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ABSTRACT We investigated 12 years DNS query logs of our campus network and identified phenomena of
malicious botnet domain generation algorithm (DGA) traffic. DGA-based botnets are difficult to detect using
cyber threat intelligence (CTI) systems based on blocklists. Artificial intelligence (AI)/machine learning
(ML)-based CTI systems are required. This study (1) proposed a model to detect DGA-based traffic based
on statistical features with datasets comprising 55 DGA families, (2) discussed how CTI can be expanded
with computable CTI paradigm, and (3) described how to improve the explainability of the model outputs
by blending explainable AI (XAI) and open-source intelligence (OSINT) for trust problems, an antidote for
skepticism to the shared models and preventing automation bias. We define the XAI-OSINT blending as
aggregations of OSINT for AI/ML model outcome validation. Experimental results show the effectiveness
of our models (96.3% accuracy). Our random forest model provides better robustness against three state-
of-the-art DGA adversarial attacks (CharBot, DeepDGA, MaskDGA) compared with character-based deep
learning models (Endgame, CMU, NYU, MIT). We demonstrate the sharing mechanism and confirm that
the XAI-OSINT blending improves trust for CTI sharing as evidence to validate our proposed computable
CTI paradigm to assist security analysts in security operations centers using an automated, explainable
OSINT approach (for second opinion). Therefore, the computable CTI reducesmanual intervention in critical
cybersecurity decision-making.

INDEX TERMS Adversarial machine learning, botnet, cybersecurity, DGA, explainable artificial
intelligence, threat intelligence.

I. INTRODUCTION
Cyber threat intelligence (CTI), often also referred to as threat
intelligence (TI), can be understood as processes, tools, and
activities in the cyber world’s intelligence cycle [1]. CTI
also includes analytical processes used to analyze threats
and share information regarding threats, such as indicators of
compromise (IoC). Therefore, it is a crucial concept of future
cybersecurity to recognize a large-scale cyberattack incident
rapidly [1].

Since the mid-1980s, researchers have been highlighting
the explainability aspects of artificial intelligence (AI) or
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expert systems, which grows into explainable AI (XAI)
research field [2]–[4].

A. BOTNET DGA DETECTION
Botnet is notorious for causing many severe cyberattacks.
It uses a command and control (C&C) server [5]. Domain
generation algorithm (DGA)-based botnet is arguably the
most challenging type of botnets to detect because it uses
various C&C server domains that are algorithmically gener-
ated. The bot queries a C&C server through a domain name
system (DNS) traffic to hide their communication messages.
Therefore, security defense systems find it challenging to
detect [6].
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FIGURE 1. Changes in the malicious botnet DGA traffics (Conficker) in our
campus networks, observed by DNS query logs analysis.

We analyzed a 12-year dataset of DNS server query logs
(4,383 days from 2004 to 2015) from our campus’ full cache
resolver. Surprisingly, 107 DNS queries (malicious domain
names) were detected as botnet traffic (Fig. 1). These results
were obtained using 803,333 malicious domain names from
our blocklist dataset; however, due to the characteristics of the
algorithmically generated domain in the DGA [6], depending
only on a domain blocklist might be insufficient. These
characteristics indicate that an AI/machine learning (ML)
model for CTI systems is necessary.

In this paper, we developed a botnet DGA classification
model and provided a comparison with a recent previous
work [7] which used the same approach (statistical features-
based) and same ML algorithm (random forest). We also
compared our model’s robustness with previous works of
character-based deep learning models [8] against three state-
of-the-art DGA adversarial ML attacks (MaskDGA [9],
CharBot [10], and DeepDGA [11]). Furthermore, using the
DGA detection problem as a case study, we demonstrated
our approach to extend the current CTI sharing paradigm,
described in the next section.

