
Received March 8, 2022, accepted March 22, 2022, date of publication March 28, 2022, date of current version April 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162634

A Multisize No Migration Island-Based
Differential Evolution Algorithm With
Removal of Ineffective Islands
ALEKSANDER SKAKOVSKI AND PIOTR JĘDRZEJOWICZ , (Member, IEEE)
Department of Information Systems, Gdynia Maritime University, 81-225 Gdynia, Poland

Corresponding author: Aleksander Skakovski (a.skakovski@wznj.umg.edu.pl)

This work was supported by Gdynia Maritime University under Grant WZNJ/2021/PZ/03.

ABSTRACT The paper is a continuation of our previous research where a novel concept of multisize
island model was proposed. Such multisize approach facilitates the design of island-based algorithms and
brings such benefits as: improved fitness dynamics throughout the entire time of operation even without
the migration of solutions between the islands. The absence of migration eliminates the need to establish
the topology and the policy of migration. It also makes the efficiency of multisize island-based algorithms
independent of the particular islands’ size and eliminates the need of tuning the size of islands which is
usually done in the case of the canonical island model. All these features indicate the superiority of the
multisize island model over the canonical one. In this paper we improved earlier proposed multisize island-
based DE algorithm by adding to it the ability to automatically optimize the number of islands in operation.
This feature enables the release of most computational units before the algorithm completes its operation
in the case of concurrent execution of the algorithm on multiple computational units, or reduction of the
algorithm running time in the case of its execution on a single computational unit. The proposed algorithm
was tested by solving computationally difficult scheduling problem, which is the discrete-continuous
scheduling with continuous resource discretization.

INDEX TERMS Evolutionary computation, multisize island model, differential evolution, discrete-
continuous scheduling.

I. INTRODUCTION
The present work is a continuation of our previous
research [1] on the island model of computing and the impact
of population size on the efficiency of the DE algorithm.
The size of the population is one of the parameters that
have a significant impact on the efficiency of EAs. The
publications on the impact of the size of the population on
the efficiency of EAs have shown that determining the size of
the population is not trivial and is one of the most important
tasks of EA’s parameter optimization. For this reason, this
issue has been the subject of interest of many researchers
since the emergence of EAs and has been called ‘‘the curse
of population size’’ [2]. To achieve maximum performance,
EA designers had to determine the optimal population
size through a computational experiment. Unfortunately, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

optimal population size depends on such factors as: the
algorithm used [3], the problem at hand [2]–[7], including
instance unique characteristics [8] and the dimensionality of
the problem [9], [10], and the number of fitness function
evaluations available or allowed [3], [11], [12]. So, every
time when any of these factors has changed, the process of
determining the optimal population size had to be repeated
from the beginning. These were burdensome, but necessary
implementation costs, which justified the high efficiency of
the algorithm.

The problem of determining the optimal population size
also occurs in the case of the implementation of the
canonical island model. In the literature, this model of
computing was often reported as more effective, than the
search performed on a single population, e.g. [13]–[15].
In the island model, the overall population is represented by
sub-populations (islands) of identical sizes. Sub-populations
on the islands evolve autonomously, albeit periodically

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 34539

https://orcid.org/0000-0001-9751-6705
https://orcid.org/0000-0001-6104-1381
https://orcid.org/0000-0003-3804-997X

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

exchanging solutions between themselves (solutions are said
to migrate between islands). Migration of solutions in a given
island model takes place according to the interconnection
topology and migration policy established for this model.
So, in the case of the canonical island model, the volume of
work related to the tuning of the EA’s parameters increases,
because not only the optimal size of the populations on
the islands, but also the optimal number of islands, the
interconnection topology and the migration policy need to
be determined. All these implementation difficulties have
motivated us to develop an efficient and easy-to-design island
EA without the burden of parameter tuning. To design such
an algorithm, we proposed in [1] a new concept of the
island model – a multi-size island model. In this model,
the islands are of different sizes and there is no migration
between islands. These two features make a fundamental
difference to the canonical island model. The proposed
multi-size island model ensures ease of design because
it is devoid of the problems that arise when designing
algorithms based on the canonical island model. The model
takes advantage of different convergence rates of algorithms
operating on islands of different sizes to provide better
dynamics of evolution than that of the canonical island model
or any particular island used in the model. An EA based
on the multi-size model can achieve efficiency which can
be very close to the maximum size-dependent efficiency
of the algorithm (MSDEA) operating on the islands. The
term MSDEA refers to some ideal algorithm which ensures
maximal possible efficiency as if at every moment of its
operation the size of the population was optimal. With
this property, the multi-size island model can be viewed
as a method of dealing with the curse of population size.
An example of very close to the MSDEA curve represented
by the minimized fitness function values is shown in Fig. 1 as
red dashed line and in Fig. 2 as curve composed of multiple
segments.

The summary of advantages of the multi-size island model
over the canonical model includes:
1. better dynamics of the fitness function - the curve of

the fitness function throughout the entire runtime of
the algorithm is very close to the optimum, which is
unattainable in the case of the canonical island model;
the model achieves better dynamics of the fitness function
due to the fact that it uses different rates of algorithm
convergence on different population sizes; the number of
islands in the model determines the degree of proximity
to the optimal curve - the more islands, the closer to the
optimum,

2. no need to experimentally determine the size of the islands
due to the specificity of the optimization problem to deal
with - the diversity of island sizes ensures the highest
efficiency for each type of the problem,

3. the quality of solutions is always the best for any available
number of fitness function evaluations; the available
number of fitness function evaluations has a direct impact
on the quality of solutions and necessitates the adjustment
of the population size; in the case of the multi-size model

there is always an island on the archipelago whose size
is close to optimal for a given number of fitness function
evaluations,

4. no need to experimentally determine the interconnection
topology between the islands and

5. no need to experimentally determine the migration policy,
since there is no migration at all; there will always be
an island with a similar efficiency to the canonical island
algorithm with an optimally tuned sizes of the islands and
the number of islands (this conclusion is based on the
experiments described in [16].
The disadvantage of this algorithm is that large-sized

islands are kept in use until the very end of the algorithm
execution. Despite this fact, these islands are not always able
to improve on the best current solution, which results in a
costly waste of computational resources.

The motivation and goal of this work was to mini-
mize the inefficient use of computational resources by
the Multisize Island-Based DE Algorithm with Decloning
and without Migration (IBDEAX−md), previously proposed
in [1], by adding to it the ability to remove islands, which
will not be able to improve the best current solution before the
algorithm completes. The introduction of such functionality
benefits in an earlier release of computational units, in the
case of execution of the algorithm in a distributed system,
or reduction of the overall algorithm operation time, in the
case of its execution on a single computational unit. This has
the advantage of using the released computational resources
earlier for other purposes. To design the IBDEAX−md,
the method of differential evolution was used. Differential
evolution (DE), is a stochastic direct search and a global
optimization method first proposed in [9]. We used a
classical scheme of the DE search enhanced with a decloning
procedure, which cyclically replaces clones appearing in
the population with new individuals. This procedure, was
proposed in [17] and used to design the DE algorithm
with decloning (DEAd). The DEAd was used as the base
search algorithm for designing IBDEAX−md and is, therefore,
inevitably used in the algorithm, proposed in this paper.
The description of the proposed in this paper Multisize
NoMigration Island-Based Differential Evolution Algorithm
with Removal of Ineffective Islands (IBDEAXr) is provided
in Section 4. The proposed algorithm was implemented and
tested. Our experiments show that the IBDEAXr is able to
reduce the number of operating islands before the algorithm
terminates, and thus uses computational resources more
efficiently than its predecessor.

