if the moving
forward is not selected. However, if the minimum LiDAR
distance is lower than 2m, a significant negative reward is
assigned, the training episode finishes, and the MAV position
is reinitialized. The obtained reward r is used to calculate the
target optimal Q-value Yt , as follows:

Yt = r + γmaxat+1Q(st+1, at+1, θt−1) (6)

The neural network parameter θ is updated by performing
stochastic gradient descent on the DQN based on the loss
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FIGURE 5. Simulation environments: A, B Training environments, C, D testing environments.

function:

Lt (θt ) = (Yt − Q(s, a, θt )) (7)

We can obtain the gradient of the loss function, as shown
below:

∇θtLt (θt ) = (Yt − Q(s, a, θt )∇θtQ(s, a, θt )) (8)

The total workflow of our approach is presented in
Algorithm 2. The experience replays from memory, which
contains state transitions (st , at , st+1, rt+1) were used by tak-
ing a random sample with a batch size of 32. Experience
replay provides batch updating in an online learning fashion,
as follows:
• This tuple (s, a, st+1, rt+1) is saved in a list to a specific
length (64)

• If the replay memory is filled, randomly select a sample
size of 32.

• Calculate value update for each sample.
The ε-greedy training strategy was used by selecting a ran-
dom action under a certain probability, which allowed the
exploitation of the best actions most of the time and kept
exploring other actions from time to time. Another target
network was used, as follows:
• Initialize the Q-network with parameters (weights) θ
• Initialize the target network as a copy of the Q-network
with different parameters θT .

• Use the ε-greedy strategywith theQ-network’s Q-values
to select action a.

• Get the reward and new observation rt+1,st+1.
• The Q-value of the target network is set to rt+1 if
the episode has just been terminated or to rt+1 +
γmaxQθT (st+1)

• Backpropagate the target network’s Q-value through the
Q-network

• Every C number of iterations, set θT = θ

Algorithm 2: DQN for the Autonomous Map-Less Nav-
igation of MAV
initialization :
- Initialize the CFCPM and CAM
- Initialize reply memory D with size 10000
- Initialize Q-value Q(s, a; θ ) with random weights θ
- Initialize the target Q-value Yt with weights θT = θ
- Set minimal distance from any obstacle MD = 2m.
- Arm the drone
- Switch to manual flight mode
- Takeoff to a fixed altitude 1.5m
- Switch back to auto-mode
for episode = 1,M do

- Set MAV initial position
- Predict the distance from obstacles d
while d > MD do

- Get the current observation st using collision
awareness module(CAM)
- With probability ε select a random action at
- Otherwise select at = argmaxaQ(st , a; θ )
- Perform the action at get the next observation
st+1 and the reward r
- Store the transition (st , at , r, st+1) in D
- Sample random minibatch transitions
(sk , ak , r, sk+1) with a size of 32 from D
if d ≤ MD then

Yk = rk
else

Yk = rk + γmaxat+1Q(sk+1, at+1; θt−1)
- Update the neural network weights θ using
stochastic gradient descent
- Update target network weights every X step

- Save the neural network weights θ

VOLUME 10, 2022 82969



O. Doukhi, D. J. Lee: Deep Reinforcement Learning for Autonomous Map-Less Navigation of Flying Robot

FIGURE 6. The learning curves: The blue for indoor and the red outdoor
environment.

TABLE 1. Training parameters.

V. TRAINING DEEP REINFORCEMENT LEARNING
A. TRAINING PLATFORM
Several intensive experiments were performed in simulated
and real-world environments to evaluate the feasibility of
the proposed algorithm. Four simulation environments were
built: two to mimic an indoor scenario and two for outdoor
scenes based on the Gazebo simulator and SITL, as shown in
Figure 5. Environments A and B were used for training, and
C and D were used for testing.