B. CTI SHARING PARADIGM
Literature surveys/reviews of CTI sharing are available in [1],
[12], [13]. To the best of our knowledge, no research
highlighting the importance of sharing AI/ML models for
CTI has been published. Moreover, existing CTI plat-
forms [12] and tools [13] (e.g., MISP, NC4 CTX/Soltra
Edge, ThreatConnect, AlienVault, IBM X-Force Exchange,
Anomali, ThreatExchange, CrowdStrike, ThreatQuotient,
EclecticIQ, CRITs, CIF v3, AlliaCERT) do not appear to
promote sharing AI/ML models for CTI.

Therefore, this research aims to fill this gap by proposing
an extension of actionable CTI, namely, computable CTI,
a new paradigm in CTI sharing. We define computable
CTI as the next level of actionable CTI by extending
the European Union Agency for Cybersecurity (ENISA)’s
definition of actionable CTI using AI/ML computability
criteria [14]. Furthermore, we define that computable CTI
paradigm encourages sharing AI or ML models of CTI
systems for cybersecurity communities. As there are already
marketplaces for AI models, how to achieve the concept of

extendingCTI sharingwithAI/MLmodels in a practicalman-
ner will be meaningful. The challenging issues with broad
adoption of computable CTI sharing include potential bias
of decision, privacy preservation [15], [16] and robustness
against adversarial ML attacks [17], [18].

Fig. 2 shows the conceptual design of computable CTI.
Various CTI sources are available in the market and even
publicly available to communities, such as open-source
intelligence (OSINT) [19]. Our proposed paradigm uses the
OSINT ecosystem to enhance XAI techniques by providing
a second opinion from IoC obtained from OSINT, thus
preventing automation bias when using AI/ML for security
automation of CTI applications. The interaction works two
ways: retrieving IoC from OSINT for a second opinion
and submitting new confirmed IoC findings to OSINT
repositories. The submission of new information to OSINT
repositories needs to be conducted in a careful manner,
as it can be a way to inject false or poor quality findings
intentionally or unintentionally that can cause issues with
other detectors relying on such OSINT and poison any
training process [20].

As highlighted in [21] and [22], trust is a critical ingredient
in the CTI sharing ecosystem. The increasing popularity
of OSINT, where communities can subscribe and add new
IoC of malicious malware, dangerous domain names/IP
addresses, and other information related to a threat, increases
the concern of trust and validity in CTI because fake/false
IoC information can be quickly submitted into OSINT
repositories [19].

Recently, XAI has become an important copilot assisting
human users and experts in making critical decisions [23].
XAI could give leverage to make serious decisions in the
medical domain [24] and security decisions in dealing with
cyber threats in a complicated/mission-critical situation.
Because explainability is being mandated in the European
Union General Data Protection Regulation (GDPR), it has
become critical for practitioners across industries [25].
However, as stressed in [26], explanations in the XAI
implementation should be tailored depending on the context
and other considerations. Achieving trustable XAI is still
one of the grand challenges being pursued by researchers in
this field [27], [28]. Our research’s objective is to propose
blending XAI and OSINT to solve this problem of trust.

C. CONTRIBUTIONS
First, this study expands CTI with computable CTI to reduce
human intervention in the cybersecurity decision-making
process [23], [24]. Moreover, we improve the explainability
of the AI/MLmodel outputs by blending the XAI and OSINT
methods to enhance trust in CTI sharing. We use the DGA
detection problem to demonstrate a proof of concept and
validate our proposed computable CTI paradigm.

Second, this research proposes a model to detect botnet
DGA-based traffic. Compared with a recent study [7],
which uses a similar approach (statistical features-based
with random forest algorithm) but depends on 24 features,
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FIGURE 2. Conceptual design of the proposed computable CTI paradigm.

using only seven features proposed in our paper is enough
to deliver a satisfactory performance. Moreover, compared
with character-based deep learning models [8], our proposed
model provides a better defense against three state-of-the-art
DGA adversarial ML attacks (CharBot [10], DeepDGA [11],
MaskDGA [9]).

