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ABSTRACT We present a general framework for improving the chaotic properties of CMOS-based chaotic
maps by cascading multiple maps in series. Along with two novel chaotic map topologies, we present
the 45 nm designs for four CMOS-based discrete-time chaotic map topologies. With the help of the
bifurcation plot and three established entropy measures, namely, Lyapunov exponent, Kolmogorov entropy,
and correlation coefficient, we present an extensive chaotic performance analysis on eight unique map
circuits (two under each topology) to show that under certain constraints, the cascading scheme can
significantly elevate the chaotic performance. The improved chaotic entropy benefits many security appli-
cations and is demonstrated using a novel random number generator (RNG) design. Unlike conventional
mathematical chaotic map-based digital pseudo-random number generators (PRNG), this proposed design
is not completely deterministic due to the high susceptibility of the core analog circuit to inevitable noise
that renders this design closer to a true random number generator (TRNG). By leveraging the improved
chaotic performance of the transistor-level cascaded maps, significantly low area and power overhead are
achieved in the RNG design. The cryptographic applicability of the RNG is verified as the generated random
sequences pass four standard statistical tests namely, NIST, FIPS, Diehard, and TestU01.

INDEX TERMS Chaos, discrete-time chaos, chaotic map, PRNG, TRNG, CMOS, VLSI, hardware security,
cryptography.

I. INTRODUCTION
The inception of chaos theory is marked by Henri Poincaré’s
observation on non-periodic orbits in his study on the three-
body problem in the 1880s (translated in [1]). However, to see
significant development in chaos theory, the world had to
wait for the invention of digital computers that had made the
repeated iterative computation easier, and eventually, resulted
in Edward Lorenz’s seminal 1963 publication [2] on an acci-
dental discovery of chaos in his study on weather predic-
tion [3]. Chaos occurs as a special condition in a nonlinear
deterministic dynamic system [4]. Dynamic systems describe
the time evolution of one or multiple points in a geometri-
cal space. There are mainly two kinds of dynamic systems:
(i) stochastic, when the trajectory of the point is random,
and (ii) deterministic, when a mathematical function can
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exactly predict the future state after a certain time interval.
Dynamic systems are called non-linear where the change in
output is not proportional to the change in input. Generally,
in a non-linear deterministic dynamic system, the time-
trajectory of a point eventually reaches a periodic steady-
state, after starting from any initial state. In this general
case, two very close initial states result in an almost similar
steady-state. However, when the parameters of a nonlinear
deterministic dynamic system are tuned to its chaotic region
then we can observe two special conditions: firstly, the time
trajectory never reaches a periodic steady-state, secondly, two
initial states – even if they are very close to each other–will
eventually follow two very different time-trajectories [5]. The
aperiodicity of a chaotic system is distinct from randomness
since the time-trajectory is deterministic in the chaotic case
where we can always reproduce the same trajectory starting
from the same initial state. The initial state sensitivity is
popularly known as the ‘butterfly effect’, after being coined
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by Lorenz in a lecture [6], as if a butterfly flapped its wings
in Brazil a few weeks earlier and as a result, eventually,
that minor perturbation has changed the nice sunny weather
in Texas into a tornado. This deterministic aperiodicity and
the sensitive dependence on the initial state of chaotic sys-
tems have proven their utility in numerous security applica-
tions such as data encryption [7], random number generation
[8], [9], reconfigurable logic [10], [11], Physically Unclon-
able Function (PUF) [12], side-channel attack mitiga-
tion [13], secure communication [14], logic obfuscation [15]
and so on.

Depending on the number of state variables involved,
chaotic systems can be categorized into two groups: (i) one-
dimensional (1-D) maps, where only one function describes
the evolution of a single state variable. (ii) Multi-dimensional
(multi-D) chaotic maps, where the time evolution of more
than one state variable is described with the same number of
functions. The nature of time-evolution divides the chaotic
systems into two classes: (i) continuous time, where the
governing function contains the time derivative terms and
time steps of the trajectory is continuous, (ii) discrete-time,
where the trajectory evolves in discrete time steps and any
next state of the system is a direct function of the previous
state. Familiar examples of 1-D discrete-time maps are sine
map, tent map, logistic map, and so on. On the other hand,
Henon map (discrete-time) and Lorenz system (continuous-
time) are examples of multi-D maps. In this work, we focus
on 1-D discrete-time chaotic maps.

