
Received February 28, 2022, accepted March 17, 2022, date of publication March 25, 2022, date of current version April 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162238

An Automatically Privacy Protection Solution
for Implementing the Right to Be Forgotten
in Embedded System
YANAN ZHAO 1, NONG SI 1, (Member, IEEE), YU SUN 1, XIN GAO 1,
HAOPENG TONG 1, AND GENG YUAN 2
1Faculty of Information Technology, Beijing University of Technology, Chaoyang, Beijing 100124, China
2Faculty of Natural Science, Kristianstad University, 291 88 Kristianstad, Sweden

Corresponding author: Yu Sun (respectprivacy@yeah.net)

This work was supported in part by the Industry-University Collaborative Foundation of Ministry of Education of China, and in part by
Huawei under Grant 201902146003.

ABSTRACT Towards the massive amount of data generated in our daily work and life, embedded systems,
with economical but powerful storage and computing resources, are inevitably becoming the most suitable
platform for the Edge Computing for the Internet of Things. However, embedded system servers may also
threaten individuals by storing individuals’ private data for years. This paper proposes a Resilient Tag-based
Privacy Protection (RTPP) scheme for embedded systems. Specifically, to protect the privacy against the
hackers and other non-users, we employ a pseudo-randomnumber encryption techniquewith the chaos-based
principle so that the third party cannot easily steal the private data and reduce the risk of personal privacy
leakage. To protect the individuals’ interests, we propose a new approach to controlling the life cycle table of
data to enable individuals themselves the flexibility to control the life cycle of private data. Unlike existing
data lifetime management methods, the RTPP can support the retrieval of tags in the data life cycle table to
control the corresponding privacy while automatically adding or removing tags. Our system automatically
adjusted the survival period of private data in the life cycle table through the change of leaf weights, controlled
the charge movement on the surface of flash memory, and finally achieved the resilient adjustment process
of the life cycle of private data in the embedded system. The security proof and performance evaluation
show that the proposed RTPP scheme is provable secure in the automatic privacy lifecycle tuning model for
embedded systems and efficient in practice.

INDEX TERMS Huffman coding, information security, chaotic mapping, flash memory, data lifecycle.

I. INTRODUCTION
Automatically and opportunely deleting the correct personal
data in an embedded system is challenging to protect privacy.
As the European Union’s General Data Protection Regula-
tion (GDPR) [1] went into effect on May 25, 2018, and the
California Consumer Privacy Act (CCPA) [2] became effec-
tive on January 1, 2020, these laws contribute the rise of atten-
tion to individuals’ private data using, protecting, deleting and
forgetting. While website visitors choose to allow cookies or
upload personal data to the websites, the service provider will
automatically record our preferences, individual private data

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

on their databases for years. Such activities increase the secu-
rity risk of violating personal privacy under the above laws.
However, people have the right to ask the data owner to delete
personal information from any databases according to their
requirements, fulfilling the legal ‘‘right to be forgotten’’ [3].

Except on the internet, due to the worldwide epidemic
prevention and control, a large amount of personal infor-
mation is collected by various devices, which poses a sig-
nificant security risk to individuals’ privacy. Traditionally,
there are two ways to prevent privacy leakage, one is to
enhance the security of encryption algorithms in software to
protect sensitive data, and the other is to remove private data
directly from the hardware. Since most encryptions can be
decrypted on purpose with adequate time, it is more thorough

35146
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8924-8832
https://orcid.org/0000-0002-5919-9419
https://orcid.org/0000-0002-4030-3765
https://orcid.org/0000-0001-7232-415X
https://orcid.org/0000-0001-9037-6332
https://orcid.org/0000-0003-1033-8323

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

in removing private data directly from the hardware. There-
fore, research on the automatic and complete removal of
personal data from hardware has become a hot topic in recent
years.