Third, this study contributes to the cybersecurity literature
as a gateway/direction for future research on AI/ML-based
CTI sharing. We released the code and datasets of this study
to the IEEE Code Ocean [29] and IEEE DataPort [30] to
facilitate reproducible research.

II. RELATED WORKS
Although multiple approaches can be used to guard DNS
systems against botnet malware (hiding its communications
with C&C server), the conventional DNS security approach,
which is filtering based on blocklists, is problematic
because no blocklist is completely reliable [31], [32]. The
most recent survey/review papers on DNS-based DGA-
botnet malicious domain name detection can be seen
in [5], [33], [34].

In a recent publication on botnet DGA detection, Hoang
and Vu [7] proposed an improved random forest-based model
by calculating 24 statistical features, such as character n-gram
frequency distributions of a domain name, entropy values,
the first character is a digit number or not, and various other
statistical calculations. Their experimental results using a
dataset of 39 DGA families show an enhanced performance
compared with their previous works [7].

However, one may argue that calculating 24 features
increases the complexity in computation. Thus, we proposed
to use only seven features: entropy, relative entropy Alexa,
the minimum of relative entropy botnets, information radius,
character length, a new feature generated using a decision tree
algorithm, and a domain name’s reputation score. In addition,
we experiment with broader coverage of DGA datasets (55
DGA families in total).

Besides the statistical features approach, the character-
based classification approach, which relies on character-level
embeddings of a domain name, can also be used for DGA
classification. Yu et al. [8] compiled character-level-based
deep learning models with various architectures for DGA
classification. To evaluate our work, we implemented four
deep learning models: Endgame [35], CMU [36], NYU [37],
and MIT [38].

The current state-of-the-art DGA attacks can be found in
CharBot [10], DeepDGA [11], and MaskDGA [9], where
the authors employed various sophisticated approaches,
such as adversarial ML evasion attack/adversarial examples,
to generate domain names for evading DGA classifiers.
Sidi et al. [9] demonstrated that MaskDGA attack reduces the
performance of a DGA classifier, evading detection system.
Peck et al. [10] showed the effectiveness of the CharBot
attack, reducing the detection rate of a classifier as low
as 1.69%; even retraining the classifiers is not a viable
defense strategy.

We applied those three DGA attacks (CharBot, DeepDGA,
and MaskDGA) to check the performance of our model for
botnet DGA detection applications in dealing with harsh
adversarial attacks.

To grasp the understanding of current state-of-the-art XAI,
literature reviews and surveys are available in [39]–[43].
Table 1 shows our XAI method selection position, adopting
the XAI taxonomy classification systems. The details of our
proposed second opinion approach using the XAI-OSINT
blend will be elaborated in the subsequent section. In this
study, blending XAI and OSINT (as the second opinion) for
the CTI system delivers a practical implication to solve trust
in the computable CTI ecosystem, i.e., either lack of trust
or too much trust (automation bias). The relation between
explanation and trust is important [44].

III. METHODS
A. DATASETS
Using an ML algorithm to detect malicious DNS traffic
requires accurate ground-truth data for both model training

VOLUME 10, 2022 34615



H. Suryotrisongko et al.: Robust Botnet DGA Detection: Blending XAI and OSINT for CTI Sharing

TABLE 1. XAI Methods to Improve Trust for CTI Sharing.

and accuracy evaluations [45]. For the first experiment in
our study, we used Alexa Top 1M (1,000,000 domain names)
and 803,333 domain names of ten botnet DGA families used
in [46]: Conficker, Cryptolocker, Goz, Matsnu, New_Goz,
Pushdo, Ramdo, Rovnix, Tinba, Zeus. Then, we employed
998,503 domain names of 55 DGA families from Netlab
360 [47] (Table 2 ).

B. FEATURES
We analyzed the datasets by calculating entropy using Shan-
non’s function (1) as our model’s first feature. As reported
in our previous publication [48], entropy fluctuations can
indicate an increasing number of unique random query
keywords in DNS queries, frequently observed during
dangerous situations, such as Kaminsky-like attacks. Then,
we extended a statistical measurement [49] using relative
entropy (RE) via Kullback–Leibler divergence (2).