Regarding security applications, multi-D chaotic maps,
with their complex chaotic properties, provide higher secu-
rity [16], however, they are expensive to implement in hard-
ware. On the other hand, 1-D chaotic maps are simple to
implement. One downside is this convenience in the imple-
mentation comes with a compromise in security since the out-
put trend can be predictable with low computational cost [17].
Zhou et al. proposed a scheme where multiple 1-D chaotic
maps are cascaded together in series to form the final map that
shows improved chaotic properties relative to its constituent
1-D seedmaps [18]. They have demonstrated superior chaotic
performance from their proposed scheme by cascading mul-
tiple 1-D maps like sine, logistic, and tent maps. These math-
ematical maps are suitable for software-based applications
like encryption algorithms, however, they are not suitable
for CMOS (Complementary Metal Oxide Semiconductor)
implementations in hardware for applications where there
is high constraint in chip area and power. One example
of this type of application can be a hardware-based secu-
rity protocol for edge devices like IoT (Internet of Things).
The reported CMOS implementations of classical mathe-
matical maps, including logistic map [19], sine map [20],
and tent map [21], are so hardware-hungry that they are
not suitable for any low-overhead hardware-security appli-
cations. Instead of trying to mimic the characteristic curve
of classical mathematical maps, some researchers have been
leveraging the built-in non-linearity in MOS transistors and
proposing simpler CMOS circuits, with characteristic curves

similar enough to classical mathematical functions, which
are capable of generating discrete-time chaotic sequences.
Dudek et al. proposed the design of two discrete-time chaotic
maps in a 600 nm CMOS process, in [22] and [23]. It was
shown that, each of these two circuit topologies, with only
three MOS transistors, demonstrated promising chaotic prop-
erties. In this paper, we present 45 nm designs of these
two circuit topologies and propose two novel three-transistor
discrete-time chaotic circuit topologies. With these four
chaotic map topologies, we explore the application of the cas-
cading scheme in CMOS-based chaotic circuits. The chaotic
properties of the main four topologies and their cascaded
combinations are analyzed with bifurcation plot, Lyapunov
exponent, Kolmogorov entropy, and correlation coefficient.
To demonstrate the application of cascading, we propose a
novel CMOS-based chaotic random number generator (RNG)
design with two additional alternative designs. The crypto-
graphic performance of the proposed RNG is evaluated with
four statistical tests.

The rest of the paper is organized as follows: Section-II
presents the four chaotic map topologies and the cascading
scheme. The chaotic performance of the proposed chaotic
maps and their cascades are analyzed in Section-III. TheRNG
design and performance evaluation of the RNG output are
presented in section-IV. Section-V provides the concluding
remarks.

II. CASCADED CHAOTIC MAP (CCM)
The building block of a discrete-time chaotic system is a func-
tion with non-linear transfer characteristics. Eq. (1) shows the
general expression of a recursion relation where a non-liner
function, S(.), transforms any point, xi from a closed interval
[L1,L2], into some other point, xi+1 in the same interval.

xi+1 = S(C, xi) (1)

Here, C is a controlling parameter that governs the shape
of the transfer characteristic and i denotes the discrete steps,
1, 2, 3, . . . , n. This is called a discrete-time map in the inter-
val [L1,L2]. As we are dealing with CMOS implementations
in this paper, this non-linear functionality will be provided
by a CMOS circuit. We refer to this circuit as the seed
map. FIGURE 1 shows the schematic of four topologies of
seed maps where, Vc denotes the control parameter. As we
have mentioned in section-I, the 600 nm CMOS designs of
Topology-I (FIGURE 1(a)) and Topology-II (FIGURE 1(b))
were proposed in [22] and [23], respectively. We intro-
duce two more three-transistor-based chaotic map topolo-
gies, namely, Topology-III (FIGURE 1(c)) and Topology-IV
(FIGURE 1(d)) in this work. We have simulated these four
chaotic map topologies (I-IV) using the Spectre simulator in
Cadence, with a 45 nm CMOS process. In the simulation,
we have experimented with the sizes of threeMOS transistors
and come up with different geometries that can generate
discrete-time chaotic sequences. TABLE 1 shows the tran-
sistor sizing of two geometries (a, b) under each topology
that we will be using to present all the results in this paper.
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FIGURE 1. Four topologies for three-transistor chaotic map.

Generally, map circuits are designed to approximately imitate
the unimodal transfer characteristics (for example, tent or
‘V’ shape for the tent map or inverse tent map, respectively)
of one of the widely known chaos maps such as a logistic
map, sine map or a tent map.