In this work, we designed and developed Resilient Tag-
based Privacy Protection (RTPP) scheme. In the RTPP, much
personal private data is sensitive, so the first thing to con-
sider is private data encryption. We propose and evaluate an
encryption method based on chaos theory for pseudo-random
number generators. Since chaotic systems are susceptible to
initial states and complex dynamic behavior, chaotic systems
do not follow the probability statistics in the distribution. The
proposed random sequence can provide a good randomness
seed for the pseudo-random number generator, making the
encryption system we design challenging to be broken for
higher security. Secondly, we designed the Data Label Life
Cycle Table (DLLCT). It allows dynamic and flexible control
of the data lifecycle, enabling users to manage their private
data more efficiently and conveniently.

The rest of this paper is structured as follows: Section II
reviews the existing methods for implementing ‘‘auto-
forgotten’’ for embedded systems and cryptographic algo-
rithms based on chaos theory. Section III describes the
design of the proposed pseudo-random number genera-
tor based on chaos theory. Section IV presents the RTPP
scheme. Section V presents the performance and security
analysis of the implemented algorithm. Section VI summa-
rizes the entire paper and provides suggestions for future
work.

II. RELATED WORKS
This section presents related existing methods for embedded
automatic being forgotten and compares them intuitively.
In addition, we investigate the suitability of chaos theory
for improving encryption algorithms used for pseudo-random
numbers.

A. THE EXISTING METHODS FOR IMPLEMENTING
‘‘AUTO-FORGOTTEN’’ FOR EMBEDDED SYSTEMS
Many automatic forgotten methods have been proposed that
are suitable for implementing the protection of personal pri-
vacy data in embedded systems. The hardware implementa-
tions of these approaches are usually analyzed based on the
complexity of privacy data storage using a combination of
spatial complexity and temporal complexity.

Tanakamaru et al. proposed the PP-SSS System
in 2015 [4], which automatically destroys personal private
data by setting the exact life spans for the different phys-
ical storage units. Data destruction is performed by con-
sciously writing deliberate errors so that the error correction
system cannot identify private data outside the expected
life span. Compared to traditional data deletion methods,
privacy-preserving solid-state storage systems remove per-
sonal privacy more directly from the source than hiding data
from the user. However, the effectiveness of this system is
limited to compressed data. It is also not suitable for the

long-term storage of private personal data, as the data life
cycle is different. Yamazawa et al. in 2016 used precise ECC
and shredding techniques to precisely control the storage
lifetime of private data in hardware [5]. Suzuki et al., in 2019,
designed the PDLCS [6]. PDLCS, in comparison to PP-SSS,
adds the process of In-3D vertical cell processing, where
the lateral charge migration in 3D NAND flash controls the
lifetime of the data, which provides amore efficient guarantee
for a longer or shorter private data lifecycle.

However, this system also has drawbacks. Firstly, it only
performs simple encryption during the data processing pro-
cess of the original private data, which can easily lead to
privacy leakage. Secondly, it does not propose an exact
data lifecycle management scheme. Multiple private data
are processed one by one, increasing processing time, con-
suming embedded systems, processing process’s complexity,
and depleting battery life. Therefore, we focus on the issue
that the hardware can automatically adjust the lifecycle of
private data without decreasing the security level of private
data.

B. CHAOS-BASED ENCRYPTION ALGORITHM
The existing chaotic cryptography is achieved in two steps:
first, a pseudo-random key stream is generated using a chaotic
system, and the plaintext is encrypted using the generated key
stream, called stream-based chaotic encryption [7]. Second,
the ciphertext is obtained by multiple iterations (or reverse
iterations) using the plaintext (or key) as the initial condition
(or control parameter) to achieve encryption. This method
belongs to block-based chaotic encryption, widely used for
traditional packet encryption such as DES and AES [8].
In chaotic encryption algorithms, chaotic mapping is often
referred to as the core component of the encryption pro-
cess, which generates many pseudo-random sequences [9].
The general idea of designing chaos-based ciphers is to use
the sequences in chaotic mappings to perform cryptographic
operations on-target messages [10]. Therefore, to improve the
security of cryptosystems, chaotic mappings need to be con-
tinuously optimized. In 2011, Cao et al. improved the com-
plexity of chaotic mappings by changing the parameters [11].
In 2019, Peng et al. added the quantum chaos and PWLCM
chaotic mapping into a new method of S-box design, which
significantly improved the security performance of the cryp-
tography [12]. In 2020, Patel et al. proposed an improved 3D
chaos logistic map encryption algorithm, which makes the
encryption algorithm strong [13]. Currently, the construction
of hash function based on chaotic mapping is a research
direction in chaotic cryptography, which uses the sensitivity
of initial values and pseudo-randomness inherent in chaotic
systems to generate hash values. These Hash values are used
as seeds for pseudo-random number ciphers, which finally
undergo several chaotic iterations to generate unpredictable
random keys. Among such studies, in 2016, Li et al. pro-
posed the construction of a one-way hash function based on
a sequence design with double perturbations of spacetime
chaos [14]. In 2015, Teh et al. proposed the construction

