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ABSTRACT The Capacitated Centered Clustering Problem (CCCP) is NP-hard and has many practical
applications. In recent years, many excellent CCCP solving algorithms have been proposed, but their ability
to search in the neighborhood space of clusters is still insufficient. Based on the adaptive Biased Random-Key
Genetic Algorithm (A-BRKGA), this paper proposes an efficient iterative neighborhood search algorithm
A-BRKGA_INLS. The algorithm uses shift and swap heuristics to search neighborhood space iteratively
to enhance the quality of solutions. The computational experiments were conducted in 53 instances.
A-BRKGA_INLS improves the best-known solutions in 23 instances and matches the best-known solutions
in 15 instances. Moreover, it achieves better average solutions on multiple instances while spending the same
time as the A-BRKGA+CS.

INDEX TERMS CCCP, meta-heuristic, BRKGA, neighborhood search, genetic algorithm.

I. INTRODUCTION
Clustering problems have been applied to many research
fields, such as machine learning, pattern recognition, com-
munity detection, image segmentation, genetics, microbiol-
ogy, geology, remote sensing, etc [1], [2]. This paper mainly
studies the capacitated centered clustering problem in the
clustering problem, which is an abstract problem of location
selection, and is also an important decision-making problem.
Scientific and reasonable location selection can effectively
save resources, reduce costs and ensure high-quality service.
The location selection problem has many applications in
production, logistics, and daily life. One of the most famous
facility-location problems is the p-Median Problem [3]. This
problem is defined as follows: Given n points, p medians
are selected among them, and n points are assigned to their
nearest median. The total distance between each point and its
nearest median is minimized.

Another classic location problem is the Capacitated
p-Median Problem (CPMP) [4], which has different appli-
cations in many practical situations. It can be described as
follows: Given n points that each has a known demand, find p
medians in n points and assign each point to one median. The
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total distance from n demand points to their corresponding
medians is minimized and the sum of the demands of all
points assigned to a median cannot exceed its capacity. Due
to capacity constraints, some points may not be assigned to
the nearest median.

The Capacitated Centered Clustering Problem (CCCP) [5]
studied in this paper is a generalized CPMP, which divides
n demand points into p clusters with limited capacity. The
goal is to minimize the total distance between each point and
the geometric center of its cluster. CCCP has been applied to
many fields, such as the location design of garbage collection
areas and sales centers [5], the network design of agricultural
product supply chains [6], the site selection of offshore wind
farms [7], and sibling reconstruction problem (SRP) in com-
putational biology [8].

The main difference between CPMP and CCCP is
the features of the locations of the p centers. In the CPMP,
the location is determined at a median point. In the CCCP, the
location is determined at a centroid. Compared with CPMP,
the distance from themedian to point in CPMP can be directly
obtained from the initially constructed distance matrix. The
difficulty of CCCP is that the distance from the cluster center
to the point is constantly changing, and the distance calcula-
tion will consume more time. Since a given feasible solution
to an instance of the CPMP can be converted into a feasible
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solution to an instance of the CCCP, researchers often propose
solutions to CPMP and apply them to CCCP after making
slight changes. Specifically, for each cluster of the feasible
solution to be converted, the selected medians are replaced
by the geometric centers of the assigned points. The objective
function value is then calculated as the total distance between
the newly computed cluster centers and their assigned points.
There have been many heuristic and meta-heuristic solutions
for CPMP and CCCP in recent years.

Stefanello et al. [9] combined meta-heuristics based on
local search with mathematical programming techniques.
This method applied Iterated Reduction Matheuristic Algo-
rithm (IRMA) to eliminate variables that are unlikely to be
good or optimal solutions from the model. The simplified
mathematical model was obtained. Baumann [10] presented
an extended version of K-Means, which uses binary linear
programming to assign points to clusters. In the latest paper of
CPMP [11], the author proposes a decomposition strategy for
solving large-scale instances. In the local optimization stage,
the new IRMA reduction method is used, in which priority
is given to sub-problems with great potential to increase
the objective function value. The cluster with the largest
unused capacity is selected as the initial cluster. This math-
ematical algorithm is extended to CCCP. The new and most
famous solutions were discovered in several CCCP instances.
Mai et al. [12] used a Gaussian mixture modelling method to
construct the solution of CPMP and proposed an improved
heuristic. The improved heuristic uses the best improvement
search mechanism to shift or swap points between different
clusters.

Meta-heuristic algorithms are divided into three categories:
meta-heuristics with exact approaches, meta-heuristics with
other meta-heuristic components, and meta-heuristics with
local search heuristics. Jánošíková et al. [13] considered
the efficiency of the integer programming solver, combined
genetic algorithm with integer programming and proposed
two variants. The integer programming solver is used to
generate elite individuals in the solving process of the genetic
algorithm or as a post-processing technique to improve the
best solution of CPMP. Chaves and Lorena [14] combined
a simulated annealing algorithm with Clustering Search
(CS) [15] proposed by Oliveira et al. to solve the CCCP.
Chaves and Lorena [16] first used a genetic algorithm to
generate solutions and then enhanced the quality of solutions
by CS. Muritib [17] proposed a random best-fit construc-
tion method and a local search heuristic algorithm based
on Tabu Search (TS). Considering CS is the most com-
putationally demanding procedure, Melo Morales et al. [18]
parallelized the local search component CS, using the
Genetic Algorithm as a solutions generator, to solve the
CCCP. Caballero Morales [19] proposed a genetic algo-
rithm, which combines the Greedy Random Adaptive Search
Process (GRASP) and the K-Means clustering algorithm.
Recently, Chaves et al. [20] proposed an adaptive Biased
Random-Key Genetic Algorithm (A-BRKGA) by improving
the Biased Random-Key Genetic Algorithm (BRKGA) [21]

and provided a local search component CS to intensify the
exploitation of CCCP solutions. This method provided new
best solutions for seven classic instances and reported the best
solutions in other new instances.