The rest of the paper is organized as follows. In Section 2,
the review of research on methods for population size
management is provided. In Section 3, the discrete-
continuous scheduling problem with continuous resource
discretization (DCSPwCRD) used as a test problem is
formulated. In Section 4, a concept of multisize island
model was described and IBDEAXr - a multisize island-
based DE algorithm with removal of redundant islands
was proposed. Section 5 contains the description of the
computational experiment as well as a discussion on the

34540 VOLUME 10, 2022

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

results. Section 6 includes the conclusion and an idea for
future research.

II. RELATED WORK
The population size curse is an inherent attribute of various
types of population-based optimization algorithms, includ-
ing: GA, EA, DE, Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Artificial Bee Colony (ABC),
Cuckoo Search (CS), Bat Algorithm (BA), Estimation of
Distribution (EDA), Bayesian Optimization (BOA), and
CovarianceMatrix Adaptation (CMA) algorithms. Numerous
publications on population size management, or population
sizing, confirm the importance of this parameter for the
effectiveness of all the above-mentioned types of algorithms.
This section complements the overview of research on
population sizing presented in [1].

As mentioned earlier in the introduction, the optimal
population size depends on factors such as: the type of
algorithm to be used, the characteristics of the problem to be
solved and the available or allowed number of fitness function
evaluations. The fact that population size depends on several
varying and case-specific factors indicates that determining
the optimal population size is not a trivial task. Therefore,
attempts have been made to automate the sizing process.

There are two main approaches to the problem of
population sizing in the literature. The first approach is to size
a single population, while the second approach uses multiple
multi-size populations.

In the case of a single population, various mechanisms,
techniques and schema of population sizing have been
developed. For example, population implosion, that is,
a linear decrease in the population size [18]; population
adaptive based immune algorithm (PAIA), which adjusts the
population size to the problem being solved [19]; or determin-
istic population shrinkage using simple variable population
sizing (SVPS) scheme based on a predetermined schedule,
configured by a speed and a severity parameter [20]; a
population-sizing model for entropy-based model building
in discrete estimation of distribution algorithms [21], and a
number of others that have already been mentioned in [1].
A review of the literature on adaptive population sizing
schemes used in genetic algorithms, which were proposed
until 2007, is provided in [22].

Since in our proposed algorithm we use DE and an
approach that uses multiple multi-size populations, we will
now pay more attention to similar research. In the literature,
there are two main approaches to differentiate the size of
multiple populations: the first - creating multiple populations
with different, but constant sizes (we will refer to this as a
static approach), and the second - dynamically adjusting the
size and number of initial populations to changing conditions
(we will refer to this as a dynamic approach). In the algorithm
that we proposed, we used the first approach, i.e. static
approach, so we will first discuss works that use multiple
populations of different, albeit constant sizes.

The most important work, from the point of view of
the algorithm we propose, is that of Harik and Lobo [23],

in which they proposed a parameterless GA (PLGA). The
core idea of the PLGA is to run multiple populations of
various sizes simultaneously and establish a race among
them. The PLGA starts with a single small population
with index 1 and then, after a fixed number of generations
have been evolved, creates a new double-sized population
with index 2. The moments of creating new populations or
evolution of existing ones are determined by a counter of base
4. The scheme of the operation of the PLGA can be described
using the indexes of populations being evolved or created as
follows: 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, . . . The
size of each newly created population is twice as large as the
size of the population with the preceding index. According
to this scheme, population i carries out twice the number
of fitness function evaluations of population i + 1. When
the average fitness of a population is less than the average
fitness of a larger population, then the smaller population
is removed, and the counter is reset. It is assumed that the
PLGA stops if the computer runs out of memory, or it is
stopped by the user when the PLGA yields the solution of
the desired quality. Unfortunately, the protracted initiation
of the populations extends the running time of the PLGA.
Depending on the test problem, the PLGA requires 1-3 times
more fitness evaluations as compared with the regular GA
to yield a target solution. This is the price to be paid for the
exemption from population sizing.

Due to its potential, not yet fully exploited, the work of
Harik and Lobo gave an impulse for further research on using
multi-size populations to increase EA performance. Below
we present articles with new proposals based on this idea.
In [24], a slightly different from PLGA scheme of creating
multi-size populations was used to design a hierarchical
Bayesian optimization algorithm (hBOA). In hBOA, all
populations run at the same speed in terms of the number of
evaluations. However, as a result of modifying the scheme
of subpopulations creation, smaller populations carry out
fewer evaluations, larger - more, and the latter are initiated
earlier than in PLGA. This change in the way of operation
of larger populations causes them to converge earlier than in
PLGA. Which can be viewed as an advantage of hBOA over
PLGA. However, the hBOA, like the PLGA, is designed to be
executed sequentially, which results in a long running time,
delayed initiation of the populations, and, therefore, including
this features among its disadvantages. In [25], a sequential
smart-restart compact GA (SRcGA) was proposed. The core
idea of the algorithm is that the cGA is restarted cyclically
with exponentially growing population size after each restart.
The proposed algorithm has the advantage over the algorithm
from [23] that it has ability to terminate inefficient runs
caused by a genetic drift. To detect the genetic drift, the
authors used the tight quantification of the genetic drift
effect of the EDAs provided in [26]. A disadvantage of the
algorithm is the sequentiality of the restarts, which causes a
progressive delay in the initiation of larger populations, and
thus the moment of obtaining the solutions found through
them. In [27], a parallel-run cGA (PRcGA) was proposed
in order to shorten the computation time. PRcGA cyclically

VOLUME 10, 2022 34541

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

creates processes with exponentially growing populations.
In each cycle, a new process with doubled population size is
initiated and added to the pool of already existing processes.
Although the processes run in parallel, they are nevertheless
initiated sequentially and, as with Harik and Lobo, the larger
the population, the later it will be initiated. Such a population
initiation scheme, unfortunately, contributes to the elongation
of the algorithm’s running time and can be considered a
disadvantage.

In the rest of this section we consider the second approach
to population sizing, i.e. dynamic adjusting the size and
number of initial populations to changing conditions.

In [28], a DE algorithm (MultiDE) operating on multiple
independent subpopulations was proposed. In MultiDE, the
number of initial populations varies, because the algorithm
periodically reinitializes the already existing subpopulations,
creates new ones and removes ineffective ones. There is no
migration of solutions between the subpopulations, however
MultiDE periodically saves each current global optimum in
a special ‘‘population 0’’. Solutions from ‘‘population 0’’
are used to significantly reduce the probability of premature
convergence to already found global optima and accelerate
the rate of convergence to new ones. Although in MultiDE,
the size of the global population is changing however the
sizing of constituting populations is left to the designer.
In [29], a distributed DE algorithm with explorative–
exploitative population families (DDE-EEPF) is proposed.
The DDE-EEPF consists of two interacting families of sub-
populations. The first family (an explorative one), in its
essence, is a canonical island model. In this family, the size
of the sub-populations is fixed, and the best solutions migrate
between islands according to the ring topology. The sub-
populations of the second family of gradually reduced size (an
exploitative family) are supposed to quickly detect solutions
and deliver them to the first group. Same as in [28], in
DDE-EEPF, the sizing of constituting populations is left to
the designer.

In [30], the improvement of the effectiveness of the
proposed algorithm was achieved due to the dynamic
population sizing, which consisted in a progressive reduction
of the population. Here, DE runs on sub-populations, the size
of which is controlled over time using the success rate of
evolution. When the algorithm works efficiently on a given
sub-population, its size is reduced linearly. However, if the
success rate of evolution is low, attempts are made to improve
it using a set of novel size-dependent mutation strategies
along with subpopulation size control. If the success rate
remains low in the second half of the run, the current size of
the sub-population is kept fixed. If the success rate remains
low at the end of the run, the subpopulation is reduced to
1/6 of its initial size. In the proposed algorithm, the set of
novel mutation strategies is applied to enhance the search
efficiency. As soon as the success rate has improved, the
population size is reduced linearly again.