VOLUME 10, 2022 35147

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

of a hash function based on chaotic logic equations [15].
Meanwhile, it is proved that a single low-dimensional chaotic
system is more vulnerable to attacks. In contrast, a high-
dimensional chaotic system can improve security but reduce
the speed of cryptographic operations.

Therefore, considering the above problems, a MAC
pseudo-random function generator based on segmented logis-
tic chaotic mapping for RTPP system is designed in this paper
from the viewpoint of efficiency and security to complete the
storage encryption of private data.

III. THE PROPOSED ALGORITHM: MODIFIED
HMAC (CHMAC)
The security of storing private data is as important as the
memory usage in the embedded system to implement the
automatic forgotten scheme of private data. SincemostMAC-
based pseudo-random number generators are constructed
using theMAC algorithm [16] with embedded hash functions
(HMAC) [17], in this study, cryptographers aim to design
an algorithm that is more resistant to attacks than HMAC.
Therefore, we propose a Chaos-based HMAC (CHMAC)
algorithm in this subsection, and further details of
the HMAC algorithm and the CHMAC algorithm are
presented.

A. HMAC ALGORITHM
TheHMACalgorithm uses the underlyingHash functionwith
the key to complete the encryption process, which is defined
as follows [2]:

HMAC(K ,M) = H [(K+ ⊕ opad)||H [(K+ ⊕ ipad)||M]]

(1)

where K is the key shared by both communication parties,
M is the message to be verified. H is the embedded Hash
function. ‘‘⊕’’ means ‘‘bitwise iso-or’’ operation. ‘‘||’’ means
‘‘or’’ operation. When the length of the key K is less than
the number of bits b contained in each group of the Hash,
the length of K and b are the same by adding 0 to the end
of the key K . The key becomes K+. opad and ipad are the
internal and key-related bit sequences of HMAC. The HMAC
algorithm structure diagram is shown in Fig. 1.

FIGURE 1. HMAC algorithm structure diagram.

The encryption process for each message block is divided
into five steps [18]:

Firstly, make the number of bits of the key K the same
as the number of bits b in each Hash function grouping by
adding zeros to the last bit to obtain K+.
Secondly, performs an equal or operation on the ipad to

produce a grouping of b bits and appends M to it to produce
a message authentication code.

Thirdly, input the message authentication code derived
from step 2 into the embedded Hash function to generate the
Hash code.

Fourthly, it performs an iso-or operation with opad to
generate a grouping of b bits and attaches the hash code
generated in step 3 to fill to the b bits, generating a new
message authentication code.

Fifthly, themessage authentication code generated in step 4
is directly applied to the Hash function to generate an HMAC
value.

The HMAC value generated after the encryption of the
previous message block is used as the initial value for the
subsequent message block processing, and so on repeatedly
until the last message block processing is completed to get
the final pseudo-random number output value.