Although, in general, any number of seed maps can be
connected in series to form CCM, in this paper, with the
objective of overhead optimization in mind, we are limiting
ourselves to a cascade of two seedmaps. The schematic of the
cascading scheme is shown in FIGURE 2. FIGURE 3 shows
the transfer characteristics of seed maps and the cascaded
pairs of the same maps. Comparing FIGURE 3(g) and 3(i),
we can see how the shapes of the transfer curves vary with
the choice of geometry in the same topology. The seed maps
of Topology − I and Topology − IV generate approximate
‘V -shaped’ curves while we get approximate ‘tent-shape’
from Topology−II and Topology−III .We know fromFeigen-
baum’s work in [24] that differentiable uni-modal transfer
characteristics have the potential to generate chaos. Hence,
the transistor sizes of the seed maps are carefully chosen to
get the unimodal transfer curve shapes (close to a ‘V’ or tent-
shape). We are getting multi-modal transfer characteristics
from cascaded maps which result in a much better chaotic
properties compared to the unimodal characteristics of the
seed maps.

III. PERFORMANCE ANALYSIS
The chaotic property of a discrete-time map is evaluated
based on the discrete-time sequence generated from the map.
For a particular value the control parameter, C , if we run
the recursion relation of Eq. (1) in a loop where the output
of one step will be fed back as the input for the next step,

FIGURE 2. Schematic of the cascading scheme.

TABLE 1. Transistor sizing for different geometries.

we get a sequence of discrete-time values. However, we do
not have a simple closed-form analytical input-output relation
for our CMOS-based seed maps. To generate discrete-time
sequences from these map circuits, we use a feedback system
called chaotic oscillator. FIGURE 4 shows the schematics of
chaotic oscillators for a single seed map and cascade of two
seed maps. In both oscillators, switch φ0 is used to feed the
initial state, X0, to the system. At each iteration, an analog
voltage, Xn, passes through the forward path (Seed map− A
in the single case, Seed map − A, and Seed map − B in the
cascaded case) and we get the first output, Vout1. In general,
capacitors are used to sample and hold the voltage in the
feedback path. In our design, we reduce the hardware cost
by performing the sample and hold operation with two non-
overlapping clock-run switches, φ1 and φ2, and the parasitic
capacitance of the transistors of the seed map circuit. One
iteration loop completes when the output of the feedback
path, Vout2, is fed back to the forward path as an input for the
next iteration. At each iteration, we sample out two analog
voltages, Vout1, and Vout2. The discrete-time sequences are
recorded for 15000 iteration loops. Then the first 1000 iter-
ations are discarded to get steady-state values. The steady-
state discrete-time values are used for chaotic performance
analysis, with the help of bifurcation plot, and three chaotic
entropy metrics: Lyapunov exponent, Kolmogorov entropy,
and correlation coefficient measurement.

A. BIFURCATION PLOT
FIGURE 5 shows the bifurcation plots for single and cas-
caded maps of both geometries under each of the four
topologies. In these plots, 14000 steady-state analog val-
ues are plotted for each control/bifurcation parameter (Vc).
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FIGURE 3. Transfer curves of different seed maps and the cascade of two
similar maps. Here, ‘Ia’ denotes the Geometry − a of Topology − I .

The dark-colored regions of the plots indicate chaotic
behaviour. In the remaining portions of the plots, the analog
sequence either remains fixed to a single value (fixed point)
or periodically fluctuates among a countable number of lev-
els (periodic orbit). One distinction between the single and
cascaded case is that the even periodic orbits are reduced by
half in the cascaded case. For instance, 0 V < Vc < 0.25 V
region in FIGURE 5(a) shows a period of two (two distinct

FIGURE 4. Schematic of the chaotic oscillator.

output voltage levels for all the Vc values in this region),
where the same region in Figure 5(e) shows just one level. The
reduction of even periods by half comes from the fact that we
are connecting two similar seed maps in series. A cascade of
three similar maps would result in a reduction of the period-3
orbit region to a single level region.

B. LYAPUNOV EXPONENT
The Lyapunov exponent (LE) is the most widely-used metric
to quantify the sensitive dependence of a chaotic sequence on
initial conditions. On average, two neighboring trajectories
of a chaotic sequence, starting from slightly different initial
conditions, diverge exponentially fast [5]. For a discrete-time
chaotic system, as expressed in Eq. (1), LE (denoted by λ)
can be expressed as shown in Eq. (2) [5], where, n denotes
the number of iteration.