H (X ) = −
∑
i∈X

P(i) log2 P(i) (1)

DKL(P||Q) =
∑
i

pi log(
pi
qi
) (2)

where Q is the baseline distribution calculated on legitimate
data (Alexa top 1M domains or ten botnet domains datasets)
and P is the target distribution (i.e., the domain in the DNS
query log to be verified).

Our model’s second feature is RE-Alexa, which measures
the distance (or similarity) between the domain in question to
Alexa domain unigram distributions. The third feature isMin-
RE-Botnets. Here, we calculated the RE value of a suspicious
domain with each botnet dataset and considered theminimum
value as the Min-RE-Botnets value.

TABLE 2. Datasets With Total 55 Botnet DGA Families.

Inspired by Sharifnya’s work [50], the fourth feature
in the proposed model is the information radius (IRad)
value, calculated using the Jensen–Shannon divergence
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function (3). This function is a generalization of the Jensen–
Shannon divergence that compares more than two probability
distributions. The proposed model uses this function to
calculate a target domain name’s distance to the botnet
datasets.

JSDπ1, . . . , πn(P1, . . . ,Pn)

= H (
n∑
i=1

πiPi)−
n∑
i=1

πiH (Pi) (3)

The next feature is the domain name character length
(CharLength). This feature is suitable for botnet DGA
detection because several DGA algorithms in our dataset
demonstrate similar character lengths, characterizing a
unique property of these randomly generated domains.

Then, a new feature is generated using a decision tree
algorithm (TreeNewFeature). Here, we combined entropy,
RE-Alexa, Min-RE-Botnets, and CharLength features using
decision trees and used them to train a predictive model.
We constructed a decision tree using those features and used
the prediction result as a new feature.

The last feature is the Alexa reputation score (Reputa-
tionAlexa). This approach was inspired by Zhao’s work [51].
Here, we used the Alexa Top 1M domains to generate a
weight matrix to calculate a domain reputation value. The
procedure to generate the weight matrix begins by reading all
1M domains from Alexa, and then learning the vocabulary
dictionary of n-gram 3 to 5 characters and returning the term-
document matrix. Note that we used the base-10 logarithm
function of the total n-gram matrix of all Alexa 1M domains,
as shown in (4).

WN−gram(i) = log10

(
n∑
i=1

CN−gram(i)

)
(4)

whereW is the weight matrix used to calculate the reputation
score andCN−gram is the character n-gram frequencies.When
calculating a target domain’s reputation score, we first extract
token counts from the target domain using a vocabulary n-
gram character constructor. This calculation is the same as
generating a document-term matrix using Alexa Top 1M.

C. EXPERIMENTS
We conducted three experiments:

1) We used multiple supervised ML algorithms to com-
pare results to select an algorithm with the best
accuracy. Here, five algorithms (naive Bayes, logistic
regression, extra tree, random forest, and ensemble
learning) were computed using the Scikit-Learn [52].

2) Comparing our random forest model with the latest
previous work [7].

3) To check the performance of our model for bot-
net DGA detection in dealing with harsh adversar-
ial attacks, we conducted a robustness evaluation
of our classifier against three state-of-the-art DGA
attacks (CharBot [10], DeepDGA [11], MaskDGA [9])

TABLE 3. Summary of parameters used in the random forest model.

and comparison with four deep learning models
(Endgame [35], CMU [36], NYU [37], MIT 38]).

The evaluation metric is given in (5), where TP, TN, FP,
FN stands for true positive, true negative, false positive,
and false negative, respectively. Table 3 summarizes the
variables/parameters used in the random forest model.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

D. BLENDING XAI AND OSINT
This research applied four existing XAI techniques
(ANCHOR, local interpretable model-agnostic explanations
(LIME), Shapley additive exPlanations (SHAP), and coun-
terfactual explanation) and proposed our approach (XAI
and OSINT blend) to produce a second opinion explanation
(Table 1).