B. CHMAC ALGORITHM
According to the working requirements of the RTPP system,
the HMAC algorithm should be improved in terms of time
and energy consumption. Therefore, we tried to find a way
to optimize the time consumption of private data encryption
in HMAC. For this purpose, we conducted a series of tests
and evaluations to find the most time-consuming part of
the HMAC algorithm as a possible option to improve the
algorithm running time. Each round of the HMAC algorithm
contains three calls to the hash function, the main core of the
algorithm, which processes messages in 512 bits increments,
with the internal structure of each round consisting of per-
mutations, shifts, and substitutions. Contrary to the simple
and low-cost implementation of bit permutations in hard-
ware [19], the software implementation is expensive from the
aspect of processing time. Therefore, to further improve the
security and encryption speed of the HMAC algorithm, this
paper proposed the embedded Hash function in the HMAC
algorithm. Combining the segmented logic chaos mapping
with the embedded Hash function and invoking the Piecewise
Logic Maps (PLM [20]) to construct the CHMAC algorithm.
Our experience reduces the processing time of the software
by reducing the number of substitution operations, while
ensuring better encryption performance. Table 1 shows the
time (milliseconds) required to encrypt 512 bits of data with
different encryption rounds for the HMAC algorithm, the
improved HMAC algorithm and the CHMAC algorithm pro-
posed in this paper. The results show that the encryption time
for encrypting 512 bits is reduced from 255.07ms to 20.97ms
when the HMAC algorithm does not include the permutation
operation. The CHMAC algorithm retains one permutation
and introduces chaotic mapping. From comparing of encryp-
tion iteration times, the CHMAC algorithm has an encryption

35148 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 1. Require time for encryption data (512 bits) in different scenarios with the different number of rounds (millisecond).

FIGURE 2. CHMAC algorithm structure diagram.

advantage over the HMAC algorithm which has only one
swap.

In CHMAC algorithm, the introduction of chaotic mapping
reduces the interaction between plaintext information blocks
in the initial stage, effectively prevents external attacks, and
greatly improves the algorithm’s security. The logistic map is
a discrete-time dynamic system [20], being mathematically
expressed as

xn+1 = f (xn) = µxn(1− xn) (2)

where x0 ∈ (0, 1) is the state value, and µ is the con-
trol parameter. The basic logistic mapping is vulnerable to
attacks due to its simple structure. this algorithm references
PLM [20], enhances the resistance of logistic mappings,
which is defined as (3). Where N is the number of segments
of the logistic mapping. It has good ergodicity and a larger
Lyapunov exponent than basic logistic mappings. The study
shows that themapping has good chaotic characteristics when
the initial control parameter values µ ∈ (2, 4).
Fig. 2 depicts the structure diagram of the CHMAC algo-

rithm constructed in this paper. Compared with the HMAC
structure diagram, the encryption of each group of messages
only needs to be run twice in the same Hash function. It sim-
plifies the design of the circuit while ensuring the improved
security of the encryptor. The specific encryption process is
as follows: firstly, the key and are subjected to the iso-or oper-
ation, and the generated message authentication code is input
to the CHMAC algorithm structure to generate the Hash code;
then, it is input to the PLM(So||ho) in the CHMAC algorithm
structure to complete the second encryption operation, and
the CHMAC code of a single message block can be obtained

after the completion of the iteration.

xj+1 = PLM
(
xj
)

=

N 2µxj

(
1
N
− xj

)
, 0 < xj <

1
N

1− N 2µ

(
xj−

1
N

)(
2
N
−xj

)
,

1
N
< xj <

2
N

...

N 2µ

(
xj −

i− 1
N

)(
i
N
− xj

)
,

i− 1
N

< xj <
i
N

1−N 2µ

(
xj−

i
N

)(
i+ 1
N
−xj

)
,

i
N
< xj <

i+ 1
N

N 2µ

(
xj−

N−2
N

)(
N−1
N
−xj

)
,

N−2
N

< xj

<
N−1
N

1−N 2µ

(
xj−

N−1
N

)(
1−xj

)
,

N − 1
N

<xj < 1

xj +
1

100N
, xj = 0,

1
N
,
2
N
,

. . . ,
N − 1
N

xj −
1

100N
, xj = 1

(3)

Finally, the CHMAC code is fed back to the initial value
of the function, and the above steps are repeated until all
message block groupings have all executed this process, and
pseudo-random number encryption of privacy can be real-
ized. The processing of the function part consists of three
main steps: message key preprocessing, compression itera-
tion of the message block, and generation of the CHMAC
value. Equation 4 defines the CHMAC algorithm:

CHMACK (M) = PLM[P0||Si] (4)

Message key preprocessing consists of two parts: message
key padding and message code iterative chunking. First, the
key K+ and ipad perform the iso-or operation to divide the
plaintext message into L groups of plaintext message blocks
Yi (0 ≤ i ≤ (L − 1), and after merging the two, they form the
message key Si. The length of each message key is 512 bits