λ = lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣ dSdX |Xi
∣∣∣∣ (2)

A negative LE value indicates either a fixed point or a periodic
orbit. On the other hand, a positive value of LE represents a
chaotic attractor [5]. Faster divergence of the output trajec-
tory of a chaotic oscillator corresponds to a larger positive
LE value. Now, we want to derive the LE for a cascaded
chaotic map. Let’s consider two very close initial states,
Xa0 and Xb0 , which are separately passing through a cascaded
map as shown in FIGURE 2(b). After the first iteration, they
result in two output states, Xa1 and Xb1 , respectively. We can
express the difference between the two output states as shown
in Eq. (3).

|Xa1 − X
b
1 | = |S2

(
S1(Xa0 )

)
− S2

(
S1(Xb0 )

)
|

=
|S2
(
S1(Xa0 )

)
− S2

(
S1(Xb0 )

)
|

|S1(Xa0 )− S1(X
b
0 )|

×
|S1(Xa0 )− S1(X

b
0 )|

|Xa0 − X
b
0 |

|Xa0 − X
b
0 | (3)
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FIGURE 5. Bifurcation plots for seed maps (a-d & i-l) and the cascade of two similar maps (e-h & m-p). Here, in the cascade, both maps use the
same Vc .

The derivatives of two seed maps in the cascade combination
can be considered separately as follows:∣∣∣∣dS1dX |X

a
0

∣∣∣∣ ≈ lim
Xa0→Xb0

|S1(Xa0 )− S1(X
b
0 )|

|Xa0 − X
b
0 |∣∣∣∣dS2dX |S1(X

a
0 )

∣∣∣∣ ≈ lim
S1(Xa0 )→S1(Xb0 )

|S2
(
S1(Xa0 )

)
− S2

(
S1(Xb0 )

)
|

|S1(Xa0 )− S1(X
b
0 )|

Putting these derivative expressions in Eq. (3) we may
get Eq. (4).

|Xa1 − X
b
1 | =

∣∣∣∣dS2dX |S1(X
a
0 )

∣∣∣∣ ∣∣∣∣dS1dX |X
a
0

∣∣∣∣ |Xa0 − Xb0 | (4)

In the sameway, after the 2nd iteration, the difference between
two outputs can be expressed as shown in Eq. (5).

|Xa2 − X
b
2 | =

∣∣∣∣dS2dX |S1(X
a
1 )

∣∣∣∣ ∣∣∣∣dS1dX |X
a
1

∣∣∣∣ ∣∣∣∣dS2dX |S1(X
a
0 )

∣∣∣∣
×

∣∣∣∣dS1dX |X
a
0

∣∣∣∣× |Xa0 − Xb0 | (5)

The difference between two outputs after the nth iteration can
be expressed as shown in Eq. (6).

|Xan − X
b
n | ≈

∣∣∣∣∣
n−1∏
i=0

dS2
dX |S1(X

a
i )

∣∣∣∣∣
∣∣∣∣∣
n−1∏
i=0

dS1
dX |X

a
i

∣∣∣∣∣ |Xa0 − Xb0 | (6)

The average change per iteration that occurs to go from
|Xa0 −X

a
0 | to |X

a
n −X

a
n |, can be expressed as shown in Eq. (7).

1 =

{∣∣∣∣∣
n−1∏
i=0

dS2
dX |S1(X

a
i )

∣∣∣∣∣
∣∣∣∣∣
n−1∏
i=0

dS1
dX |X

a
i

∣∣∣∣∣
}1/n

(7)

According to the definition, LE for the cascaded map (λc) can
be expressed as follows:

λc = ln(1)

= lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣dS2dX |S1(X
a
i )

∣∣∣∣+ lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣dS1dX |X
a
i

∣∣∣∣
= lim

n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣dS2dX |S1(X
a
i )

∣∣∣∣
+ lim

n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣dS1dX |S2(S1(X
a
i−1))

∣∣∣∣ (8)

If the cascaded map uses two similar seed maps, i.e. when
S1 and S2 are same, each of the two terms in Eq. (8) can be
approximated as the LE of the seed map. In general case of
the cascade of k similar maps, the LE of the cascaded map
can be expressed as shown in Eq. (9).

λc = λs + λs + · · · + λs = k × λs (9)
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FIGURE 6 shows the LE plots for seed map and their cas-
caded pair where both maps are the same. The cascaded
maps show a clear improvement in the LE values from their
constituent seed maps.