We take advantage of the SHAP method for presenting
a global explanation delivering a Game Theory-inspired
feature relevance explanation [53]. SHAP is based on the
game theoretically optimal Shapley values. We focus on
using the model-agnostic approach to enable more freedom
to use any advanced algorithm for a classification model.
Therefore, we considered implementing the KernelExplainer,
kernel-based estimation approach for Shapley values inspired
by local surrogate models for SHAP explanation. Moreover,
we use SHAP’s force plot to provide a local explanation.

The next XAI method implemented in this study is
the LIME [54]. LIME trains local surrogate models to
explain individual prediction/classification. It provides a
local explanation, explaining individual classification results
of a black-box model. Therefore, users will understand why
theCTI system classifies a suspected domain name into a legit
or botnet DGA domain name.

Next, we applied ANCHORS, the LIME’s improvement,
to predict how a model would behave with less effort and
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higher precision [55]. ANCHORS is a rule-based learner,
explaining by simplification. We expect an explanation
expressed as easy-to-understand IF-THEN rules from this
method. This type of expression might be more convenient
to explain the model’s behavior: why did the CTI system
decide a domain name as a botnet DGA domain, or why the
CTI system classified this suspicious-looking domain name
as a legit domain name? We used Alibi [56] to implement
ANCHORS in our CTI system.

Next, we applied a counterfactual explanation, adding
explainability using an example. We used the What-If
Tool [57] to implement this functionality, thus enabling
visualization to highlight the nearest counterfactual datapoint
(if a legit domain name is selected, then the nearest botnet
DGA domain name will be shown, and vice versa). This
tool will enable cybersecurity analysts to detect minimal
changes in features’ value to make the CTI system produce
different classification results. Thus, CTI systems could
gain more trust from users because they understand the
explanation.

For the second opinion, we used two OSINT sources
(Google Safe Browser and OTX AlienVault) [58]. We sent
application programming interface (API) queries to these
sources to retrieve a comment/report on the suspected domain
in question. We fused this information with our botnet DGA
model’s output as a second opinion. The aggregate IoC
from OSINT to confirm the AI/ML model’s output and
classification results can be submitted to OSINT repositories
after thorough expert examinations to prevent submitting
false/poor-quality findings. The submission of new IoC
information to OSINT repositories needs to use extra caution,
as it can intentionally or unintentionally be a way that can
cause issues with other detectors relying on such OSINT and
poison any training process. Therefore, computable CTI can
advance OSINT communities for IoCs of new threats (Fig. 2).

IV. RESULTS AND DISCUSSIONS
A. COMPARING THE ACCURACY OF ML ALGORITHMS
The results of our experiments are shown in Tables 4 and
5. Overall, the random forest model achieved the highest
accuracy, followed by the extra tree algorithm. Note that
naive Bayes always showed the lowest performance among
the compared algorithms. The highest accuracy (96.2%) was
obtained using random forest with all seven features. The
top-three essential features were the CharLength, Reputa-
tionAlexa, and TreeNewFeature.

We analyzed all features using statistical tests to select
features with the strongest relationship with the output
variable. Fig. 3 shows the results of the univariate selection
Chi-squared test. The ReputationAlexa, CharLength, and
TreeNewFeature features had the highest relationship with
the class output. Then, we investigated how features are
related to each other using a correlation matrix. As shown
in Fig. 4, the TreeNewFeature, Char-Length, Entropy, and
RE-Alexa features positively correlate with the output, and a

FIGURE 3. Chi-squared test results.

FIGURE 4. Correlation matrix analysis results.