Most researches for CCCP focus on improving the evo-
lution process in the meta-heuristic algorithm, such as [20]
improving the meta-heuristic framework by adding parame-
ter control. Literature [14], [16] and [17] respectively com-
bined simulated annealing algorithm, genetic algorithm and
tabu search with local search. [18] proposed the strategy
of parallel local search component. They implemented a
master-slave system with a message passing approach. The
related research on the local search for a specific solution of
CCCP is relatively shallow, such as literature [17] and [20]
both using simple search methods. A targeted local search
can effectively improve the quality of solutions. Our method
focuses on the design of local search schemes.

The variable neighborhood search algorithm (VNS) is an
improved local search algorithm that uses multiple neigh-
borhood structures defined by different functions to perform
alternate searches, achieving a good balance between search
concentration and evacuation. The variable neighborhood
search is based on the following facts: (1) The local optimal
solution of one neighborhood structure is not necessarily
the local optimal solution of another neighborhood structure.
(2) The global optimal solution must be the local optimal
solution of all possible neighborhoods.

VNS algorithms mainly depend on the neighborhood
structure, search mechanism, and neighborhood movement
strategy. Usually, the search order between neighborhood
structures is sure. Common search mechanisms include the
first and best improvement search strategy. Once the first
improvement strategy detects an improved solution, it is set
as a new existing solution. The best improvement strategy
selects the best of all improved solutions as the new solution.
Neighborhood movement strategies mainly include returning
to the first neighborhood, searching in the same neighbor-
hood, and searching for the next neighborhood. The litera-
ture [22] reported the impact of different combinations of
VNS on the solution quality when used as a local search.

The variable neighborhood search algorithm has a good
effect in solving travelling salesman problems, location prob-
lems, vehicle routing problems, etc. At present, researchers
have also proposed a variety of improved variable neigh-
borhood algorithms, such as general variable neighborhood
search (GVNS) and skewed general variable neighborhood
search (SGVNS) [23]. In addition, related literature such
as [24] and [25] relax the constraints and use penalty func-
tions to evaluate infeasible solutions. In this way, the infea-
sible space is explored. Exploring greater solution space and
increasing the diversity of solutions improves the possibility
of finding a better solution.

The initialization and evolution rules of the population
in A-BRKGA [20] can produce many solutions with differ-
ent structures. Thus, the diversity of solutions is ensured.
Through experimental analysis, we found that some instances
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in the data sets in [20] have many clusters with a few points,
and the assignments of points at the edge of these clusters
are highly variable. The local search component (CS) has
less exploration in the neighborhood space between clusters.
Based on A-BRKGA [20], this paper proposes an iterative
neighborhood search algorithm called A-BRKGA_INLS to
enhance the exploration of neighborhoods. The main innova-
tions of this paper include:

(1) The algorithm separately searches the shift neighbor-
hood and the swap neighborhood, instead of simultaneously
searching for feasible shifts and swaps. The iterative variable
neighborhood search method better balances the concentra-
tion of the search and the evacuation of the genetic algo-
rithm. Based on the optimal shift neighborhood, the swap
neighborhood is rechecked. The shift neighborhood has more
adjustment space and can develop in a better direction.

(2) The algorithm combines inexact search and exact
search. The inexact search in the evolution process has higher
conditions for point movement. It skips the movement that
can only cause a weak increase in the objective function,
avoiding the early fixation of the cluster allocation and losing
more exploration opportunities, thereby effectively avoiding
falling into the local optimum prematurely. The exact search
checks the shifts and swaps ignored by the inexact search,
which further improves the quality of solutions.

The experimental results in 53 instances show that the
proposed method has good performance. Compared with
A-BRKGA+CS, A-BRKGA_INLS can find better solutions
on multiple instances in approximately equal time.

The remainder of the paper is organized as follows.
In Section II, a formal description of CCCP is given, and
the basic idea of BRKGA is introduced. Then, based
on BRKGA, the application of A-BRKGA to CCCP is
described. In Section III, the algorithm A-BRKGA_INLS
for CCCP is given. In Section IV, we introduce the exper-
imental dataset. In Section V, we report the results of the
computational analysis. Finally, in Section VI, the paper is
summarized, and the future research direction is prospected.

II. BACKGROUND
A. MATHEMATICAL MODEL OF CCCP
CCCP can be formally expressed as an optimization problem,
as shown in Equation (1).

minimize
∑
j∈J

∑
i∈I

||ai − x̄j ||yij∑
j∈J

yij = 1, ∀iεI (1)

∑
i∈I

qiyij ≤ Qj, ∀jεJ (2)

xj ∈ <2, nj ∈ N, yij ∈ {0, 1} , ∀iεI, ∀jεJ (3)

I is the set of demand points; J is the set of cluster centers;
ai is the coordinate of point i; x̄j is the coordinate of the
geometric center of cluster j; yij = 1, if the point i is assigned

to cluster j, and yij = 0 otherwise; qi is the demand of the
point i; Qj is the capacity of cluster j.
The objective function (1) minimizes the total distance

between each cluster centers and their assigned points. Con-
straints (2) require that each point must be assigned to one
cluster. Constraints (3) impose that the sum of demands of all
points in one cluster should not exceed the cluster capacity.
Decision variables are defined.