VOLUME 10, 2022 35149

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 2. Chaos-based HMAC algorithm.

and sent to the function for iterative compression, and finally,
get the 256 bits code (ho). Then use it as the expansion bit
generated by the key and for the iso-or operation. Then enter
the function again for iterative compression. The CHMAC
code value of this message block can be generated and used
as the initial value for the next group of message blocks to be
processed until all the message blocks of the message are pro-
cessed. Then the final CHMAC code value can be obtained.
This enhances the diffusion effect amongmessage blocks and
enhances the security of encrypted messages. The iterative
compression process of message blocks is mainly used in the
PLM iterative function. Table 2 shows the execution process
of the CHMAC algorithm.

IV. APPROACH TO ‘‘AUTO-FORGOTTEN’’
IMPLEMENTATION FOR EMBEDDED SYSTEM
One way to protect private data in storage and achieve an
automatic deletion to implement the ‘‘right to be forgotten’’
is to limit users’ private information [21]. However, as data
grows, the number of files that need to be deleted gradu-
ally increases the complexity of system processing. So far,
the deletion operations users have performed on the device
have only ostensibly been deleted on their own devices.
The data system backend has saved this information in the
backend database of each company [22]. Whenever a com-
pany receives the requirement to erase personal data from
the database, the whole process of individual-by-individual
review is very tedious and time-consuming. However, the
final review decision does not always ensure successful dele-
tion, reducing the legal system’s credibility to protect individ-
uals’ privacy.

Protecting individuals’ privacy through legal means is not a
foolproof solution, so it is crucial to deal with the ‘‘automatic
right to be forgotten.’’ In this paper, a Resilient Tag-based
Privacy Protection (RTPP) scheme is designed to solve such
problems effectively. The scheme automatically calculates
the survival period of individuals’ private data by controlling
the charge movement in the hardware and changing the bit-
error rate (BER) in combination with the data usage in a
specified period. When the data is outside the survival cycle,
it will be automatically and permanently destroyed in the
hardware to be forgotten. Fig. 3 is the basic architecture of

FIGURE 3. Architecture of the RTPP system.

the RTPP scheme. The main features of the RTPP system are:
firstly, private data all have corresponding tags; secondly, the
existence time of individuals’ privacy can be flexibly adjusted
by determining whether the user retrieves the relevant tag
data for four out of seven days; thirdly, all private data under
such tags can be accurately operated by directly retrieving the
tags without decoding the private data. This system consists
of four parts: first of all, using a pseudo-random number
generator with chaotic mapping to perform cryptographic
operations on privacy; next, using NOR flash memory and
3D-NAND flash memory controllers for collaborative
processing; then controlling the length of personal privacy
lifecycle with Huffman coding; finally achieving automatic
forgetting of individuals’ privacy. The features are described
in detail in Section 3 of this paper.

A. FLASH MEMORY OPERATION
There are two typical types of flash memory, NAND and
NOR flash memory [23]. However, NAND flash memory is
classified into four types based on the difference in density
of its electronic cells. After comparing the capacity, cost, and
lifetime of these four types of flash memory, 3D-TLC NAND
flash memory [24] was chosen for this system. 3D-TLC
NAND flash memory is not simply a stack of NAND layers.
It utilizes 3D-NAND technology, where memory particles are
stacked in three dimensions from three dimensions. It dramat-
ically improves storage capacity, performance, and security
compared to two-dimensional planar-sized TLC NAND flash
and has an advantage over two-dimensional flash in stor-
ing large-capacity private data [25]. NOR flash is a random
storage medium. Each memory cell is connected in parallel,
allowing direct random access to each bit and significantly
reducing the execution time for processing instruction oper-
ations to store data tags in NOR flash [26]. When the host

35150 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

issues a retrieval command, it first extracts the relevant tag
from the NOR flash memory and sends it to the NAND
flash memory. Then, it can view the data corresponding to
this tag and transfer the data to the host to complete this
retrieval operation. Similarly, when a host wants to delete a
particular type of data, it can directly delete such tags and
delete all the data under such tags simultaneously to achieve
flexible regulation of the data lifecycle. Fig.3 designed the
RTPP system to use two flash memory types for individuals’
privacy.