It should be noted that expressing the LE of cascaded
maps as a sum of constituent seed maps (as shown in [18])
is not true in general. Eq. (9) holds only when the seed
maps have identical or very similar trajectories. FIGURE 7
demonstrates this point by comparing the sum of the positive
LE values of seed maps with the cascaded maps in two cases:
(a-h) cascade of same seedmaps (same topology, same geom-
etry) and (i-l) cascade of different seed maps (same topology
but different geometry). As we can see from FIGURE 7(a-h),
Eq. (9) holds for same seed maps but does not neces-
sarily hold in the general case with different seed maps
(FIGURE 7(i-l)). Moreover, the bifurcation plots of
FIGURE 7(o) and FIGURE 7(p) show that, the chaotic region
is absent as a result of cascading two dissimilar maps where
there is no overlap between their corresponding chaotic
regions (as shown in FIGURE 5(c,k), and FIGURE 5(d,l)).
Consequently, we get no positive LE value over the whole
Vc range of FIGURE 7(k) and FIGURE 7(l). In all results
up to this point, both maps of a cascade share the same Vc.
However, it is possible to use any arbitrary combination of Vc
values. FIGURE 8(a-c) shows the LE values using heat map
for all possible combinations of Vc between two cascading
maps. Here, we can see that, a cascade of two dissimilar
topologies (FIGURE 8(c)) does not result in positive LE
values for any combination of Vc. Hence, as a design guide-
line, we should keep in mind that the benefit of cascading
can be leveraged most conveniently when we cascade two
identical maps.

C. KOLMOGOROV ENTROPY
The Kolmogorov entropy (KE) measures the complexity in a
sequence by capturing the generation rate of new information.
To present an estimation method in [25], Grassberger et al.
defined KE as follows: let’s suppose, in a dynamic sys-
tem, an F-dimensional phase space is partitioned to εF-sized
boxes. We are measuring the state of a trajectory, EX (t),
in the time intervals τ . There is a probability measure,
p(i1, i2, . . . , id), that defines the joint probability of EX (t)
being in the box i1 at t = τ , in i2 at t = 2τ , and so on.
As a result, KE is defined as shown in Eq. (10) [25].

KE = − lim
τ→∞

lim
ε→∞

lim
d→∞

1
n

∑
i1,..,id

p(i1, i2, . . . ., id )

× ln(p(i1, i2, . . . ., id )) (10)

The value of KE is 0 for an ordered sequence,∞ for a random
sequence, and a nonzero constant for a chaotic sequence.
FIGURE 9 shows a comparison of KE values between the
seed map and it’s cascaded pair where, the nonzero KE
regions correspond to the respective chaotic regions. We can
notice here as well that the cascading scheme substantially

increases the entropy measure compared to the constituent
seed map.

D. CORRELATION COEFFICIENT
The initial state sensitivity in chaotic and non-chaotic
regions of a sequence can be measured using the correla-
tion coefficient as well. The correlation coefficient between
two sequences, X and Y, can be expressed as shown in
Eq. (11) [26].

Co =
E[(X − µX )(Y − µY )]

σXσY
(11)

Here, in Eq. (11), the operator ‘E[.]’ denotes the expectation
function, µ and σ are the mean value and standard deviation,
respectively. The correlation value is close to+1/−1 if X and
Y are highly correlated whereas, a 0 correlation coefficient
value indicates an extremely low correlation between the two
sequences. For each value of the bifurcation parameter, two
sequences are generated, starting with two very close (1 nV
apart) initial states. FIGURE 10 shows the calculated corre-
lation coefficients for different values of bifurcation parame-
ters, in both single and cascaded cases of different geometries.
This same metric can also be used to see the sensitivity of
the bifurcation parameter variation. For this purpose, another
set of data is generated, with a 1 nV variation in the control
parameter, while keeping the initial state fixed. FIGURE 11
shows the calculated correlation coefficients for the Vc vari-
ation scheme. Both figures depict that, in chaotic regions for
both single and cascaded cases, even that tiny difference in
the initial state or Vc leads to significant divergence between
the two sequences which causes the correlation coefficient
to become close to 0. However, in the non-chaotic regions,
the tiny difference in initial condition eventually diminishes
in steady-state output values and that results in a correlation
coefficient of 1. Moreover, mainly at the edges of the chaotic
regions, the cascaded maps show correlation coefficient val-
ues closer to 0 than the seed maps, which indicates stronger
chaotic property from the cascaded maps.