B. BIASED RANDOM-KEY GENETIC ALGORITHM
BRKGA is a general search meta-heuristic algorithm pro-
posed by Goncalves and Resende [21], which is based on
the Random-Key Genetic Algorithm (RKGA) introduced by
Bean [26]. Recently, BRKGA has been combined with many
combinatorial optimization problems, such as the Permu-
tation Flow-shop Scheduling Problem [27], the Two-stage
Capacitated Facility Location Problem [28], the Network
Hubs Location Problem [29], and the Vehicle Routing
Problem [30].

In BRKGA, each gene on the chromosome is a decimal
number in the interval [0, 1]. The number is called the
random-key. N random-keys form a vector that represents a
chromosome. The random-keys vector needs to be converted
into a solution for the combinatorial optimization problem by
a specific decoder to calculate its fitness.

The initial population of BRKGA consists of p random-
keys vectors (individuals). All random-keys in each vector are
generated independently and randomly. In each generation of
population evolution, first, the fitness of the newly created
random-keys vectors are calculated by the decoder. Then,
the population is divided into an elite group and a non-elite
group by fitness. Next, individuals of the next generation are
generated, as shown in Figure 1. (1) pe elite individuals are
directly copied into the next generation. (2) A small number
of pmmutants are added to the next generation. The mutation
in BRKGA is different from that in genetic algorithms. These
mutants are generated the same way as the individuals in the
initial population. (3) To make up a population of size p,
p−pe−pm individuals need to be produced. These individuals
are generated by parameterized uniform crossover [31]: two
individuals (parents) are selected randomly from the elite
and the non-elite groups. It can be seen that BRKGA is an
evolutionary algorithm that performs multiple iterations on
random-keys vectors.

C. ADAPTIVE BIASED RANDOM-KEY GENETIC
ALGORITHM FOR SOLVING CCCP
Chaves et al. [20] proposed A-BRKGA based on BRKGA
and designed a special decoder for CCCP. This paper applies
A-BRKGA to evolve populations and uses the same CCCP
decoder. We will briefly introduce the encoding and decoding
of CCCP instances and the difference between BRKGA and
A-BRKGA.

For each CCCP instance, points are numbered from 1 to
n (the number of points in the instance). In this way, one
point can be indexed by a serial number. A random-key in the
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FIGURE 1. BRKGA: generation t+1 from generation t.

interval [0, 1] is randomly generated for each point. Besides,
two random-keys are generated for the n + 1th and n + 2th
positions. Therefore, the code length of CCCP is n+2.

CCCP decoder is based on the best-fit construction
method [17]. The last two random-keys of the encoding
related to the perturbation and crossover probability do not
participate in the decoding process. First, the first n random-
keys are sorted in descending order, and the last two random-
keys remain unchanged. Then, the first m demand points of
the random list are put into m clusters as the initial center of
the cluster, and the remaining n−m demand points are placed
according to the best-fit principle. (The best-fit principle
always selects the cluster closest to the demand point to join
when meeting the capacity constraint.) The cluster center and
occupied capacity are updatedwhenever a new point is added.
When all the points are added to the appropriate cluster,
a feasible solution is formed. The decoder will calculate the
solution fitness, using the objective function (Equation (1))
as the fitness calculation equation.

Compared with BRKGA, A-BRKGA adds perturbation
strategy of elite individuals and deterministic and adaptive
parameters update strategy.

The perturbation strategy of elite individuals perturbs indi-
viduals with the same fitness in the elite group. The pertur-
bation strategy increases the diversity of the elite group and
avoids falling into the local optimum prematurely.

Deterministic parameter update is reflected in controlling
the proportion of elite individuals and mutant individuals in
the population. As the number of iterations increases, the pro-
portion of elite individuals κe increases, and the proportion of
mutant individuals κm decreases.

A-BRKGA inserts two random-keys at the positions
n + 1 and n + 2 of the vector to make the parameters
self-adaptive. Perturbation probability β and parameterized
uniform crossover ρe are updated based on the two random-
keys. The updates of β and ρe are both non-deterministic.
Each perturbed chromosome has its perturbation probability.

Adaptive parameter update allows the gene sequence to be
changed to different degrees, which improves the possibility
of producing solutions with different structures.

III. THE CAPACITATED CLUSTER CENTERED PROBLEM OF
A-BRKGA
In this section, we will present A-BRKGA_INLS in detail.
First, we provide a general framework of the algorithm, show-
ing how the two local search algorithms are combined with
A-BRKGA. Then, the specific process of inexact Iterative
Neighborhood Local Search Algorithm (IINLS) is explained.
Finally, the exact Iterative Neighborhood Local Search Algo-
rithm (EINLS) is introduced, and the difference between
IINLS and EINLS is discussed.