Although the storage performance of the two types of flash
memory is very different, the read and write processes are
similar [27]. For NAND flash, the deletion or writing of data
is based on the tunneling effect, which requires current to
pass through the insulation layer between the floating gate
and the polysilicon pillar, discharging or charging the floating
gate [28]. NORflashmemory uses tunneling for data deletion
and hot electron injection from the floating gate to the source
for data writing [29]. In order to achieve flexible control of
the survival cycle of individuals’ privacy, the proposed RTPP
system designed in this paper utilizes the charge movement
to control the erasure and writing of flash memory. The tags
with private data are stored in 3D-TLC NAND flash memory,
and each layer stores one week of private data. When the
data life cycle is extended, the content of the bottom tag is
substituted to the tag with the same name in the upper layer.
By controlling the charging and discharging of the bottom
cell, the outdated tag is erasedwhile the data is written. At this
time, the error correction code will receive the corresponding
instruction to determinewhether the BER should be increased
or decreased [30], thus realizing the automatic adjustment of
the private data life cycle by flash memory. The operation
does not require direct private data processing but compresses
and stores them in their respective tags. Our system only
needs to manipulate the corresponding tags to achieve control
over the life cycle of all private data, which saves memory
processing time, dramatically improves efficiency, and effec-
tively protects the privacy and security of users.

B. RULES OF LABELING DATA TAGS
After the server is written with individual private data, it first
classifies each private data by labeling it with a corresponding
tag and stored in the flash memory. In the DLLCT designed
in this paper, each tag type has its corresponding timeline
from creation to disappearance. Its lifecycle is automatically
updated in the table when the private data life span needs
to be extended, shortened, or deleted immediately. The tags
in the life cycle table are divided into four groups, among
which the first three groups of tags are fixed in position and
value in the life cycle table and cannot be modified in any
way. At the same time, the system automatically generates
the fourth group of tags according to the sensitive level of
privacy.

All tags are stored in the NOR flash memory of the embed-
ded system as a server host. When users use the host, the
generated privacy content will look for the tagsmatching their

own inside the host to realize the categorization and storage
of private information. At this time, each private data can
be labeled by multiple tags, and different types of sub-tags
can be stored under each group of tags. Each tag is stored
in the life cycle table with a default validity of one year.
If no operation is performed on these private data during this
period, this private data under such tag will automatically be
destroyed in the system. If the data is subject to an extended
period, shortened period, or immediate deletion operation, the
survival time of its corresponding life cycle table will also be
automatically changed.

On the one hand, the tag is stored in NOR flash memory so
that the flash memory can directly handle a large amount of
private information. On the other hand, the tag and the private
data it contains are transferred to a pseudo-random number
generator based on the chaos principle, which encrypts the
data information to prevent private data leakage. The use of
pseudo-random number generator based on chaos principle
and its encryption principle is described in detail in Chapter 2.
When the private data has completed the above operations,
it will enter the embedded system’s Flash Translation Layer
(FTL) [31]. This step converts the logical address of the pri-
vate data into a physical address for writing to flash memory.
After the conversion is completed, the privacy information
is directly input into the Huffman coding designed in this
paper to compress the private data. The regulation of theHuff-
man encoding is the core part of completing the automatic
regulation of the private data, which is explained in detail
below.

C. MODIFICATION OF HUFFMAN CODING
After the data are tagged, the random encryption of the
pseudo-random function generator is initialized, and FTL
completes the address conversion. It enters the core module
of the RTPP system, which is a crucial step used to realize
the flexible regulation of the life cycle length of private data.
This paper designs an algorithmic modulation of Huffman
coding to achieve lossless compression of large amounts
of private data using Huffman coding. The system flexibly
changes the life cycle of private data in flash memory by
judging theweight results of the Huffman tree so that the error
correction code generates the corresponding bit error rate and
thus controls the directional movement of the flash memory
charge.