IV. APPLICATION
It is clear from the entropy measurements that we are get-
ting improved chaotic performance from cascaded maps.
Hence, this topology can be a natural choice for applications
like chaos-based random number generator (RNG) where a
chaotic map with better chaotic properties is always desired
for ensuring more secured cryptographic performance. In this
section, we are presenting the design of an efficient RNG,
based on a combination of single and cascaded maps. The
applicability of the generated random sequence in cryptogra-
phy is assessed with four established statistical randomness
test suits and the overhead cost of the RNG is compared with
other reported works.

A. RNG DESIGN
FIGURE 12 shows the schematic of the proposed RNG. One
input of each comparator comes from a chaotic oscillator
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FIGURE 6. The comparison of LE between seed maps and corresponding cascaded pair of the same seed maps. In the cascade, both maps use the
same Vc . Here, for example, ‘IIa’ denotes the Geometry − a of Topology − II which shows the comparison between the LE from the seed map, IIa, and
the cascaded map, IIa-cascade-IIa.

FIGURE 7. LE comparison: (a-d) cascade of the same map using the first geometry for each topology, (e-h) cascade of the same map using the second
geometry for each topology, (i-l) cascade of different geometries. (m-p) Bifurcation plot for the cascade of different geometries. Here, in the cascade,
both maps use the same Vc .

as shown in FIGURE 4(a) (Single map output), while the
other one comes from FIGURE 4(b) (Cascaded map output).
The outputs of the three comparators are XOR-ed to increase
the entropy in the generated sequence. For each compara-
tor, we use the cascade of two identical maps and single
output from the same map. We have experimentally come
up with multiple combinations of maps to be used in three

comparators of the RNG, that pass the statistical tests. Then
we measured the worst-case delay of the cascaded oscillators
(since the cascaded delay is higher than the single one and
the higher delay component is the determining factor of the
circuit). FIGURE 13 shows the delay with respect to Vc
for different maps. We also have recorded the total power
consumption of single and cascaded oscillators. The power
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FIGURE 8. LE plots in heat map showing all combinations of Vc1 (Bifurcation parameter of the first map) and Vc2 (Bifurcation parameter of the second
map). Here, all negative LE values are suppressed to 0.

FIGURE 9. The comparison of KE between seed maps and corresponding cascaded pair of the same seed maps. In the cascade, both maps use the
same Vc .

FIGURE 10. The comparison of initial condition variation-based CC between seed maps and corresponding cascaded pair of the same seed maps.
In the cascade, both maps use the same Vc .

is averaged over multiple oscillations in steady-state, starting
from three different initial conditions. The average power
with respect to Vc is shown in FIGURE 14. Considering the
sizing of the transistors (shown in TABLE 1), the worst-case
delay of the oscillators, and the average power consumed
by the oscillators, we have nominated one combination to
present the results where, Comparator− I , Comparator− II ,
andComparator−III use Ib, IIIb, and IVbmaps, respectively.
For each comparator, all the six maps from the single and
cascaded oscillators run at one particular Vc. We wanted to
make sure that the nominated combination would capture

a low on-chip area, and the chosen Vc point for each oscillator
is in a reasonable delay and power range while ensuring
enough chaotic entropy to pass the statistical tests. In the
presented RNG, Comparator − I , Comparator − II , and
Comparator − III use Vc = 0.408 V , 0.474 V , and 0.904 V ,
respectively. For statistical tests, we generated 100 million
binary bits, starting with 100 unique initial conditions where
each initial voltage generates 1 million bits.

As mentioned earlier, the simulation is done in the SPICE
(Simulation Programwith Integrated Circuit Emphasis)-class
circuit simulator of Cadence, called Spectre. We have not
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FIGURE 11. The comparison of Vc variation-based CC between seed maps and corresponding cascaded pair of the same seed maps. In the cascade,
both maps use the same Vc .