In [31], a distributed DE with adaptive merging and
splitting (DDE-AMS) of subpopulationswas proposed to deal

with large-scale optimization problems. The high efficiency
of the algorithm is achieved through dynamic subpopulation
restructuring with the use of merge and split operators, while
maintaining a constant size of the entire population. The
merge operator merges the best and worst subpopulations
in order to move the search to promising regions. The split
operator splits the merged subpopulation in half, if it no
longer contributes to evolution. Thus, the merge-and-split
strategy causes the algorithm to operate on a varying number
of sub-populations of varying sizes. To prevent merging of
all sub-populations into a single population, a minimum
number of sub-populations has been established. There is
a migration of individuals between sub-populations, which
takes place with some probability. The DDE-AMS, like
the multi-population algorithms discussed above, has the
same disadvantage - sophisticated dynamic sub-population
restructuring, and thus complex implementation.

Another approach to dynamic population sizing is based
on dynamic restructuring of subpopulations according to
their current status of evolution. In [32], an adaptive multi-
population framework for locating and tracking multiple
optima was proposed. Although the algorithms implemented
into this framework proved to be highly effective in the
tests, this result was paid for by the complex functionality
of the framework. The high efficiency of the algorithms has
been achieved thanks to an impressive arsenal of special
components for controlling the course of the evolutionary
process. These components include: a database of algorithm’s
behavior changes, heuristic clustering, adaptation of the
number of populations according to their convergence,
exclusion of overlapping populations, avoidance of explored
peaks, population hibernation and wakening, movements
for the best individual (a Brownian movement to track a
moving or a better peak, or a Cauchy movement to transform
stagnating population into a converging one). The need to use
all these components together makes the implementation of
this framework quite complicated, which can be considered a
disadvantage.

The idea to usemultiple populations of varying sizes is also
present in an Adaptive Multi-Population Optimization Algo-
rithm for Global ContinuousOptimization (AMPO) proposed
in [33]. The AMPO consists of five sub-populations to which
different search strategies have been assigned. During the
search, the sizes of three subpopulations change dynamically.
The algorithm showed high performance by borrowing some
useful operations from evolutionary algorithms and swarm
intelligence techniques and using them in a multi-population
manner. The disadvantage of this algorithm is not only the
large number of control parameters mentioned by the authors,
but also its complex implementation. In addition to the basic
search algorithm, AMPO must also implement 5 additional
algorithms to perform its basic operations.

There is more research where an idea of partitioning
global population into multiple subpopulations is used to
improve the efficiency of different types of algorithms.
A study of population partitioning techniques on efficiency of

34542 VOLUME 10, 2022

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

swarm algorithms is provided in [34]. Many nature-inspired
algorithms [35]–[42] and various types of optimization
algorithms [43]–[46] use static and dynamic multipopulation
design to improve their efficiency.

However, the implementation of the algorithms proposed
under these two approaches requires extra work in addition
to the implementation of the basic search algorithm. In the
case of a dynamic approach, additionally sophisticated
subpopulation management should be implemented. And
in the case of a static approach, time-consuming experi-
mentation must be carried out to determine the number of
subpopulations, their size, the best interconnection topology
among subpopulations, the policy, rate and frequency of
migration in order to obtain the best performance of the
algorithm.

To address the above issues, this paper proposes a
Multisize No Migration Island-Based Differential Evolution
Algorithm with Removal of Ineffective Islands (IBDEAXr).
The proposed algorithm is very simple in construction and
devoid of disadvantages occurring in the dynamic and static
approaches described above.

To summarize the review of related work, it should be
stated that the population sizing has a significant impact on
the efficiency of EAs and should be included among the basic
functionalities of this type of algorithms.

We have decided to use the discrete-continuous scheduling
problem (DCSP) as a test-bed for our approach. There are
several reasons for such a decision. DCSP is known to be
one of the hardest problems in the scheduling practice [47].
It has several important practical applications including
scheduling production processes [48], chemical production
processes [49], [50] or processes with tasks requiring energy
supply [51], [52]. One of the effective approaches to DCSP
is discretization of the continuous resources required. The
Discrete-Continuous Scheduling Problem with Continuous
Resources Discretization (DCSPwCRD) was introduced
in [53]. Discretization of the continuous resources makes
possible using metaheuristic algorithms to solve instances of
the DCSPwCRD.

III. TEST PROBLEM FORMULATION
The Discrete-Continuous Scheduling Problem with Contin-
uous Resources Discretization (DCSPwCRD) is denoted as
2Z and formulated in the same way as in [53]. Namely,
let J = {J1, J2, . . . , Jn} be a set of nonpreemtable tasks,
with no precedence relations and release dates ri = 0, i =
1, 2, . . . , n, and P = {P1, P2, . . . ,Pm} be a set of parallel
and identical machines, and there is one additional renewable
discrete resource in amount U = 1 available. A task Ji can
be processed in one of the modes li = 1, 2, . . . ,Wi (Wi – the
number of processing modes of task Ji), for which Ji requires
a machine from P and amount of the additional resource
ulii = U/li known in advance. The processing mode li cannot
change during the processing of Ji. For each task two vectors
are defined: a processing times vector τi = [τ 1i , τ

2
i , . . . , τ

Wi
i],

where τ lii is the processing time of task Ji in mode li =
1, 2, . . . ,Wi and a vector of additional resource quantities

allocated in each processing mode ui = [u1i , u
2
i , . . . , u

Wi
i].

The total amount of the continuous resource used by tasks
Ji at any time t within a schedule cannot exceed U .
The goal is to find processing modes for tasks from J and

their sequence on machines from P such that schedule length
Q = max{Ci}, i = 1, . . . , n is minimized.
Our test problem is a particular case of a more general

Multi-Mode Resource-Constrained Project Scheduling Prob-
lem (MMRCPSP), which is known to be NP-hard [54].

IV. THE MULTISIZE ISLAND MODEL
This Section discusses the concept of a multi-size island
model. According to the concept, a set XP of population
sizes should be defined, where XP = {xP1, xP2, . . . , xPK},
and xPk < xPk+1. Then the total primary population should
be decomposed into K sub-populations (islands) of sizes
xPk ∈ XP. This partition of the primary population into
sub-populations is fundamentally different from the partition
used in the canonical island model where subpopulations of
identical sizes are obtained. Dividing a population into the
set of subpopulations of different sizes could be based on
some strategy or could be set in an arbitrary manner. In the
reported experiments we use the second option assuring a fair
distribution of the different population sizes. In the following
sub-section, an algorithm which implements the described
concept is proposed.