Huffman coding algorithms have two manifestations in the
current research: static mode [32] and adaptive mode [33].
Throughout the encoding process, the static encoding model
bases the encoding process on a pre-assumed model of the
distribution of encoded elements and allows the use of char-
acter distributions that correspond to the nature of the file.
Our auto-adaptive algorithm does not lose compression gain
if the differences between the presumed and actual models
are too significant because it draws on the model details of
the incremental model. When there are significant changes
in the patterns of different elements, the adaptive approach
also does not need to transfer these changes to the decoder.

VOLUME 10, 2022 35151

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

Because in this mode, the encoder and decoder automatically
keep the identical copy with the Huffman tree, thus showing
that the adaptive mode is better than the static mode is more
advantageous than the static mode. Although the RTPP sys-
tem already provides a life cycle table of data tags, some of
the more petite tags in group 4 can only be written to the life
cycle table by the user. Thus, to make Huffman coding more
effective in regulating the life cycle of private data in RTPP
systems, this paper designs an Adaptive Model of Huffman
Coding (AMHC).

For Huffman coding, the construction of Huffman tree
is the most fundamental work. In this paper, we design an
adaptive dynamic mode of Huffman coding. The Huffman
tree is based on the tag information in DLLCT as the basic
structure, and in the actual use, the user’s Huffman tree is
constructed step by step backward according to the date of
each day, and thewhole tree is not completed at the beginning.
The process of its construction is rough, using the first set of
tags as the root node and building the leaf nodes sequentially
from top to bottom. The second group ofmonth tags in the life
cycle table is read as the leaf node of the root node, where the
current month tag is placed in the left node. The right node is
the next month tag; the third group of week tags is used as the
leaf node of the second group of tags, with the current week
tag as the left node and the right node as the next week tag.
For the construction process of the leaf nodes of the second
and third groups of tags, the above method is repeated in turn
until the last tag in the second and third groups of tags in the
life cycle table appears. It completes the construction process
of the first three groups of tags for the whole year Huffman
tree. The leaf nodes of the third group of tags are constructed
according to the fourth group of user tags. The leaf nodes are
sorted according to the order of user accesses built in order
from left to right. Since the fourth group of tags is classified
by the user’s private data sensitivity to the server, the initial
weight of the leaf of the data with the highest sensitivity is set
to 1. The weight is set to 2 to a higher sensitivity level, and so
on. The Huffman tree of the fourth group tags is constructed
with weights after tags are classified. This Huffman tree is
merged under the third group of leaf tags to complete the
construction of the Huffman tree of a user’s private data in
a day in the server. The leaf weight of a user’s first-level
sensitive tag is consistent with the number of days a user
visits the server. If a user visits the server four days a week,
its first-level sensitive tag leaf weight changes to 4, and the
weights of all the remaining leaf nodes change accordingly.
If a user visits the server frequently, the amount of his privacy
record data increases, increasing the risk of privacy leakage.
The server has specific protection measures for their private
data for this type of user.

Since all groups of tags are set to be valid for one year
by default, Huffman coding sets a timeline every seven
days. By determining whether the leaf weight of the first
level-sensitive tag of the fourth group of tags is greater than 3,
it is possible to decide whether the life span of the
fourth group of tags is extended or shortened. When the

determination is over, the weights of all tags in the
fourth group of that user change to the initial weights, and
then the task of regulating the data life cycle is performed.
If it is larger than three, the Huffman tree changes at that
time: the first three levels of sensitive tags in the fourth group
of tags are then set to shorten the life cycle, and the server
sets its initial leaf weight to decrease by one-twelfth, and the
remaining sensitive tags of this user are set to extend the life
cycle, and their initial leaf weights increase by one-twelfth;
if it is less than or equal to three, all the fourth group of
tags of this user is set to shorten the life cycle, and its leaf
initial weight is reduced by one-twelfth. For a user with an
extended lifecycle, when the leaf weight of the first three
levels of sensitive tags is reduced to 0 within the one-year
validity period, the user will not display the contents of the
first three levels of sensitive tags when he/she revisits the
server. At that time, the user’s fourth level of sensitive tags
becomes the new first level of sensitive tags, and its leaf
weight becomes 1. The fifth level of sensitive tags becomes
the new second level of sensitive tags, and its leaf weight
becomes 2. If the user revisits the server, his privacy tag will
not participate in the construction of theHuffman tree, and the
system will directly include this user in the critical protection
list. When the one-year validity period expires, the system
will directly set all tag leaf weights to 0. At this time, it enters
the automatic forgotten phase of the embedded system.
Until the second year, the above process starts again. Table 3
shows the implementation process of the AMHC algorithm.
When the system receives the instruction to extend the tag
life cycle, it reduces electrons’ migration and error rate to
the 3D-TLCNANDflash interface. Thus, the error correction
code does not easily reach saturation, and the data lifecycle
extension is achieved. Instead, it will increase the charge
migration on the 3D-TLC NAND flash interface and increase
the error rate, allowing the error correction code to detect
more errors, thus shortening the data lifecycle. For leaf node
tags with a weight of 0, the system will remove them before
entering the second cycle.