FIGURE 5. Feature importance analysis results.

negative correlation can be observed for the Min-RE-Botnets
and IRad features. Furthermore, we performed feature impor-
tance analysis to score each feature in our proposed model.
As shown in Fig. 5, the TreeNewFeature, ReputationAlexa,
and CharLength features obtained the highest scores, which
indicates that these features are essential for the output
variable.
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TABLE 4. ML Model’s accuracy using combinations of various features (1/2).

TABLE 5. ML Model’s accuracy using combinations of various features (2/2).

B. TIME COMPLEXITY TO CALCULATE THE FEATURES
ML classification that uses a statistical-based approach
requires computations to calculate their features. Fig. 6 shows
the computational cost of our approach in terms of time
complexity to calculate the features needed in our model.
Min-RE-Botnets and IRad require longer computation time
than other features, as the equation (2) and (3) bring
consequences of O(n) linear time complexity, with n = the
number of DGA families (55 families in our experiments).
This will become a disadvantage when the number of DGA
families grows. However, the ReputationAlexa feature does
not require heavy computations, as the preparations need to
be done only once during the model training step: reading
all the domains from Alexa and then learning the vocabulary
dictionary of n-gram 3 to 5 characters to generate the weight
matrix.

C. COMPARISON WITH THE PREVIOUS WORK
Table 6 provides a comparison between our proposed random
forest model and the previous work (Hoang and Vu [7]),
which used the same approach (statistical features-based)
and same random forest algorithm. Using the same datasets
settings as in [7, pp. 7–8], for all experiments, our model gives
a better detection rate (with an average of 98.9% accuracy),
despite our approach using only seven features compared
with their approach, which depends on 24 features.

FIGURE 6. The computation time to prepare the features for our model.

These results give clear evidence on the advantage of
the potential utilization of seven features proposed in
our paper to deliver a satisfactory botnet DGA detection
performance.

D. ROBUSTNESS EVALUATION
First, we examined the performance of our random forest
model with seven features using ground-truth datasets
consisting of Alexa and 55 DGA families’ domain names
(1,998,502 domain names in total). As shown in Table 7, the
character-based deep learning models produce slightly higher
accuracy (∼99.0%) than our model (96.3% accuracy).
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TABLE 6. Comparison of the accuracy/detection rate.

TABLE 7. Robustness against state-of-the-art DGA attacks [9]–[11].

However, robustness evaluation with CharBot, MaskDGA,
and DeepDGA attacks (394,000 domain names in total) give
evidence that our model provides better defense against all
the three DGA attacks (44,2% accuracy). Evaluation against
individual DGA attacks shows that our model has better
robustness against CharBot and DeepDGA attacks, except in
the MaskDGA attack.

These results confirm the advantages of our model to be
used for botnet DGA detection in dealing with harsh DGA
attacks, in which a novel DGA attack can significantly drop
the accuracy of a DGA classifier up to only 9.1% accuracy
(in the case of the NYU model tested with CharBot attack).
This tendency is similar to the previous works [9]–[11].

E. SHARING MECHANISM IN COMPUTABLE CTI
We identified several protocols that potentials for imple-
menting sharing AI/ML models, such as docker container,
native (dependent on the tools used, e.g., joblib for Python);
PMML/XML-based predictive model interchange format;
and open neural network exchange (ONNX) the open
standard for ML interoperability. We serialized our final
ML model for botnet DGA detection using the ONNX and
Python’s joblib approaches. The serialization and deserial-
ization could run smoothly. Although the trained model’s file
size could become large when the training data is enormous,
sharing a trained/ready-to-use model is very convenient for
others who need to analyze botnet DGA traffics without the
burden of building and training a model.

F. BLENDING XAI AND OSINT
Firstly, our CTI system displays a global explanation of the
model (Fig. 7). Our model considers character length as
a key feature in recognizing botnet DGA domain names.

FIGURE 7. SHAP global explanation summary plot.

FIGURE 8. Local explanation: LIME shows prediction plot, ANCHORS
display IF-THEN Rule, and SHAP provides a force plot.