FIGURE 12. Schematic of the random number generator.

added any stochastic component in the simulations that are
shown up to this point. Hence, the simulation results are
purely deterministic. That means, with a specific Vc and
initial condition, a chaotic oscillator made with two IIamaps,
for example, will generate an identical chaotic sequence each
time we run the simulation. As a result, the simulated number
sequence from the proposed RNG is not truly random, since
the simulation result is reproducible. This type of aperiodic
but reproducible number sequence is called pseudo-random
sequence and the circuit is called pseudo-random number
generator (PRNG) [27]. Our proposed circuit acts as a PRNG
in the simulation with no stochastic component added. How-
ever, in an integrated circuit (IC) chip, there will be inevitable
cycle-to-cycle perturbations such as noise-driven drift of node
voltages, power supply noise, temperature variation over the
course of operation, and so on. These perturbations, even
if they are small in amplitude, will eventually be amplified
by the chaotic properties and the circuit will be close to
a true-random number generator (TRNG) in practice [28].
To demonstrate the essence of this mechanism, we added
normally distributed random noise (mean = 0 V , standard
deviation = 0.1 mV ) in the simulation. Two sets of 100 mil-
lion data are generated from the TRNG, using the same set of
100 unique initial conditions in both cases. Then the corre-
lation coefficient is calculated between these two sequences.
A low correlation coefficient of 1.7 × 10-6 shows that the
small noise perturbations got amplified by the chaotic nature
of the circuit, satisfying the condition that the output of a truly
random number generator is not reproducible.

B. STATISTICAL TEST RESULTS
1) NIST SP 800-22 TEST SUITE
The test suite from the National Institute of Standards and
Technology (NIST) offers 15 statistical sub-tests to measure
the randomness in a sequence [29]. We ran the test with a
bit-stream length of 1 million. The significance level was set
to 0.01. Hence, a sequence with 100 million bits (containing
100 bit-streams) will pass a particular test if at least 96 out
of the 100 bit-streams generate a p-values greater than 0.01.
The test suite allocates each of the 100 generated p-values in
10 sub-intervals from 0 to 1 and evaluates the uniformity in
the distribution with χ2-test. The sequence under test can be
considered uniform if the p-value generated from the χ2-test
(refers to p−valueT ) is greater than or equal to 0.0001. NIST
results, presented in FIGURE 15, show that both PRNG and
TRNG sequences pass all requirements of 15 sub-tests.

2) FIPS PUB 140-2
The Federal Information Processing Standards Publications
(FIPS PUB) 140-2 test suite was developed by NIST [30].
FIPS tests the randomness of a binary sequence by divid-
ing the sequence into 20,000-bit blocks. Hence, for a test
sequence with 100 million bits, there will be 5000 blocks in
total. The blocks are subjected to 4 sub-tests namely, Mono-
bit, Poker, Runs, and Long run. The Monobit test counts the
number of 1’s in each 20,000-bit block. To pass the test, this
number must be within the range of [9725, 10275]. The Poker
test divides each 20,000-bit block into 5,000 successive 4-bit
segments. The 4-bit segment can have 16 possible values. The
occurrences of 16 values are counted and stored. This sub-
test examines the uniformity of the 4-bit segment. Runs test
counts and stores the maximum sequence of consecutive 1’s
or 0’s in a 20,000-bit block. A run of 26 or more of either
1’s or 0’s is defined as a Long run. The total number of
Long runs in a 20,000-bit block is counted as the total failure.
TABLE 2 shows the FIPS test result for PRNG and TRNG
sequences. The second column (from the left) of TABLE 2
shows the total number of blocks passing the test and the
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FIGURE 13. Worst-case delay of the chaotic oscillators. In the cascade, both maps use the same Vc .

FIGURE 14. Power consumption of the chaotic oscillators. In the cascade, both maps use the same Vc .

FIGURE 15. NIST results. Here, ‘*’ marks the average of multiple tests.

last four columns show the number of failed blocks under
corresponding sub-tests.

3) DIEHARD STATISTICAL TEST SUITE
The Diehard statistical test suite was developed by George
Marsaglia [31]. It generates 219 p-values under 15 sub-tests.
A sequence is considered to be random if the generated
p-values range between [0,1). On the other hand, if there are
six or more (out of 219) p-values of either 0 or 1 then the
sequence fails. Our test sequences contain 100,000,032 bits
(with a padding of 32 1’s at the beginning). FIGURE16 shows
the plots of p-values, organized in ascending order. The linear
fits in both plots show close conformity with the generated
p-value trends, indicating the desirable randomness in each
sequence.

TABLE 2. FIPS test results.

FIGURE 16. Diehard statistical test results.

TABLE 3. TestU01 results.