Algorithm 1 A-BRKGA_INLS; //A-BRKGA With Iterative
Neighborhood Local Search
Input: the number of generation max_gen, the size of population p,
the search internal K, a null solution S∗ which its objective function
value is set to INFINITY;
Output: the local optimal solution S ∗ ∗;
(1) Randomly generate initial population Pop with p vectors;
(2) for i = 1 to max_gen do
(3) Pop←population_update(Pop); // Ref. A-BRKGA
(4) if (i%K = 0) then
(5) promisingPop←Lable_Propagation (Pop); // Ref. [20]
(6) for each solution S in promisingPop do
(7) Ssearched←IINLS (S); // Inexact Iterated Neighborhood Local Search
(8) if(Ssearched < S∗) then S∗ ← Ssearched ;
(9) endfor
(10) endif
(11) endfor
(12) S ∗ ∗ ←EINLS (S∗);// Exact Iterated Neighborhood Local Search
(13) Return S ∗ ∗;

A. ALGORITHM FRAMEWORK
We utilized A-BRKGA to evolve the population. In the pro-
cess of population evolution, elite individuals are clustered
at certain generations, and an Iterative Neighborhood Local
Search (IINLS) is performed on the individuals with the high-
est fitness in each cluster. Another Iterative Neighborhood
Local Search (EINLS) is performed when the population
evolution is finished to improve the search quality. EINLS
has the same framework as IINLS, but the criteria for moving
or not moving is different.

The primary process of A-BRKGA_INLS is listed inAlgo-
rithm 1. Firstly, the initial population of size p is generated
randomly (line 1). Secondly, in each generation, the pop-
ulation is updated by copying elite individuals, perturbing
similar elite individuals, mutation, and crossover (line 3).
Then, for every particular generation (K), the elite individuals
are clustered by the Label Propagation (line 5). IINLS is
applied to individuals with the highest fitness in each cluster
to improve the quality of individuals (line 7, see Section III,
Part B). The current best solution is stored in S∗ (line 8).
When the maximum number of generations (max_gen) is
reached, the population evolution is finished. At this time, a
exact local search algorithm EINLS is implemented to get the
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TABLE 1. Points in the simple example.

final best solution S ∗ ∗ (line 12, see Section III, Part C). The
algorithm ends.

Compared with A-BRKGA+CS[20], A-BRKGA_INLS
has two differences. (1) CS simultaneously searches for fea-
sible shifts and swaps, and IINLS separately searches shift
neighborhood and swap neighborhood to thoroughly explore
the neighborhood space of solutions. (2) When the evolu-
tion is completed, A-BRKGA+CS no longer searches, while
A-BRKGA_INLS applies EINLS to improve individuals’
quality further.

Figure 2 shows a simple example to introduce the scenario
our algorithm aimed, where lines connect points in the same
cluster. It is required to divide 9 points into 3 clusters with
a capacity constraint of 4. Table 1 shows the coordinates
and points demand. f denotes the value of the objective
function. For the initial solution in Figure 2(a), we use
A-BRKGA_INLS combined with the inexact iterative neigh-
borhood search to solve (see (b)(c)(d) for the process)). The
initial solution f= 66.3.

First, perform the inexact iterative neighborhood search.
IINLS searches for the shift neighborhood of the current solu-
tion in increasing order of cluster labels. Until cluster 3 is tra-
versed, point 4 in cluster 3 is moved to cluster 1 according to
1f= 5.18. The solution is updated, as shown in Figure 2(b).
Then search for the shift neighborhood of Figure 2(b). Point 3
in cluster 1 is moved to cluster 3 according to1f= 2.24,
as shown in Figure 2(c). The inexact search reaches the local
optimum with f= 52.2. The inexact search can move across
these points that cause a slight improvement. It is beneficial
to the final solution. Figure 2(c) is the best solution in the
evolution process. Finally, A-BRKGA_INLS applies exact
iterative neighborhood search to Figure 2(c). Point 7 can be
shifted to cluster 1 with f decreasing 2.4, but the inexact
search ignores it. Update it, and figure 2(d) shows the new
solution. There is no better shift neighborhood solution and
swap neighborhood solution, so iterations end with f = 49.8.
It can be seen that A-BRKGA_INLS is suitable for the sit-

uation where the exact search for slight improvement is easy
to fall into the local optimum early. In A-BRKGA_INLS,
the inexact search is used to improve the solution more,
and then the exact search is used to improve the solu-
tion that is already good enough. By their combination,

FIGURE 2. Example of neighborhood search in A-BRKGA_INLS.

A-BRKGA_INLS explores the neighborhood space more
fully as a whole. Subsequent chapters will detail the neigh-
borhood iteration process of A-BRKGA_INLS.
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B. INEXACT ITERATIVE NEIGHBORHOOD LOCAL SEARCH
ALGORITHM (IINLS)
This paper uses the Label Propagation algorithm [32] to
cluster the elite individuals, aiming at clustering the elite
individuals with high similarity in the same cluster. Only the
individual with the highest fitness in each cluster is selected
for local search to speed up the evolution process (Individuals
that already have been searched are not considered). Label
Propagation uses the Pearson correlation coefficient [33] to
measure if two random-keys vectors could return similar
solutions.

Applying clustering search to each generation of the pop-
ulation usually does not help get a better solution. On the
contrary, it will shorten the number of generations and fail
to get good performance. Therefore, we only perform the
clustering search for every K generations.