Therefore, the domain with a too-long number of characters
tends to be a botnet DGA domain name, which is true, based
on our ground-truth dataset. To trust the model, users must
understand what the model is good at and when the model
could go wrong. We provide visualization (Fig. 8), enabling a
cybersecurity analyst to see where the classification is wrong,
such as when a legit domain name exists, but the model
classifies it as a botnet DGA domain name. Even though
the model has high accuracy, if it classifies a well-known
legit domain (such as google.com) as a botnet DGA, it is
unacceptable.

We provide local explanations or explain a single decision
output to present the simplification idea of the logic of why
the model produces that decision. We show an example
of why the CTI system determines that a normal-looking
domain name (of which the number of characters is not
too excessive) is classified as a botnet DGA domain name
(Fig. 8). LIME [54] shows easy-to-understand plots. Even
though the short character length makes it look like a legit
domain name, the reputation score calculation compared with
Alexa Top 1M domain names causes the opposite decision.
ANCHORS provides a similar explanation, but in the IF-
THEN rule format [55]. Moreover, SHAP [53] displays how
each feature’s value is forcing a decision toward a legit
or botnet DGA classification result. A counter explanation
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FIGURE 9. A second opinion from blending XAI and OSINT: integrating
API query results from Google Safe Browser and OTX AlienVault.

is helpful to make cybersecurity analysts trust our model
by providing examples: two domain names with similar
characteristics but are classified as different classes; one is
a botnet DGA and the other a legit domain name.

After showing SHAP, LIME, ANCHORS, and coun-
terfactual explanations, we continue providing a second
opinion (Fig. 9) by integrating API query results from two
OSINT sources (Google Safe Browser and OTX AlienVault).
Therefore, we confirm that a good explanation and second
opinion (by implementing XAI and OSINT blend) are keys
to establishing trust in using the shared AI/ML model.

In our study of botnet DGA detection, automation bias
refers to an act where a cybersecurity analyst never doubts the
AI/ML model’s decision output, whatever they are. Such as
when the model falsely detects a domain name as a malicious
botnet DGA, and the cybersecurity analyst trusts it too much.
We emphasize that blending XAI and OSINT could solve the
automation bias through a second opinion.

Cyber false flags are hackers’ tactics to deceive or
misguide attribution attempts and covert cyberattacks [59].
By blendingXAI andOSINT intoAI/ML-basedCTI systems,
cybersecurity analysts have a handy tool to compare any
information from OSINT sources, with the model’s results
taken from CTI-sharing repositories (measure twice, cut once
using the AI/MLmodel to confirmOSINT information). This
description highlights the usefulness of our proposed XAI
and OSINT blend for cyber false-flag phenomena.

G. PRACTICAL IMPLICATIONS OF COMPUTABLE CTI
Reducing human intervention in cybersecurity decision-
making using AI/ML automation will help security analysts
in security operations center environments to win the arms
races against new cyber threats. The computable CTI
paradigm emphasizes a robust AI/MLmodel with adversarial
defense techniques, also blending XAI and OSINT to solve

the automation bias. For example, in our botnet DGA case
study, OSINT data become a second opinion (or validation)
for known DGA domain names. Thus, we achieved cyber-
security decision-making automation. When no information
in the OSINT database exists regarding a suspected domain
name, security analysts can still make a fair decision by
referencing the explanations produced by XAI techniques.

Computable CTI paradigm also encourages cybersecurity
communities to contribute their carefully curated CTI detec-
tion outputs to enrich IoC data in OSINT repositories. OSINT
APIs integrate AI/ML models to enable submitting new
threat information to the OSINT database. In our case study
of botnet DGA detection, we used the OTX AlienVault’s
DirectConnect API to demonstrate submitting new confirmed
and validated findings, when no available OSINT exists
for the botnet DGA domain names. Therefore, computable
CTI implies two-way interactions: gaining benefits from
aggregating OSINT threat data and contributing to the latest
threats’ IoCs for tackling new global attack vectors.