A. IBDEAXr - MULTISIZE ISLAND-BASED DIFFERENTIAL
EVOLUTION ALGORITHM WITH REMOVAL OF INEFFECTIVE
ISLANDS
Based on the concept of multi-size population, there is
a proposal for a multi-size island-based DE algorithm
with decloning, without migration, and with removal of
ineffective islands. The algorithm denoted as IBDEAXr

enhances its predecessor - a multi-size island-based DE
algorithm IBDEAX−md, proposed in [1], with the ability to
optimize the number of islands by removing ineffective ones.
Both algorithms take advantage of the different convergence
rates which are characteristic to different population sizes.
The main idea of the IBDEAXr, is to create an archipelago
of K islands (sub-populations) of different sizes. All sub-
populations are initiated at the same moment and are evolved
independently by a copy of the DEAd assigned to each
island. There is nomigration of solutions between the islands.
Concurrently to the main evolution process, two procedures
monitor the situation on all islands. The first one - Small
Island Removal Procedure (SIRP) monitors small islands and
removes them from the archipelago if the algorithms on small
islands start converging and do not offer better solutions than
on the larger islands. The second one - Large Island Removal
Procedure (LIRP) monitors large islands and removes them
from the archipelago if the algorithms running on them
will not offer better solutions than on the smaller operating
islands before the algorithm stops. The details of how exactly
operate SIRP and LIRP are given below. In the case of the
distributed implementation of the IBDEAXr, when the DEAd

VOLUME 10, 2022 34543

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

stops on a particular island a computing resource, on which
the island has been implemented, is released. Below, the
general course of operation of the IBDEAXr and description
of its components are given:

Algorithm 1: IBDEAXr

1. Set the maximum number of fitness function evaluations
max_#ev and calculate the size of the largest population
using (1).

2. Define the set of population sizes XP = {xPk}, where k =
1, 2, . . . ,K .

3. GenerateK populations of sizes xPk ∈ XP, k = 1, 2, . . . ,K .
4. Create an archipelago of K islands, where an island is

comprised by a population of size xPk and a copy of the
DEAd that will evolve this population.

5. On each of K islands start DEAd. Set Kop
= K , Kop – the

number of islands in operation.
6. Start the small islands removal procedure (SIRP).
7. After #sr small islands have been removed from the

archipelago start the large islands removal procedure
(LIRP).

8. Output the best solution among the remained islands.
End of IBDEAXr.

The number of islands and the size of individual islands
can be derived from the size xPK of the largest island IK .
The size xPK we calculate as the square root of the number
of the fitness function evaluations max_#ev available for the
algorithm:

xPK =
√
max_#ev (1)

Having calculated the size of the largest island, we set
the sizes of the smaller islands either arbitrarily or by
decrementing xPK with some coefficient c, which can either
be constant or increase as the size of the islands decreases.
Regardless of the method of determining the size of the
islands, it should be remembered that the smaller the c-factor,
the more accurate the LIRP will work. We recommend that
the sizes of the larger islands do not differ more than 1.5
times, and that the sizes of the smaller islands do not differ
more than 2 times. For the suggested algorithm we propose
two islands removal procedures:

1) SIRP - SMALL ISLANDS REMOVAL PROCEDURE
The general course of operation of the SIRP is given below.

Procedure 1: SIRP (Small Islands Removal Procedure)
1. Stop DEAd on island k at moment #ev either if the best

solution yielded on this island is worse than the best solution
yielded on any other larger island, or #ev = max_#ev.

2. Remove island k from the archipelago if DEAd on k was
stopped before carrying out max_#ev.

3. Update Kop
= Kop - 1.

End of SIRP.

2) LIRP - LARGE ISLANDS REMOVAL PROCEDURE
The procedure removes large islands from the archipelago
with use of a linear tend function ŷ(dk) which predicts the

difference dk between the quality of solutions found on two
adjacent islands Ik and Ik+1. We use the difference dk as
an indirect parameter of the algorithm’s convergence on the
larger island Ik+1 to obtain a linear trend line ŷ(dk), which
then tells us whether to remove Ik+1 from the archipelago or
not. We define the difference dk at point #ev as:

dk = sumCmax(k + 1)− sumCmax(k) (2)

for sumCmax see Sect. 5. The reason we have chosen the
difference dk instead of the values of fitness function itself to
predict island convergence is because of the greater accuracy
of the prediction. The convergence on neighboring islands is
similar, therefore the behavior of the difference dk is more
linear than the behavior of fitness function, and the linear
trend is easier to predict. The smaller the difference between
the population sizes, the more linear the behavior of dk and
the more accurate the prediction.

The moment of starting the removal of large islands should
be determined in the advanced stages of the algorithm’s
operation. By this point, the smaller ‘‘faster’’ islands have
already been removed, and the larger ‘‘slower’’ islands
are still working. Some of these still functioning large
islands may not be able to ‘‘outperform’’ their smaller
predecessors before the algorithm terminates, and therefore
will not improve the results. In such a situation, they can
be considered ineffective and removed from the archipelago.
To remove all ineffective islands, find an island that fails
to improve the result of its smaller predecessor before the
algorithm terminates. Let us denote such an island by Ir . If Ir
has been found, then remove Ir and all larger islands from the
archipelago. The removal of all islands larger than Ir can be
justified by the fact that since island Ir does not outperform
its smaller predecessor before the algorithm terminates, then
each next larger island will not do so, because the larger the
island, the slower it converges. The removal of large islands
can be started e.g. after the first 4 smaller islands has been
already removed from the archipelago. From that moment
on, an x-intercept point of linear trend function ŷ(dk) for all
pairs (Ik , Ik+1) of still operating adjacent islands should be
cyclically checked with a step of e.g. 5%·max_#ev, where
Ik+1 - is the larger island in a pair, k = q, q+1, . . . ,K op

−1,
Iq is the smallest of all islands still in operation, andK op – the
number of islands still in operation. A larger island Ik+1
in the pair (Ik , Ik+1) can be removed only when the linear
trend function ŷ(dk) becomes zero at some x-intercept point
#evc > max_#ev. The larger island Ik+1 in such a pair is
marked as Ir and removed from the archipelago together
with all larger islands Ir+1, Ir+2, . . . , IKop . On the other
hand, if ŷ(dk) becomes zero at the moment #evc < max_#ev,
it means that larger island in the pair may outperform the
smaller one before the algorithm stops and the smaller one
can be removed from the archipelago. However, the removal
of smaller islands is better to entrust to SIRP asmore accurate.
As it may happen, that only some of the large islands still in
operation are removed, the process of removing large islands
should continue until there is only one working island left,
or until #ev = max_#ev. The linear trend line ŷ(dk) can be

34544 VOLUME 10, 2022

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

created using Least squares method by applying (3) - (5) to
e.g. {10%-15%}·max_#ev values of difference dk , preceding
point #evc:

a =
n
∑n

i=1 yiti −
∑n

i=1 ti
∑n

i=1 yi

n
∑n

i=1 t
2
i −

(∑n
i=1 ti

)2 (3)

b = ȳ− a · t̄ (4)

ŷ = a · t + b (5)

where y – the observed value, ȳ – the mean value of all
observed values, ŷ – the predicted value of y, t – the index
of current observation, t̄ – the mean value of all indices t ,
a – the slope of the function and of the line, b - the initial
value of y, n – the number of observations.

The general course of operation of the LIRP is given below.

Procedure 2: LIRP (Large Islands Removal Procedure)
1. While the number of islands still in operation Kop > 1 and #ev <

max_#ev for all pairs of islands (Ik , Ik+1) still in operation keep
checking, with the period of 5%·max_#ev, the value of evip at x-
intercept point of linear trend function ŷ(dk).

2. If there exists a pair of islands (Ik , Ik+1) for which
evip > max_#ev, then remove islands Ik+1, Ik+2, . . . , I

op
K

from the archipelago and update Kop = Kop − K rr ,
K rr – the number of removed ineffective islands.
If there is no such pair, then go to step 1.

End of LIRP.

The computational complexity of the IBDEAXr is the same
as that of the DEAd and is O (n log n). The test results of the
IBDEAXr are presented and discussed in Section 5.