4) TestU01
TestU01 offers a collection of utilities for the empirical sta-
tistical testing. This test suite comes as a software library
generated in ANSI C language [32]. We ran three test bat-
teries namely, Rabbit, Alphabit, and BlockAlphabit. The test
sequence for this test contains 220 bits, generated with one
initial condition. Depending on this sequence size, the Rab-
bit test consists of 38 sub-tests whereas, Alphabit consists
of 17 sub-tests and BlockAlphabit consists of 6 blocks of
the same 17 sub-tests (102 tests in total). The sequence
passes a sub-test if the generated p-value remains between
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TABLE 4. Overhead comparison.

0.001 and 0.999. TABLE 3 presents pass to the total number
of sub-tests ratios in each case.

C. OVERHEAD ANALYSIS OF THE RNG
We have simulated our circuit in Cadence with 45 nm CMOS
process and 1 V power supply. We analyzed the area, delay,
and power profile of each of the components separately to
optimize the whole RNG design. Considering two maps in
the single oscillator (FIGURE 4(a)) and four maps in the cas-
caded oscillators (FIGURE 4(b)), we have a total of 18 maps
from all six oscillators in the proposed three-comparator
RNG design. The total area of six chaotic oscillators is
0.809 µm2. The worst-case delay of the cascaded oscillators,
at the chosen Vc points are 1.6 ns, 3.4 ns, and 0.36 ns.
As the slowest oscillator governs the overall speed, the analog
voltage generation rate from the oscillator portion of the
circuit is 3.4 ns. The total power of six chaotic oscillators is
140.65 µW .
We have implemented the 45 nm design of a standard

latch-type comparator, originally proposed by [33] in a larger
technology node of 5 V power supply. We have verified
that, in our supply voltage range of 1 V , the performance
of this basic design is as good as a more advanced and
complex (larger area) design proposed in [34]. The area of
the comparator is 110.6 µm2, the worst-case delay of the
comparator is 0.4 ns, and the average power consumption is
1.9 µW . As a result, the overall area, power consumption,
and bit generation rate of our proposed RNG design are
332.6 µm2, 142.5 µW , and 294MS/s.

D. PERFORMANCE IMPROVEMENT
We can accommodate additional design requirements by
altering the proposed core RNGdesign. For example, the total
area can be reduced by implementing an alternative design
as presented in FIGURE 17(a). In this design, the added
area and power overhead from the addition of a 3-bit shift
register (SR) will be over-compensated by the deduction of
two comparators. With an efficient setup of clocking for the
selection mechanism at the comparator input and the 3-bit
SR, we can ensure that the three bits from three pairs of
single-cascade comparison will be ready for XORing within
the worst-case delay of the slowest chaotic oscillator. As a
result, the bit generation rate of the alternative design-I will
be the same as the originally proposed design. This design
can be useful where there is a tighter area constraint but
slightly additional design complexity from the extra clock-
ing for the selection mechanism is acceptable. On the other

FIGURE 17. Schematic of the alternative RNG designs.

hand, if a design requires higher bit generation rate with a
compromising area constraint then we may propose a design
as shown in FIGURE 17(b). This design uses n copies of
alternative design-I providing n-times more bit generation
rate with respect to the alternative design-I. In this alternative
design-II the area and power overhead will be increased by
around n-times of the alternative design-I. We have verified
that both of these alternative designs pass the statistical tests.
TABLE 4 presents an overhead comparison between the
proposed designs of this paper and some already reported
designs.We can see that a significant improvement in the area
and power overhead is achieved by the proposed designs.

V. CONCLUSION
Wehave demonstrated a hardware-efficient way of improving
the chaotic performance of CMOS-based chaotic maps. The
45 nm designs of four chaotic map topologies are presented.
With the help of eight unique chaotic maps, it is demon-
strated that the cascade ofmultiple seedmaps offers improved
chaotic behavior over its constituent seed maps under
certain constraints. This improved chaotic property of the cas-
cading topology was utilized to propose a novel comparator-
based RNG design that passes four standard statistical tests.
Two alternatives of the proposed core design are presented
to show the applicability in accommodating special design
requirements. The proposed RNGdesigns have accomplished

33768 VOLUME 10, 2022



P. S. Paul et al.: Cascading CMOS-Based Chaotic Maps for Improved Performance

a significant reduction in area and power overhead compared
to previous designs of similar kinds. The simple transistor-
level seedmaps alongwith the framework of cascading can be
used to improve the chaotic performance and reduce the over-
head cost of discrete-time chaotic systems. This work can be
useful in different hardware security applications including
side-channel attack mitigation by chaos-based reconfigurable
logic and RNG-based data encryption.
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