Outdoor environments contain randomly placed trees with
high densities and walls to limit the training area. An indoor
corridor is a corridor with different distances between
the walls. The training was performed in both environ-
ments A and B using a desktop computer with an Nvidia
GTX 1080 GPU, Intel i7-6700 3.40 GHz x 8 CPU, and
16 GB of RAM. A low altitude of 1, 5 m and a forward
speed of 1 m/s were used in environment A (outdoors).
For indoor environment B, the forward speed was 0, 7 m/s,
and the angular velocity was 0, 7 rad/s. All the models
were trained using the Keras framework, CUDA 8, and
CuDNN 6. The training parameters are listed in Table 1. Dur-
ing the training process, only DQN flight mode is activated.
We trained for 2000 episodes within 168 h. The accumulated
discount convergence curves are shown in figure 6 for both
scenarios (A, B).

The discounted total reward curves were plotted versus the
training episodes. Each episode contained 10, 000 training

steps. Figure 6 shows that both curves converge to dif-
ferent values. In the outdoor environment, the total dis-
counted reward converged to a higher value of approximately
73 within 250 episodes, whereas in the indoor scenario, the
overall score to approximately 49 within 400 episodes. This
indicates that the MAV performs better outdoors than indoors
in terms of obstacle avoidance and navigation because of
the larger open space. During the training process, both the
convergence time and total discounted reward depended on
the CNN architecture, the observation size, andMAV’s speed.
Different architectures can lead to different performance, and
training at low speeds allows the learning of stable policies.
Frame stacking also has a significant impact on performance.
The modular architecture was designed to maintain a balance
between the learning speed and the success rate. After the
training was completed, the obtained models were saved for
testing in the same environment and different new unseen
environments.

B. SIM-TO-SIM: TRAINING RESULTS VERIFICATION
During the testing phase, only DQN flight mode was acti-
vated. First, different environments were built to verify the
generalization capability of our algorithm for new inexperi-
enced scenarios. The same desktop for the training phase was
used for testing. First, we tested the obtained models in an
indoor scenario. Two environments are used in this study. The
first is the same as that used for training (B), and the second is
a different onewith a high obstacle density (D). Subsequently,
we tested them in an outdoor environment. Similar to the
indoor case, two scenarios were used: training environment
(A) and a new one (C). Throughout the testing phase, ten
episodes of 10, 000 steps were used. The total discounted
reward for the different cases is shown in Figure 7a. In the
outdoor scenarios (A, C), the obtained reward was higher
than that in the indoor scenarios (B, D). In outdoor train-
ing environment (A), the average total score was positive,
approximately 95, which indicates that the MAV had good
performance in obstacle avoidance because all the features
were already seen and learned in the training phase. However,
in the new unseen outdoor environment (C), the average
total score is approximately 85. The average overall score
for the indoor environment was approximately 60, and the
MAV avoided obstacles. To verify the generalization of our
algorithm in new environments, more detailed simulations
were performed and compared with the traditional potential
field method, which uses only laser scan data as input [54].

Figures 7b and, 7c show the simulated environments and
the flight paths obtained by the MAV. Example scenario 1,
presented in figure 7b, shows that the potential-field method
fails. TheMAV collided with the obstacle, as indicated by the
black circle. Our method shows more robustness for obstacle
avoidance and smoother motion, which is not the case for the
potential-field approach. Another example, Scenario 2, was
presented to confirm the superiority of the proposed algo-
rithm. Figure 7c shows a simulated corridor with different
obstacles placed randomly, the MAV starts from an initial
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FIGURE 7. Total testing score and paths taken by MAV in example
scenarios.

position (0, 0) after take-off, it starts to move forward and
explore the unknown environment with fixed altitude, the

FIGURE 8. Simulated forest environment and the path taken by MAV in
example scenarios 3.

reader can notice that both algorithms perform well at the
beginning when there are no obstacles in the middle of the
corridor, after that at the point coordinate (7, 7) the potential
field method failed due to the obstacle’s central location.
However, the proposed algorithm can guide the MAV to the
end of the corridor. Another simulation in a forest environ-
ment was performed. Figure 8 presents the obtained results;
the red trajectory shows that the potential field algorithm
fails in an open space scenario with no solid walls. Our
approach guided the MAV autonomously, as presented with
a blue trajectory, using the same models tested in previous
scenarios 1,2.