3) DEAD - A SINGLE POPULATION DIFFERENTIAL
EVOLUTION ALGORITHM WITH DECLONING
The DEAd is a combination of the DEAnd and the Decloning
Procedure (DP) first proposed in [17]. The DP was used
to improve the efficiency of the DEAnd by preserving the
diversity of the population at some appropriate level so that
the algorithm can work effectively. It cyclically replaces
clones appearing in the population with new randomly
generated solutions. The procedure does not remove all
clones from the population, because clones are not harmful
to the exploration, on the contrary, they are even desirable.
What actually limits the exploration is their quantity. Too few
clones - too slow convergence, toomany clones - stagnation at
the local optimum. In our experiments, the amounts of clones
identified in the same population by theDP runmultiple times
varied within 13% range.

In this Section, only general descriptions of the DEAnd and
the DEAd are given.

The computational complexity of the DEAnd is determined
by the complexity of the sorting algorithm (merge sort) which
it uses and is O (n log n).
The general course of operation of the DEAd is given

below.
Since the decloning procedure does not increase the size of

the population, the complexity of the DEAd is O (n log n).

Algorithm 2: DEAnd

1. Assume the population of individuals Pc consists of two halves P1c
and P2c , i.e. Pc = P1c + P

2
c , and |Pc| = 2 · xP, |P1c | = xP, |P2c | =

xP;
2. for every target vector Stg in the current population P1c do:
3. Create a mutant vector M from three vectors S0, S1, S2

randomly chosen from P1c , using the equation:
M = S0 + A ∗ r ∗ (S1 − S2), where A > 0 - is a scale factor,
that controls the evolution rate of the population and
r ∈ [0, 1];

4. Create a trial vector T in P2c applying the crossover
operator to each element of mutant vector M and the
corresponding element of target vector Stg according to
the rule:

5. if the random number r ≤ Cr , Cr ∈ [0, 1], then the
trial element is inherited from mutant vector M ,
otherwise from target vector Stg; end if;

6. end for;
7. Create a new population P1c+1 selecting the best vectors

from P1c and P
2
c ;

8. Repeat steps 2 - 7 until the stop criterion is met;
End of DEAnd.

Algorithm 3: DEAd

1. Set the values of the parameters required to carry out the DEAnd;
2. Set the value of the period of decloning T d, which is most

advantageous for the size of the population being evolved;
3. Use the DEAnd to evolve the population. While carrying out the

DEAnd, apply the decloning procedure in cycles determined by T d;
End of DEAd.

V. COMPUTATIONAL EXPERIMENT
In the experiments, the values of the parameters of the DEAd

were assumed to be the same as in [1]. The parameters
necessary to carry out the differential evolution algorithm
were set to the same values as in [55], namely the scale
factor F (in [55], ‘‘F’’ is denoted as ‘‘A’’) which controls the
evolution rate of the populationwas setF = 1,5 and the values
of the variable rand ∈ [0, 1]. The crossover constants Crp
and Crm which control the probability that the trial individual
will receive the actual individual’s genes were set Crp = 0,2
and Crm = 0,1, where p and m in the notations Crp and Crm
stand for tasks’ positions and modes. Problem instances used
in all of the reported experiments are available by e-mail or
at http://kpisk.am.gdynia.pl/as/Instances_of_DCSPwCRD/.
In order to evaluate the efficiency of the considered
algorithms, parameters sumCmax and AVG sumCmax were
introduced. A single value of sumCmax was calculated as
the total of 54 Cmax values obtained by solving the test set
of 54 instances of the problem. To ensure the credibility
of results, the test set of 54 instances was solved 10 times,
which allowed to calculate AVG sumCmax as the average
of 10 values of sumCmax . Such AVG sumCmax differs from
the average of 266 values of sumCmax by only about 0,2%.
It was assumed that the deviation of 0,2% from the average
of 266 does not prevent the correct evaluation of the results
obtained. In the cases when higher precision was required, the
test set of 54 instances was solved 100 times, which reduced
the deviation to about 0,05%.

VOLUME 10, 2022 34545

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

FIGURE 1. AVG sumCmax yielded by the DEAd for different population
sizes and by IBDEAXr w.r.t. #ev.

FIGURE 2. A min_xP s curve showing relative error of xP s’ minima
(AVG∗sumCmax) w.r.t. AVG∗∗sumCmax - the best value of AVGsumCmax
across all xP s.

In the experiments, we considered the following population
sizes: Xp = {10, 20, 50, 100, 200, 300, 400, 500, 600, 1000,
1500}, and the number of the fitness function evaluations #ev
available for the algorithms to yield a solution to the problem
was set to #ev = 720000.
All tests were carried out on a PC under 64-bit operating

system Windows 7 Enterprise with Intel(R) Core(TM)
i5-2300 CPU @ 2.80 GHz 3.00GHz, RAM 4GB compiled
with aid of Borland Turbo Delphi for Win32. When the
number of fitness function evaluations was set to 720000,
mean time required by the DEAnd to find a solution for
the problem sizes 10 × 2 and 10 × 3 for all discretization
levels was approximately 2 – 3s and for the problem size
20 × 2 for all discretization levels approximately 5 – 6s. The
total time taken by the DEAnd to process all 54 instances was
approximately 206s.

A. EXPERIMENT RESULTS
Below we present graphical results obtained during our tests
with the proposed IBDEAXr and its constituent parts, such as

FIGURE 3. (a) difference dk between islands of sizes 600 and 1000 and
the linear trend lines based on 10%·max_#ev of points, preceding points
{70%, 80%, 90%}·max_#ev. (b) the detailed view of the trend lines.

DE algorithm with decloning (DEAd), and Small and Large
Island Removal Procedures (SIRP and LIRP respectively).
In these graphs, the quality of solutions is represented by
the values of parameter AVG sumCmax (the details of AVG
sumCmax calculation are provided above in Section 5). The
quality of solutions is inversely related to the value of AVG
sumCmax , i.e. the smaller the value of AVG sumCmax , the
higher the quality of the solutions found.

Fig. 1 shows curves of AVG sumCmax , an average of total
fitness of 54 test instances of the test problem, obtained for
all tested population sizes. The red dashed line in it, marked
with IBDEAXr, shows a hypothetical nearly ideal efficiency
curve of the DEAd. As it can be seen from Fig. 1, no single
curve from this collection can completely retrace such curve,
regardless of the size of the population onwhich DEAd would
operate. At most, if at all, only a part of the curve can be
retraced. Fig. 2 shows the same nearly ideal curve, however,

34546 VOLUME 10, 2022

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

FIGURE 4. (a) difference dk between islands of sizes 1000 and 1500 and
the linear trend lines based on 10%·max_#ev of points, preceding points
{60%, 70%}·max_#ev. (b) the detailed view of the trend lines.

composed of multiple segments obtained by Small Island
Removal Procedure (SIRP). Fig. 3(a) and (b) show difference
dk between islands of sizes 600 and 1000 and the linear
trend lines based on 10%·max_#ev points preceding points
{70%, 80%, 90%}·max_#ev. The detailed view of the trend
lines is shown in Fig. 3(b). Similarly, Fig. 4(a) and (b) show
difference dk between islands of sizes 1000 and 1500 and the
linear trend lines based on 10%·max_#ev points preceding
points {60%, 70%}·max_#ev.

Figures 4(a) and (b) also illustrate the process of removal of
ineffective islands from the archipelago, which were islands
of sizes 1000 and 1500. The island of size 1500 was removed
after the DEAd carried out 70%·max_#ev. It took more time,
namely 90%·max_#ev, to remove island of size 1000. This
way IBDEAXr gradually reduced the number of processing
units from 11 at the beginning to 1 after 90%·max_#ev have
been carried out. For the last 10%·max_#ev, the algorithm
was operating on one island of population of size 600.