A point in cluster A is transferred to cluster B
when the capacity of cluster B is not less than the sum
of the occupied demand and the demand of the transferred
point. The move is called a shift. The solution obtained
by shifting on solution S is called a shift neighborhood
solution of solution S. The shift neighborhood of solution
S (N1(S)) comprises all possible shift neighborhood solu-
tions. In one instance with n demand points and m clusters,
each demand point can be shifted to other m-1 clusters.
Therefore, the number of neighborhood solutions contained
in N1(S) does not exceed n×m. A point in cluster A is
transferred to cluster B, and another point in cluster B is
transferred to cluster A when the capacity of cluster A and
cluster B is not less than the occupied demand plus the
demand of the point swapped in minus the demand of the
point swapped out. The move is called a swap. The solution
obtained by swapping on solution S is called a swap neigh-
borhood solution of solution S. The swap neighborhood of
solution S(N2(s)) comprises all possible swap neighborhood
solutions. Each point can be swapped with any point only
if they are not in the same cluster. Therefore, the number
of neighborhood solutions contained in N2(S) does not
exceed n2.

This paper proposes a new iterative neighborhood local
search method, IINLS, which combines shift neighborhood
and swap neighborhood. The specific search processes of
N1 and N2 are described in Algorithm 2 and Algorithm
3. In Algorithm 2 and Algorithm 3, whether to shift or
swap is not determined by the precise objective function
increment. For swaps, we use the evaluation function in [17]
(Equation (4)), in which u and v are the points to be swapped,
Aold and Bold are the original cluster centers, and Anew
and Bnew are new cluster centers after swapping. For shifts,
we only make a simple judgment (Equation (5)). We utilize
an auxiliary data structure to record the geometric centers of
all clusters so that 1f can be calculated in O (1). Swaps or
shifts are performed when 1f > 0 is satisfied. Besides, q[x]
represents the point’s demand, Q[j] represents the cluster’s
occupied demand and Q represents the cluster’s capacity
(Algorithm 2 line7).

FIGURE 3. Example of overlapping clusters.

The swap neighborhood is larger than the shift neighbor-
hood. To reduce the search scope of swap neighborhoods,
we only check points in the overlapping areas. Figure 3
describes an example of three clusters where clusters A and
C are not overlapping and so swaps between the two clusters
are not considered. We utilize auxiliary data structures to
store the boundary coordinates of clusters A, B, and C. The
minimum coordinates P1(min_x,min_y) and the maximum
coordinate P2(max_x,max_y) of the overlapping rectangular
area can be calculated. For instances having many points in
a single cluster, checking only points in the overlapping area
can speed up the search of swap neighborhoods.

1f = d(Aold , u)+d(Bold , v)− d(Anew, v)−d(Bnew, u) (4)

1f = d (Aold , u)− d (Bold , u) (5)

The process of IINLS is described in Algorithm 4. In this
algorithm, the search starts from shift neighborhoodN1(S) of
solution S. When it encounters a feasible shift, this move is
executed, and a new solution S1 is obtained. The search con-
tinues from shift neighborhood N1(S1) of solution S1. Then,
when the current solution Si completely traverses searching
shift neighborhood N1(Si), and no move can improve the
solution (line 2-4), IINLS updates the cluster boundaries and
rectangular areas (line 5), and then goes to the swap neigh-
borhood N2(Si) (line 6). If a feasible swap can be performed,
a new solution Si+1 is obtained. It does not immediately go to
the shift neighborhood N1(Si+1) but continues to check the
swap neighborhood N2(Si+1). Similarly, swap neighborhood
search ends when the current solution Sj has no improved
solution in N2(Sj). If the solution obtained from the shift
neighborhood has improved in the swap neighborhood, it is
necessary to go back to the shift neighborhood to search
again. The stop criterion is that there is no feasible move
in both the shift neighborhood and the swap neighborhood
of the current solution. At this time, the solution reaches
a local optimum, and its fitness is calculated (lines 8, 9).
The algorithm uses the array ‘Changed’ to mark whether
clusters have been changed to update the overlapping areas.
The Boolean named Flag is to record whether the solution
has been improved. The search process does not change the
random-keys vector, so IINLS does not affect the evolution
of the individual in A-BRKGA.

IINLS utilizes two evaluation functions to check feasible
shifts and swaps, so the judgement of moves may be inex-
act. This search process is called the inexact search. Inexact
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search improves the movement conditions, avoids missing
significant growth due to slight growth, and further explores
better neighborhood solutions, which effectively avoids the
evolution falling into local optimum prematurely. On the
other hand, IINLS can cause the objective function to descend
continuously in the shift neighborhood. Although a swap
is equivalent to two consecutive points shifts (point 1 and
point 2), a shift does not bind the two points. If other moves
are performed after moving point 1, the target cluster of
point 2 will be affected, or even point 2 will not be shifted.
In search of the shift neighborhood, the solution has more
freedom to change direction, leading to better solutions.

Algorithm 2 LocalSearchN1
Input: a current solution S, which is a solution in promisingPop or got
from Algorithm2 LocalSearchN1 or Algorithm3 LocalSearchN2;
Output: the local optimum solution, Flag, Changed[];
(1) Flag = false;
(2) for i← 1 to m do /∗m is the number of clusters to be partitioned. ∗/
(3) for j← 1 to m do
(4) for x ∈ clusteri do
(5) if(i 6= j and (Q[j] + q[x] ≤ Q)) then /∗the cluster capacity constraint
must be satisfied. ∗/
(6) Compute 1f ; /∗according to the Equation (5). ∗/
(7) if(1f > 0) then
(8) Move x to cluster j;
(9) Update mean[i], mean[j];
(10) Flag = true,Changed[i] = true, Changed[j] = true;
(11) end if
(12) end if
(13) end for
(14) end for
(15) end for
(16) Return < S,Flag,Changed[] >;