Recently, we have been observing the emergence of
public repositories/marketplaces for ready-to-use AI/ML
models, such as in TensorFlow Hub. Various models for
common problem domains (image, text, video, and audio) are
available to be used for transfer learning; however, AI/ML
models for CTI applications are scarce [60], [61]. Our study
is a gateway for future AI/ML model-based CTI-sharing
research. Therefore, in this section, we elaborate on the
frameworks needed in computable CTI (Fig. 2) to ensure that
cybersecurity communities will be encouraged to share their
AI/ML models for CTI sharing.

First, regarding the interoperability of the AI/ML model,
we demonstrated how we could manage interoperability
when sharing the AI/ML model using ONNX. Adopting this
standard removes the barrier of being locked on one AI/ML
platform. Sharing CTI models in the ONNX standard will
reach a wider audience of cybersecurity communities.

Second, users’ privacy must be protected because model
sharing takes place among users. We propose adopting
privacy labels (color-coded: white, green, amber, and red)
relating to privacy-related measures and compliance with
privacy regulations [62] on the shared models. Various
privacy-preserving techniques can be employed when the
models include storing, processing, and transferring private
information [15], [16].

Third, the computable CTI paradigm encourages adopt-
ing the code-signing practice to ensure the integrity and
authenticity of the shared AI/ML model. Sigstore, a recently
announced project of The Linux Foundation aiming to foster
adopting cryptographic signing, might become a catalyst for
the wide adoption of computable CTI in cybersecurity and
open-source communities.

V. CONCLUSION
First, we showcase a novel model for botnet DGA detection.
Our random forest model achieved 96.3% accuracy (tested
with datasets of 55 botnet DGA families) and outperformed

VOLUME 10, 2022 34621



H. Suryotrisongko et al.: Robust Botnet DGA Detection: Blending XAI and OSINT for CTI Sharing

the previous work (see Section IV.C). Our model is also more
robust against three state-of-the-art DGA adversarial attacks
(MaskDGA, CharBot, and DeepDGA) than the previous
works (see Section IV.D).

Second, we highlight the practicality of blending XAI and
OSINT to deliver better AI explainability through second
opinion approaches, thus mimicking the second opinion
phenomena in hospital/medical situations to confirm the
results/findings. We advocate the XAI and OSINT as an
antidote for skepticism toward the model’s output, which
might contribute to the CTI system’s trust and prevent
automation bias when users have too much trust in the
CTI system’s output. Blending XAI and OSINT also has a
potential for solving the false-flag problems.

Third, we underline the case study of botnet DGA
detection with XAI and OSINT blend as evidence to validate
our proposed computable CTI paradigm. Improving trust
might result in a paradigm-shift phenomenon. Cybersecurity
communities will leave the traditional CTI-sharing paradigm
(sharing only threat indicators, such as threat domain names),
and communities will start to share AI/ML models for CTI
systems. With the emergence of the computable CTI-sharing
paradigm, additional collaboration among cybersecurity
communities will occur to develop advanced AI/ML-based
CTI systems. For instance, using transfer-learning techniques
to develop new AI/ML for new cybersecurity tasks/problems
utilizing the shared models.

The limitations of our DGA detection model are the
time complexity when calculating the features (Section
IV.B) and the limited robustness against MaskDGA attacks
(Section IV.D). Future improvement should focus on crafting
better features and adversarial defense strategies. Moving
target defense (MTD) [63] can potentially raise the model’s
robustness by combining various models to work together.

GLOSSARY
CharLength domain name character length
CTI cyber threat intelligence
DGA domain generation algorithm
IoC indicators of compromise
IRad information radius
Min-RE-Botnets minimum of relative entropy botnets
OSINT open-source intelligence
RE relative entropy
RE-Alexa the RE of a domain name to Alexa
ReputationAlexa Alexa reputation score
TreeNewFeature a new feature generated by decision

tree
XAI explainable artificial intelligence
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