FIGURE 5. An example of reducing the number of islands in operation
and the size of the total population by IBDEAXr for the case K = 11, XP =
{10, 20, 50, 100, 200, 300, 400, 500, 600, 1000, 1500}.

Figure 5 illustrates how the number of operating islands and
the size of the total population have changed over time.

It also makes the efficiency of multi-size island-based
algorithms independent of the particular islands’ size and
practically eliminates the need of tuning the size of islands
which is usually done in the case of the canonical island
model. This ability makes it possible to release the compu-
tational unit earlier, in the case of concurrent execution of the
algorithm on multiple computational units, or to shorten the
algorithm’s execution time, in the case of its execution on a
single computational unit. The proposed algorithmwas tested
by solving computationally difficult scheduling problem,
which is the discrete-continuous scheduling with continuous
resource discretization. The experiment proved the ability to
reduce the number of processing units. It reduced the number
of islands from 11 at the beginning to 1 after 90% of given
number of fitness function evaluations (max_#ev) have been
carried out. For the last 10%·max_#ev, the algorithm was
operating only on one island.

In addition to the above-described experiment with
removal of ineffective islands, tests were carried out in
order to show the effect of applying the multi-size island
model without migration on the efficiency of the standard
DE algorithm. For this purpose, the standard DE algorithm
proposed by Storn and Price in [9] was implemented
and experimentally tested. This algorithm is described in
subsection IV.A.3 as ‘‘Algorithm 2: DEAnd’’. DEAnd was
used as a search algorithm to construct a multi-size island-
based algorithm without migration - IBDEAndXr, consisting
of K = 8 islands, with population sizes XP = {10, 20, 50,
100, 200, 600, 1000, 1500}. The results of the experiments
are presented in Fig. 6. In this figure, the solid colored curves
show the dynamics of the fitness function on the particular
islands, and the red dashed line shows the dynamics of the
resulting fitness function curve of the solutions found by
IBDEAndXr. Comparing the curves in Fig. 1 and Fig. 6, it can
be seen how unfavorably for DEAnd, w.r.t. DEAd, differ the

VOLUME 10, 2022 34547

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

FIGURE 6. AVG sumCmax yielded by the DEAnd for different population
sizes and by IBDEAndXr w.r.t. #ev.

curves corresponding to populations with smaller sizes XP =
{10, 20, 50}. On the other hand, the resulting IBDEAndXr

curve is practically as good as the IBDEAXr’s curve in
Fig. 1. This fact shows that owing to the multi-size island
model, IBDEAndXr is able to find very good solutions and
demonstrate good dynamics of the fitness function, despite
the poorer quality of solutions on some islands.

VI. CONCLUSION
The paper proposes a multi-size island-based DE algorithm
with decloning, without migration, and with removal of
ineffective islands. The algorithm denoted as IBDEAXr

implements a novel concept of multi-size island model which
facilitates the design of island-based algorithms and brings
such benefits as: improved fitness dynamics throughout
the entire time of operation even without the migration of
solutions between the islands. The absence of migration,
which eliminates the need to establish the topology and
the policy of migration. The proposed IBDEAXr enhances
its predecessor - a multi-size island-based DE algorithm
IBDEAX−md, proposed in [1], with the ability to optimize the
number of islands by removing ineffective ones.

Future research will involve validating the multi-size
island approach using a wider spectrum of computationally
hard optimization problems and implementing and validating
the multi-size islands framework using different types of
population-based algorithms.

REFERENCES
[1] A. Skakovski and P. Jȩdrzejowicz, ‘‘An island-based differential evolution

algorithm with the multi-size populations,’’ Expert Syst. Appl., vol. 126,
pp. 308–320, Jul. 2019, doi: 10.1016/j.eswa.2019.02.027.

[2] K. G. Dhal, A. Das, S. Sahoo, R. Das, and S. Das, ‘‘Measuring the curse of
population size over swarm intelligence based algorithms,’’ Evolving Syst.,
vol. 12, no. 3, pp. 779–826, Dec. 2019, doi: 10.1007/s12530-019-09318-0.

[3] A. P. Piotrowski, ‘‘Review of differential evolution population
size,’’ Swarm Evol. Comput., vol. 32, pp. 1–24, Feb. 2017, doi:
10.1016/j.swevo.2016.05.003.

[4] R. E. Smith and E. Smuda, ‘‘Adaptively resizing populations: Algorithm,
analysis, and first results,’’ Complex Syst., vol. 9, no. 1, pp. 47–72, 1995.

[5] D. E. Goldberg, The Design of Innovation: Lessons From and for
Competent Genetic Algorithms. Boston, MA, USA: Kluwer, 2002.

[6] F. G. Lobo and C. F. Lima, ‘‘Revisiting evolutionary algorithms
with on-the-fly population size adjustment,’’ in Proc. 8th Annu.
Conf. Genetic Evol. Comput. (GECCO), 2006, pp. 1241–1248, doi:
10.1145/1143997.1144192.

[7] V. K. Koumousis and C. P. Katsaras, ‘‘A saw-tooth genetic algorithm
combining the effects of variable population size and reinitialization
to enhance performance,’’ IEEE Trans. Evol. Comput., vol. 10, no. 1,
pp. 19–28, Feb. 2006, doi: 10.1109/TEVC.2005.860765.

[8] O. Roeva, S. Fidanova, and M. Paprzycki, ‘‘Influence of the population
size on the genetic algorithm performance in case of cultivation process
modelling,’’ in Proc. Federated Conf. Comp. Sci. Inf. Syst., 2013,
pp. 371–376.

[9] R. Storn and K. Price, ‘‘Differential evolution—A simple and
efficient heuristic for global optimization over continuous spaces,’’
J. Global Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997, doi:
10.1023/A:1008202821328.

[10] N. Hansen and S. Kern, ‘‘Evaluating the CMA evolution strategy on
multimodal test functions,’’ in Proc. PPSN (Lecture Notes in Computer
Science), vol. 3242. Berlin, Germany: Springer, 2004, pp. 282–291, doi:
10.1007/978-3-540-30217-9_29.

[11] T. Chen, K. Tang, G. Chen, and X. Yao, ‘‘A large population size can be
unhelpful in evolutionary algorithms,’’ Theor. Comput. Sci., vol. 436, no. 2,
pp. 54–70, Jun. 2012, doi: 10.1016/j.tcs.2011.02.016.

[12] R. A. Sarker and M. F. A. Kazi, ‘‘Population size, search space and quality
of solution: An experimental study,’’ in Proc. Congr. Evol. Comput. (CEC),
2003, pp. 2011–2018, doi: 10.1109/CEC.2003.1299920.

[13] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, ‘‘Multi-population
techniques in nature inspired optimization algorithms: A comprehensive
survey,’’ Swarm Evol. Comput., vol. 44, pp. 365–387, Feb. 2019, doi:
10.1016/j.swevo.2018.04.011.

[14] H. Muhlenbein, ‘‘Evolution in time and space: The parallel genetic
algorithm,’’ in Foundations of Genetic Algorithms FOGA, vol. 1.
Burlington, MA, USA: Morgan Kaufmann, 1991, pp. 316–337.

[15] D. Whitley and T. Starkweather, ‘‘GENITOR II: A distributed genetic
algorithm,’’ J. Exp. Theor. Artif. Intell., vol. 2, no. 3, pp. 189–214,
Jul. 1990, doi: 10.1080/09528139008953723.

[16] P. Jódrzejowicz and A. Skakovski, ‘‘Properties of the island-based and
single population differential evolution algorithms applied to discrete-
continuous scheduling,’’ in Proc. KES-IDT, Puerto de la Cruz, Spain, 2016,
pp. 349–359.