C. EXACT ITERATIVE NEIGHBORHOOD LOCAL SEARCH
ALGORITHM (EINLS)
At the end of population evolution, an exact local search
algorithm for the current best solution is executed (EINLS,
Algorithm1 line 12). In EINLS, the objective function incre-
ment is accurately calculated to determine whether the shift
or swap is feasible. The search process is called the exact
search. Since there are only a few points in each cluster,
a shift or swap causes a significant change in the cluster
center. However, evaluation functions only consider the point
beingmoved and ignore the influence on the remaining points
in two clusters. Figure 4 shows an example that even if the
condition 1 f > 0 is satisfied, the movement will degrade
the quality of the solution. It illustrates the importance of
calculating the objective function increment precisely at the
last step. As shown in Figure 4(a), the light gray points are in
cluster 1, and the dark gray points are in cluster 2. Before
shifting, the centers of clusters 1 and 2 are points C1 and
C2 (triangle markers), respectively. It can be seen that the
distance from point P to C1 is greater than the distance to
C2, which satisfies the condition 1f > 0 (Algorithm 2
line 8). If the inexact shift is performed, point P will be
moved to cluster 2, and the centers of clusters 1 and 2 will

Algorithm 3 LocalSearchN2
Input: a current solution S which got from Algorithm LocalSearchN1, the
overlapped rectangle area of each two clusters overlap[][];
Output: the local optimum solution, Flag, Changed[];
(1) Flag = false;
(2) for i← 1 to m do
(3) for j← i+ 1 to m do
(4) for x ∈ cluster i : x ∈ Overlap[i][j] do
(5) for y ∈ cluster j: y ∈ Overlap[i][j] do
(6) if ((Q[i]+ q[y]− q[x] ≤ Q) and (Q[j]+q[x]−q[y] ≤ Q)) then
(7) Compute 1f ; /∗ according to the Equation (4). ∗/
(8) if (1f> 0) then
(9) Move x to cluster j; Move y to cluster i;
(10) Update mean[i], mean[j];
(11) Flag = true,Changed[i] = true, Changed[j] = true;
(12) end if
(13) end if
(14) end for
(15) end for
(16) end for
(17) end for
(18) Return < S,Flag,Changed[] >;

Algorithm 4 IINLS;//Inexact Iterated Neighborhood Local
Search
Input: an initial solution S in promisingPop;
Output: the local optimum solution Ssearched ;
(1) repeat
(2) repeat
(3) (S,Flag,Changed[])←LocalSearchN1 (S);
(4) Until Flag = false;
(5) Overlap[][]←UpdateOverlap (Changed[]);
(6) (S, Flag, Changed[])←LocalSearchN2 (S,Overlap[][]);
(7) Until Flag = false;
(8) Ssearched ← S;
(9) Compute the fitness of solution Ssearched ;
(10) Return Ssearched ;

become points C1’ and C2’, as shown in Figure 4(b). As a
result, the sum of distances in two clusters increases, and the
objective function increases. If we can accurately calculate
the objective function increment, point P will not be shifted
to cluster 2. Precise calculation avoids the degradation of the
quality of the solution.

EINLS keeps the same process as IINLS but calcu-
lates the objective function increment caused by swaps and
shifts instead of using evaluation functions (in Algorithm2
line 6, 7, Algorithm3 line 7, 8, 1f is not used). This step
detects feasible shifts and swaps ignored by inexact search
due to the higher move conditions, improving the quality of
solutions at a low time cost. The solution must undoubtedly
be better or unchanged because EINLS accurately calculates
the objective function.

It should be noted that the search process is independent
of coding and decoding in A-BRKGA. After the A-BRKGA
component decodes the chromosome, each point is marked
with the cluster label. The proposed methods, IINLS and
EINLS, only use label information to handle the allocation
of demand points.
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FIGURE 4. Example of performing an inexact shift.

IV. EXPERIMENTAL DATA SETS
A-BRKGA_INLS is coded in C++ and tested on Intel
(R) Xeon (R) Platinum 8269CY 2.5GHz processor with 8GB
of RAM. The parameter setting of A-BRKGA is the same
as [20]. We use nine CCCP data sets in reference [20] to
compare the proposed method with A-BRKGA + CS [20].
Nine data sets contain 53 CCCP instances. In Table 2, there
are three data sets named TA, doni [5], and sjc [34] (includ-
ing 20 instances). Table 3 contains the data set SJC-n pro-
posed by Pereira, Lorena, and Senne [35] for the Maximum
Coverage Location Problem (including eight instances) and
five data sets (named lin318-m, u724-m, rl1304-m, pr2392-
m, and fnl4461-m) for CPMP generated by Stefanello,
de AraúJo, and Müller [36] (including 25 instances). All
of the above instances are from (https://sites.google.com/
site/antoniochaves/publications/data).

This paper does not compare data set x-n-m [36]. The data
set is based on the Capacitated Vehicle Routing Problem, and
the upper limit of cluster capacity is tight. In the experiment,
it is found that many illegal solutions that do not meet the
capacity constraints are generated. Iteration of a large-scale
population takes much time, so we abandon the data set.

Table 2 and Table 3 show the essential characteristics
of instances: number of points (n), number of clusters (m),
cluster capacity (Q), average point demand (q_Avg), and point
demand standard deviation (q_Dev). In Table 3, each row
represents multiple instances with the same number of points,
and the number of clusters in column m corresponds to the
cluster capacity in column Q. In data set SJC-n, there are a
few points whose demands exceed the cluster capacity. For
this situation, we delete these demand points and reduce the
number of clusters of this instance accordingly.