Finally, fully autonomousmission scenarios are developed.
The mean objective is to ensure that the MAV reaches a pre-
defined target point while avoiding collisions with obstacles.
Figure 9 shows the first simulated outdoor scenario where the
MAV takes off from an initial position (0, 0) and attempts to
find a collision-free path to arrive at the target point indicated
by a blue circle. Both the DQN flight mode and mission
flight mode will be running. When there is no obstacle in
front within a distance of 2m, the mission mode lets the MAV
head toward the target point and move forward until it detects
an obstacle within the predefined range. The DQN-mode
executes the obstacle avoidance operation. This maneuver
guarantees full autonomy without crashes, as indicated by the
blue line. The second scenario simulated an indoor corridor
with randomly placed pillars, as shown in Figure 10. This
scenario aims to reach multiple target points (T1,T2,T3).
The path taken by the MAV is indicated by the blue line,
starting from the initial position (0, 0). The MAV reaches
the first point, T1, without collision, and then it heads back
towards points T2 and T3. The reader is recommended to
watch the supplementary videos for a better understanding
of the simulated scenarios.

VI. SIM-TO-REAL: REAL TIME
EXPERIMENTAL VERIFICATION
Several real-time tests were performed to validate our system
by deploying trained models from a simulation in a real
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FIGURE 9. Fully autonomous mission in obstacle field 1.

FIGURE 10. Fully autonomous mission in obstacle field 2.

FIGURE 11. Scenario 1: Real experiments in indoor corridor.

MAV. First, only the DQN flight mode was used to explore
unknown indoor corridors autonomously. Two case scenarios
were investigated (straight and L-shaped corridors). Second,

FIGURE 12. Images of the corridor at different possible positions of the
MAV. The first, second, and third rows show the images obtained from
depth, RGB, and LiDAR, respectively.

FIGURE 13. The obtained total score during the real test in an indoor
corridor.

the experiment was performed in an outdoor environment to
validate the fully autonomous mission across a forest trial in
the presence of dynamic and static obstacles. The accompa-
nying videos were available for the real-time experiments.

A. REAL TIME INDOOR VERIFICATION FOR THE
DQN-FLIGHT MODE
The trained DQN model was initially tested in a straight
indoor corridor, as shown in figure 11. Figure 12 shows
the controlled yaw rates right and left (R, L), linear forward
speed (F), some sample images from the depth and LiDAR,
and the corresponding RBG from the actual test. In the bina-
rized depth and LiDAR images, the walls were detected as
an obstacles with a white color, and the empty space was
black. The images obtained from the simulation were similar
to real images. The accumulated scores during this test are
presented in figure 13. The total score increased before the
first 100 episodes because the MAV had landed. After taking
off, the drone started to move forward to explore the unknown
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FIGURE 14. Scenario 2: Real experiments in the corridor like environment.

FIGURE 15. Scenario 2: The MAV’s current path while avoiding colliding
with the walls and the standing person.

corridor, and the overall score was approximately 10 from
episode 200 to 700 because the environment was very narrow,
and the MAV always tried to find an open space to maximize
the accumulated reward. From episodes 800 to 1000, the
score increased to 80 because the drone arrived in the open
space where the ending point was located. The total positive
accumulative reward indicates that the MAV successfully
passes through the corridor from the starting point to the
ending point and avoids collision with the walls.