[17] P. Jódrzejowicz and A. Skakovski, ‘‘Improving performance of the
differential evolution algorithm using cyclic decloning and changeable
population size,’’ J. CUS, vol. 22, no. 6, pp. 874–893, 2016, doi:
10.3217/jucs-022-06-0874.

[18] S. Luke, G. C. Balan, and L. Panait, ‘‘Population implosion in
genetic programming,’’ in Proc. GECCO (Lecture Notes in Computer
Science), vol. 2724. Berlin, Germany: Springer, 2003, pp. 1729–1739, doi:
10.1007/3-540-45110-2_65.

[19] J. Chen and M. Mahfouf, ‘‘A population adaptive based immune algorithm
for solving multi-objective optimization problems,’’ in Artificial Immune
Systems (ICARIS) (Lecture Notes in Computer Science), vol. 4163. Berlin,
Germany: Springer, 2006, pp. 280–293, doi: 10.1007/11823940_22.

[20] J. L. J. Laredo, C. Fernandes, J. J. Merelo, and C. Gagné, ‘‘Improving
genetic algorithms performance via deterministic population shrinkage,’’
in Proc. 11th Annu. Conf. Genetic Evol. Comput. (GECCO), New York,
NY, USA, 2009, pp. 819–826, doi: 10.1145/1569901.1570014.

[21] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan, ‘‘Population sizing
for entropy-based model building in discrete estimation of distribution
algorithms,’’ in Proc. 9th Annu. Conf. Genetic Evol. Comput. (GECCO),
New York, NY, USA, 2007, pp. 601–608, doi: 10.1145/1276958.1277080.

[22] F. G. Lobo and C. F. Lima, ‘‘Adaptive population sizing schemes in genetic
algorithms,’’ Parameter Setting in Evolutionary Algorithms (Studies in
Computational Intelligence), vol. 54. Berlin, Germany: Springer, 2007,
pp. 185–204, doi: 10.1007/978-3-540-69432-8_9.

[23] G. R. Harik and F. G. Lobo, ‘‘A parameter-less genetic algorithm,’’ in Proc.
GECCO, Orlando, FL, USA, 1999, pp. 258–265.

[24] M. Pelikan and T.-K. Lin, ‘‘Parameter-less hierarchical BOA,’’ in
Proc. GECCO (Lecture Notes in Computer Science), vol. 3103. Berlin,
Germany: Springer, 2004, pp. 24–35, doi: 10.1007/978-3-540-24855-2_3.

[25] B. Doerr and W. Zheng, ‘‘From understanding genetic drift to a smart-
restart parameter-less compact genetic algorithm,’’ in Proc. Genetic Evol.
Comput. Conf., New York, NY, USA, Jun. 2020, pp. 805–813, doi:
10.1145/3377930.3390163.

34548 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.eswa.2019.02.027
http://dx.doi.org/10.1007/s12530-019-09318-0
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1145/1143997.1144192
http://dx.doi.org/10.1109/TEVC.2005.860765
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/978-3-540-30217-9_29
http://dx.doi.org/10.1016/j.tcs.2011.02.016
http://dx.doi.org/10.1109/CEC.2003.1299920
http://dx.doi.org/10.1016/j.swevo.2018.04.011
http://dx.doi.org/10.1080/09528139008953723
http://dx.doi.org/10.3217/jucs-022-06-0874
http://dx.doi.org/10.1007/3-540-45110-2_65
http://dx.doi.org/10.1007/11823940_22
http://dx.doi.org/10.1145/1569901.1570014
http://dx.doi.org/10.1145/1276958.1277080
http://dx.doi.org/10.1007/978-3-540-69432-8_9
http://dx.doi.org/10.1007/978-3-540-24855-2_3
http://dx.doi.org/10.1145/3377930.3390163

A. Skakovski, P. Jędrzejowicz: Multisize No Migration Island-Based Differential Evolution Algorithm

[26] B. Doerr and W. Zheng, ‘‘Sharp bounds for genetic drift in estimation
of distribution algorithms,’’ IEEE Trans. Evol. Comput., vol. 24, no. 6,
pp. 1140–1149, Dec. 2020, doi: 10.1109/TEVC.2020.2987361.

[27] B. Doerr, ‘‘The runtime of the compact genetic algorithm on jump
functions,’’ Algorithmica, vol. 83, no. 10, pp. 3059–3107, Oct. 2021, doi:
10.1007/s00453-020-00780-w.

[28] Z. V. Hendershot and F. W. Moore, ‘‘MultiDE: A simple, powerful
differential evolution algorithm for finding multiple global optima,’’ in
Proc. FLAIRS Conf., Miami Beach, FL, USA, 2004, pp. 368–373.

[29] M.Weber, F. Neri, and V. Tirronen, ‘‘Distributed differential evolution with
explorative–exploitative population families,’’ Genetic Program. Evolv-
able Mach., vol. 10, no. 4, pp. 343–371, Oct. 2009, doi: 10.1007/s10710-
009-9089-y.

[30] Y. Fu, H. Wang, and M.-Z. Yang, ‘‘An adaptive population size differential
evolution with novel mutation strategy for constrained optimization,’’
2018, arXiv:1805.04217.

[31] Y.-F. Ge, W. J. Yu, Y. Lin, Y. J. Gong, and Z. H. Zhan, ‘‘Distributed
differential evolution based on adaptive mergence and split for large-
scale optimization,’’ IEEE Trans. Cybern., vol. 48, no. 7, pp. 2166–2180,
Jul. 2018, doi: 10.1109/TCYB.2017.2728725.

[32] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, ‘‘An
adaptive multipopulation framework for locating and tracking multiple
optima,’’ IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605,
Aug. 2016, doi: 10.1109/TEVC.2015.2504383.

[33] Z. Li, V. Tam, and L. K. Yeung, ‘‘An adaptive multi-population
optimization algorithm for global continuous optimization,’’ IEEE Access,
vol. 9, pp. 19960–19989, 2021, doi: 10.1109/ACCESS.2021.3054636.

[34] R. Chaudhary and H. Banati, ‘‘Study of population partitioning techniques
on efficiency of swarm algorithms,’’ Swarm Evol. Comput., vol. 55,
Jun. 2020, Art. no. 100672.

[35] H. Chen, S. Li, A. Asghar Heidari, P. Wang, J. Li, Y. Yang, M. Wang, and
C. Huang, ‘‘Efficient multi-population outpost fruit fly-driven optimizers:
Framework and advances in support vector machines,’’ Expert Syst. Appl.,
vol. 142, Mar. 2020, Art. no. 112999.

[36] B. H. Abed-alguni, A. F. Klaib, and K. N. Nahar, ‘‘Island-based
whale optimisation algorithm for continuous optimisation problems,’’ Int.
J. Reasoning-Based Intell. Syst., vol. 11, no. 4, pp. 319–329, 2019.

[37] M. A. Al-Betar and M. A. Awadallah, ‘‘Island bat algorithm for
optimization,’’ Expert Syst. Appl., vol. 107, pp. 126–145, Oct. 2018.

[38] M. A. Awadallah, M. A. Al-Betar, A. L. Bolaji, I. A. Doush,
A. I. Hammouri, and M. Mafarja, ‘‘Island artificial bee colony for global
optimization,’’ Soft Comput., vol. 24, pp. 13461–13487, Feb. 2020.

[39] B. H. Abed-alguni and M. Barhoush, ‘‘Distributed grey wolf optimizer for
numerical optimization problems,’’ Jordanian Jour. Comput. Inf. Technol.,
vol. 4, no. 3, pp. 130–149, 2018.