V. COMPARISON OF EXPERIMENTAL RESULTS
First, the experimental results are compared between
A-BRKGA_INLS and A-BRKGA+CS [20]. Then, compar-
ative experiments were carried out from two perspectives to
illustrate the superiority of our algorithm: the combination of

TABLE 2. Characteristics of 20 CCCP benchmark instances.

inexact search and exact search and iterative neighborhood
search.

A. ALGORITHM COMPARISON
Table 4 and Table 5 show the results of A-BRKGA+CS
and A-BRKGA_INLS. The computational tests limit the run-
ning time in 1000s, and each instance was run continuously
20 times with different random seeds. The entries in the table
are the best-known solution (best-known), the best solution
(sol∗), the average solution (sol) over 20 runs, the average
running time to find the best solution (T ∗), the average run-
ning time of the instance (T ) in seconds, the absolute differ-
ence between the best solution and the best-known solution
(Gap), the deviation between the best solution and the average
solution (Dev), and the difference between the best solutions
of the two algorithms (Diff ).

Gap =
sol∗−best−known

best−known
∗100

Dev =
sol − sol∗

sol∗
∗ 100

Diff =
sol∗CS − sol

∗
INLS

sol∗INLS
100

Gap represents the gap between the current algorithm solu-
tion and the best-known solution, and Dev reflects algorithm
stability. We use bold to mark solutions that are better than
the best-known solutions. Data for each entry is averaged to
compare the overall performance. The average data are placed
in the last row.

In Table 4, A-BRKGA_INLS and A-BRKGA+CS have
the same ability to obtain the best solutions (Diff = 0),
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TABLE 3. Characteristics of 33 CCCP benchmark instances.

TABLE 4. Comparison of computational results in 20 CCCP benchmark instances.

and the average gap between the best solutions and the
best-known solutions is both 0.5% (Gap = 0.5). Our method
gets equal or better average solutions in 17 of 20 instances.
Compared to A-BRKGA+CS (Dev = 0.29), our method
provides better robustness (Dev = 0.20).
In Table 5, A-BRKGA_INLS improves 23 best-known

solutions and matches four best-known solutions. The qual-
ity of A-BRKGA_INLS solutions is 2.16% higher than
A-BRKGA+CS solutions (Diff = 2.16), and the gap with
the best-known solution has decreased from Gap = 1.36 to
Gap = −0.75. Especially on data sets pr2392 and fnl4461
with thousands of points, the quality of our solutions has
been significantly improved, exceeding 20% at the most.

Besides, our method can get equal or better average solutions
in 27 instances. In Table 4, A-BRKGA_INLS (Dev = 1.06)
shows stronger robustness than A-BRKGA+CS (Dev =
1.12). We also apply the Wilcoxon signed-rank test (WSR)
to analyze if a significant difference exists between the
solutions of A-BRKGA_INLS and A-BRKGA+CS. The
WSR shows p-value = 0.001. The result indicated that
there is a significant difference between A-BRKGA_INLS
and A-BRKGA+CS, and INLS provides better solutions
than CS.

It can be seen from Table 4 and Table 5 that
A-BRKGA_INLS has no significant increase in running time
compared to A-BRKGA+CS.
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TABLE 5. Comparison of computational results in 33 CCCP benchmark instances.

In summary, A-BRKGA_INLS provides stronger robust-
ness and better results than A-BRKGA+CS. A-BRKGA_
INLS scans the neighborhood better, so it produces
high-quality solutions.

We also compare A-BRKGA_INLS with A-BRKGA to
show the efficiency of the local search components INLS.
Results are listed in Table 6.

Diff ′ =
sol∗A−BRKGA − sol

∗
INLS

sol∗INLS
∗ 100

Compared with A-BRKGA, INLS is able to improve
the results for 28 of 33 instances, with an average differ-
ence of 3.88%. The average gap decreases from 3.02% to
-0.75%. The average deviations of 33 tested instances of
A-BRKGA_INLS and A-BRKGA are 1.06% and 1.50%,

respectively. In relation of computational time, A-BRKGA
(T = 618.74s) is faster than A-BRKGA_IVNS (T =

679.96s) due to the local search component. The reported data
for these instances supports the claims that INLS generates
high-quality solutions.

Random seeds affect the searched solutions through the
evolutionary process. In order to study the effect of ran-
dom seeds on the best solution, we increased the num-
ber of consecutive runs to 50. The current best solution
was recorded every five times. As shown in Figure 5,
each recorded data is compared with the best result of 20
consecutive runs (sol∗ of A-BRKGA_INLS in Table 5).
In the u724_010 and u724_030 instances, A-BRKGA_INLS
obtained the best solution in the 0-5th and 10th-15th time,
respectively. In the u724_075, u724_125 and u724_200
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TABLE 6. The local search component usage comparison test in 33 CCCP benchmark instances.

instances, A-BRKGA_INLS obtained better solutions than
those reported in Table 4 in the 10-15th, 20-25th, 35-40th
time, respectively. It can be seen that affected by the random
seed, A-BRKGA_INLS can perform better as the number of
runs increases.