Another experimental test scenario two was performed
in a corridor-like environment with an L shape as pre-
sented in figure 14, after takeoff the MAV was ordered to
autonomously explore the corridor within a forward speed of
0.6 m/s. Figure 15 shows the current path taken by the MAV
while avoiding the obstacles. The controlled forward velocity
and the heading rate are shown in 16. From the second row,
we can see that the desired yaw rate presented in red color
is switching between two values (+0.8,−0.8) rad/s which
correspond to left and right discrete actions, the blue color
preset the current heading rate, which is tracking the desired

FIGURE 16. Case scenario 2: the first row presents the desired and
current yaw angles, the second row shows the desired yaw rate output
from DQN-mode, and the current one, the last row shows the desired
forward velocity controlled by DQN-mode and the current one.

one, making it more clear the yaw angle was plotted in the
first row, the MAV follows the desired yaw angle properly
which allows it to avoid the obstacles. The last row presents
the desired forward linear velocity generated by the DQN
mode, corresponding to the moving forward discrete action
(0.6 m/s). The actual velocity is indicated in blue color. The
MAV attempted to track the desired direction speed within a
certain overshot of 0.2 m/s.

To verify the capabilities of our algorithm, a flight mission
was conducted in a forest environment, as shown in Fig.17.
Different trees were placed randomly, which acted as static
obstacles, as indicated by the red circle in figure 17a. In addi-
tion, a walking person is considered to be a dynamic obstacle.
The objective of this mission is to reach a specific target
point in the world frame and then return to the home point
by taking the shortest path while avoiding possible obstacles.
The starting and target points are shown in figure 17a with
black circles.

B. REAL TIME FULLY AUTONOMOUS MISSION

In figure 17a, the black line represents the mission’s shortest
path connecting the starting point to the desired target point
across different obstacles. This path requires less time to
complete the mission, with less power consumption. How-
ever, there are many obstacles. After takeoff, the MAV starts
to head toward the target point at a low altitude of 1.5 m,
and if there are any static or dynamic obstacles in front, the
MAV switches automatically to the DQN flight mode, which
allows it to avoid the obstacles after the obstacle avoidance
maneuver finishes theMAVhead back toward the target using
mission flight mode. This operation ensures path shortness.
For safety reasons, there is always a human pilot for emer-
gency intervention that toggles a switch button. Figure 18
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FIGURE 17. Case scenario 3: The real environment selected for the full mission flight test.

FIGURE 18. The current path taken by the MAV while trying to reach the
target point and avoid colliding with obstacles.

FIGURE 19. Case scenario 3: the first row presents the desired and
current yaw angles, the second row shows the desired yaw rate output
and the current one, the last row shows the desired forward velocity and
the current one.

shows the path taken by the MAV during the entire mission.
The MAV reached the target point safely without colliding

FIGURE 20. Forest trail images at different possible positions of the MAV.
The first, second, and third rows show the obtained images from the
depth, RGB and LiDAR.

with the trees or the walking person; after that, it returned
to the starting point. The entire mission lasted approximately
115 s. The controlled heading rate and forward velocity
outputs are shown in Fig. 19. After activating the auto-
mode, the mission starts, and the MAV heading and forward
velocity start to track the desired velocity generated from the
auto-mode.

Figure 20 shows sample images collected during the flight
test the trees are detected as obstacles with white color, and
the images contain strong features of the surrounding envi-
ronment. After concatenating the depth and LiDAR images,
they are passed to the neural network model.

VII. CONCLUSION
This study presents a novel approach for integrated
autonomous navigation and obstacle avoidance for an MAV
quadrotor using a modular deep Q-network architecture. The
inputs of the proposed algorithm are the LiDAR range finder
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distance measurements and a depth image, and it fuses the
sensory data through an end-to-end CNN. To determine
the optimal collision-free policy, we built different virtual
indoor and outdoor simulation environments with realistic
simulations of the sensor data. The collision-free policy was
entirely trained in the simulation, and then deployed on a
real MAV platform. The simulation and real- world experi-
ments show that the proposed method significantly improves
the generalization capability of the trained DRL policies.
It also shows outstanding performance in terms of the success
rate and collision avoidance. Future work will address the
application of this approach to navigation problems in 3D
space.
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