[40] B. H. Abed-alguni and D. Paul, ‘‘Island-based cuckoo search with elite
opposition-based learning and multiple mutation methods for solving
discrete and continuous optimization problems,’’ in Review at Soft
Computing. Cham, Switzerland: Springer, 2021, doi: 10.21203/rs.3.rs-
773831/v1.

[41] S.-S. Guo, J.-S. Wang, and X.-X. Ma, ‘‘Improved bat algorithm based
on multipopulation strategy of island model for solving global function
optimization problem,’’ Comput. Intell. Neurosci., vol. 2019, Aug. 2019,
Art. no. 6068743, doi: 10.1155/2019/6068743.

[42] M. A. Al-Betar, M. A. Awadallah, I. Abu Doush, A. I. Hammouri,
M. Mafarja, and Z. A. A. Alyasseri, ‘‘Island flower pollination algorithm
for global optimization,’’ J. Supercomput., vol. 75, no. 8, pp. 5280–5323,
Aug. 2019.

[43] M. A. Al-Betar, M. A. Awadallah, A. T. Khader, and Z. A. Abdalkareem,
‘‘Island-based harmony search for optimization problems,’’ Expert Syst.
Appl., vol. 42, no. 4, pp. 2026–2035, Mar. 2015.

[44] L. de Lima Corrêa and M. Dorn, ‘‘A multi-population memetic algorithm
for the 3-D protein structure prediction problem,’’ Swarm Evol. Comput.,
vol. 55, Jun. 2020, Art. no. 100677, doi: 10.1016/j.swevo.2020.100677.

[45] M. Łącki, ‘‘An adaptive island model of population for neuroevolutionary
ship handling,’’ Polish Maritime Res., vol. 28, no. 4, pp. 142–150,
Jan. 2022, doi: 10.2478/pomr-2021-0056.

[46] R. Vafashoar and M. R. Meybodi, ‘‘A multi-population differential
evolution algorithm based on cellular learning automata and evo-
lutionary context information for optimization in dynamic environ-
ments,’’ Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 106009, doi:
10.1016/j.asoc.2019.106009.

[47] J. Józefowska and J. Wȩglarz, ‘‘On a methodology for discrete–continuous
scheduling,’’ Eur. J. Oper. Res., vol. 107, no. 2, pp. 338–353, Jun. 1998,
doi: 10.1016/S0377-2217(97)00346-9.

[48] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell,
I. E. Grossmann, J. Hooker, C. Méndez, G. Sand, and J. Wassick, ‘‘Scope
for industrial applications of production scheduling models and solution
methods,’’ Comput. Chem. Eng., vol. 62, pp. 161–193, Mar. 2014, doi:
10.1016/j.compchemeng.2013.12.001.

[49] H. Lee and C. T. Maravelias, ‘‘Combining the advantages of discrete- and
continuous-time scheduling models: Part 1. Framework and mathematical
formulations,’’ Comput. Chem. Eng., vol. 116, pp. 176–190, Aug. 2018,
doi: 10.1016/j.compchemeng.2017.12.003.

[50] H. Lee and C. T. Maravelias, ‘‘Combining the advantages of discrete-
and continuous-time scheduling models: Part 2. Systematic methods
for determining model parameters,’’ Comput. Chem. Eng., vol. 128,
pp. 557–573, Sep. 2019, doi: 10.1016/j.compchemeng.2018.10.020.

[51] R. Różycki and J. Węglarz, ‘‘Solving a power-aware scheduling problem
by grouping jobs with the same processing characteristic,’’ Discrete Appl.
Math., vol. 182, pp. 150–161, Feb. 2015, doi: 10.1016/j.dam.2013.11.003.

[52] R. Różycki and J. Węglarz, ‘‘Improving the efficiency of scheduling
jobs driven by a common limited energy source,’’ in Proc. MMAR,
Międzyzdroje, Poland, 2018, pp. 932–936, doi:
10.1109/MMAR.2018.8486126.

[53] J. Joózefowska, M. Mika, R. Rózycki, G. Waligóra, and J. Weglarz,
‘‘Solving the discrete-continuous project scheduling problem via its
discretization,’’ Math. Methods Oper. Res., vol. 52, no. 3, pp. 489–499,
Dec. 2000, doi: 10.1007/s001860000094.

[54] M. Bartusch, R. H. Möhring, and F. J. Radermacher, ‘‘Scheduling project
networks with resource constraints and time Windows,’’ Ann. Oper. Res.,
vol. 16, no. 1, pp. 199–240, Dec. 1988, doi: 10.1007/BF02283745.

[55] N. Damak, B. Jarboui, P. Siarry, and T. Loukil, ‘‘Differential evolution for
solving multi-mode resource-constrained project scheduling problems,’’
Comput. Oper. Res., vol. 36, pp. 2653–2659, Sep. 2009.

ALEKSANDER SKAKOVSKI received the M.S.
degree in computer science from Kaunas Tech-
nical University, Kaunas, Lithuania, in 1983, and
the Ph.D. degree in computer science from the
Technical University of Gdańsk, Gdańsk, Poland,
in 1997.

He is currently an Assistant Professor with
the Department of Information Systems, Gdynia
Maritime University, Gdynia, Poland. He is the
coauthor of a book and about 30 articles. His

research interests include artificial intelligence, software reliability engineer-
ing, task scheduling and assignment problems, and parallel and distributed
computing.

Dr. Skakovski is a member of KES International Scientific Community.

PIOTR JĘDRZEJOWICZ (Member, IEEE) received
the Ph.D. and Habilitation degrees in economics
and operational research from Gdańsk University,
Poland.

He is currently a Full Professor and the Chair
of the Information Systems with Gdynia Maritime
University, Gdynia, Poland. He has authored
several books, numerous book chapters, and
over 200 papers published in the international
scientific journals and proceedings. During his

career, he has been a Visiting Professor in Germany, U.K., China, Sweden,
and a Research Fellow with the School of Computer Science, McGill
University, Montreal. His research interests include machine learning,
software reliability engineering, and decision support systems.

Prof. Jędrzejowicz is an Elected Member of the Committee of Computer
Science, Polish Academy of Science. During the present term, he is chairing
the Polish Chapter, IEEE SMC Society.

VOLUME 10, 2022 34549

http://dx.doi.org/10.1109/TEVC.2020.2987361
http://dx.doi.org/10.1007/s00453-020-00780-w
http://dx.doi.org/10.1007/s10710-009-9089-y
http://dx.doi.org/10.1007/s10710-009-9089-y
http://dx.doi.org/10.1109/TCYB.2017.2728725
http://dx.doi.org/10.1109/TEVC.2015.2504383
http://dx.doi.org/10.1109/ACCESS.2021.3054636
http://dx.doi.org/10.21203/rs.3.rs-773831/v1
http://dx.doi.org/10.21203/rs.3.rs-773831/v1
http://dx.doi.org/10.1155/2019/6068743
http://dx.doi.org/10.1016/j.swevo.2020.100677
http://dx.doi.org/10.2478/pomr-2021-0056
http://dx.doi.org/10.1016/j.asoc.2019.106009
http://dx.doi.org/10.1016/S0377-2217(97)00346-9
http://dx.doi.org/10.1016/j.compchemeng.2013.12.001
http://dx.doi.org/10.1016/j.compchemeng.2017.12.003
http://dx.doi.org/10.1016/j.compchemeng.2018.10.020
http://dx.doi.org/10.1016/j.dam.2013.11.003
http://dx.doi.org/10.1109/MMAR.2018.8486126
http://dx.doi.org/10.1007/s001860000094
http://dx.doi.org/10.1007/BF02283745