In addition, literature [11] applied the proposed method
GB21MH to CCCP and gave experimental results. Table 7
shows the comparative experimental results of A-BRKGA_
INLS and GB21MH. Experiments show that our method
obtains a better solution in eight instances, although the solu-
tion of GB21MH in some instances is greatly improved.

B. EFFECTIVENESS ANALYSIS OF INEXACT SEARCH
The final exact search method can significantly improve the
quality of solutions. However, it does not mean that applying
the exact search method to evolution can also produce excel-
lent solutions. To prove it, we compare A-BRKGA_INLS
with the method not using the inexact search.

In Table 8, the second set of data shows experimental
results of not using the inexact search in 33 CCCP benchmark
instances. (In each column, the three sets of data represent
A-BRKGA_INLS, not using the inexact search and not using
iterative neighborhood. The values in bold are better than the
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TABLE 7. Comparison of computational results with GB21.

TABLE 8. Inexact search and iterative neighborhood usage comparison test.

best-known solutions, and the values marked with ∗ are better
than A-BRKGA_INLS.) Each instance was run 20 times
continuously. As shown in Table 8, not using the inexact
search outperforms the best-known solutions in 15 instances
but outperforms A-BRKGA_INLS solutions in only six
instances. In most instances, the best solutions of not using

the inexact search are worse than those of A-BRKGA_INLS.
Not using the inexact search can get some excellent solutions
using iterative neighborhood, but it is not as excellent as
A-BRKGA_INLS in the overall result. Moreover, the average
running time to find the best solution for not using the inexact
search (T ∗ = 65.4s) is much less than A-BRKGA_INLS
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FIGURE 5. Improvement of A-BRKGA_INLS in the u724 dataset for
50 continuous runs.

(T ∗ = 562.15s). Not using the inexact search reaches local
optimumwithin tens of seconds in most instances, and results
are not improved at the later stage of evolution.

The reported results support the claims that the inexact
search effectively avoids the algorithm falling into local opti-
mum prematurely and helps the algorithm yield high-quality
solutions.

C. EFFECTIVENESS ANALYSIS OF ITERATIVE
NEIGHBORHOOD
Both IINLS and EINLS iteratively search the shift neigh-
borhood and the swap neighborhood, instead of searching
for both shifts and swaps simultaneously. In other words,
IINLS and EINLS search the shift neighborhood until there
is no feasible shift and then go to the swap neighborhood to
perform feasible swaps. Since the CCCP is strictly limited by
capacity, the order of shifting and swapping is very important.
After a large number of shifts, INLS searches swaps that can-
not be converted into two shifts due to capacity constraints.
Based on the optimal shift neighborhood, INLS searches
swaps to make the swap neighborhood optimal. In INLS, the
swap neighborhood does not affect the shift neighborhood.
The shift neighborhood has more adjustment space and can
develop in a better direction. However, if shifts and swaps are
searched alternately frequently, the solution is not optimal in
any neighborhood in the whole process, except at the end.
In order to prove that iterative neighborhood search provides
better results than simultaneous search, we conducted a com-
parative experiment.

The third set of data in each column of Table 8 shows
the experimental results of not using iterative neighborhood.
Similarly, each instance was run 20 times continuously.
Not using iterative neighborhood utilizes the A-BRKGA to
evolve population but performs two local search algorithms
that simultaneously search for swaps and shifts. Not using
iterative neighborhood combines inexact and exact search,
the same as A-BRKGA_INLS. In 13 instances, not using
iterative neighborhood finds better solutions than the best-
known solutions, but these solutions are not as excellent as
A-BRKGA_INLS solutions. In one instance, the solution out-
performs A-BRKGA_INLS but is worse than the best-known

solution. In four instances (bold andmarkedwith ∗), not using
iterative neighborhood outperforms both the best-known
solutions and A-BRKGA_INLS solutions. Solutions of other
instances are poor. As shown in the last row of Table 8,
the average value of the best solutions of A-BRKGA_INLS
(average(sol∗) = 391639.35) is much smaller than that of not
using iterative neighborhood (average(sol∗) = 414047.50).
In summary, A-BRKGA_INLS iteratively searches for the

neighborhood space of solutions, which has more advantages
than not using iterative neighborhood on these data sets.
Therefore, iterative neighborhood search is effective.

VI. CONCLUSION
This paper presents an optimized local search algorithm
based on A-BRKGA to solve the CCCP. Unlike local
search processes in the previous literature, A-BRKGA_INLS
iteratively searches the shift neighborhood and the swap
neighborhood. Until there are no viable shifts in the shift
neighborhood, the swap neighborhood is searched. Thus,
A-BRKGA_INLS explores the neighborhood of solutions
more fully. In the stage of population evolution, evaluation
functions are used to perform the inexact local search to avoid
the search falling into the local optimum prematurely. When
the population evolution is completed, precise calculations
are adopted to further improve the quality of solutions. The
performance of the algorithm was tested on a general bench-
mark containing 53 instances.

Experimental results show that the algorithm is effective
for solving CCCP. Based on 53 instances, 23 new best-known
solutions are provided, and 15 instances match the current
best-known solutions. Compared with A-BRKGA + CS, the
difference in time cost between the two algorithms is small.

Measuring the performance of the overlapping areas is our
next research issue. Future research can focus on heuristic
algorithms for data sets with tight cluster capacity limits such
as x-n-m, so the algorithm can fully explore the neighborhood
space on the premise of constructing a small number of feasi-
ble solutions. Second, multi-objective CCCP can be another
research direction to expand the CCCP model to a broader
range of applications.
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