Suppose a user sends a request to delete private data imme-
diately while using the host system. In this case, the system
first finds which type of tag the private data belongs to in the
periodic table. Our system retrieves its usage frequency in the
Huffman tree by the fourth group of tags and immediately
reduces its leaf node weight to 0. In the Huffman pseudo-
code, this leaf node is simultaneously deleted in the Huffman
tree, and its weight in the periodic life table will be deleted
accordingly. At this time, the error correction code reaches
the maximum error correction value, the parity check fails,
and the user-submitted privacy deletion instruction enters
the hardware immediate deletion phase. A large amount of
charge will be transferred, and permanent hardware deletion
of this private data is finally achieved after the discharge
operation [34]. Since the private data is stored under tags,
in this case, the deletion operation is performed directly on
all the tags owned by this private data to achieve the deletion
of private data.

35152 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 3. AMHC algorithm.

D. DLLCT WORKING PROCESS
DLLCT is a key step in the RTPP scheme to achieve flex-
ible extension/shortening of data lifecycle. First, it judges
the Huffman tree’s leaf weights to change the private tag’s
lifecycle. It then sends the corresponding instructions to the
3D flash memory to change the BER of the patient tag in
this embedded system by controlling the direction of the
electron flow at the flash interface to complete the change
of the private data lifecycle, Fig. 4 shows the way of working
of DLLCT in RTPP scheme. The figure shows that DLLCT
first sets all the private data tags that enter the system after
encryption to be valid for 1 year. At the same time, the AMHC
algorithm starts to work, at which time the processing of
data tags enters the working mode and ®, during which
time if the system receives the command to delete the data
immediately, it will enter the working mode ¯ at this time.
Fig. 5 depicts the workflow diagram of DLLCT for flexible
regulation of private data life cycle. Firstly, DLLCT will
estimate the BER based on the private data and optimize the
leaf labels’ weights within seven days. The actual BER will
be calculated on the eighth day, and the flexible control of the
private data life cycle can be realized.

V. SYSTEM IMPLEMENTATION RESULTS ANALYSIS
In the proposed RTPP system, there are two core components,
one is the encryptor, and the other is the AMHC implemen-
tation. In the following, we will analyze the RTPP system
from two aspects: the security analysis of the system, and the
process performance of automatic adjustment of the private
data lifecycle by AMHC.

A. SECURITY ANALYSIS OF THE SYSTEM
The security of the RTPP system is mainly reflected in the
system’s resistance to attacks and the security of storing

FIGURE 4. Proposed Data Label Life Cycle Table (DLLCT).

FIGURE 5. Flowchart of proposed DLLCT.

private data in the system. The performance index of the
encryptor in the RTPP system can be tested, and the security
analysis of the password can be judged. We tested the pro-
posed CHMAC algorithm in the RTPP system and compared
it with PRNG algorithm based on the Hash function and
the PRNG algorithm based on the MAC function. We com-
pared the three algorithms in terms of energy consumption,
encryption time, and memory usage to evaluate the overall
performance of the CHMACalgorithm. Evaluate the system’s
resistance to attacks by studying the relationship between
plaintexts and keys generated by the CHMAC algorithm. The
following six experimental results show that the CHMAC
algorithm introduces chaotic mapping and uses nonlinear
elements compared with the Hash function-based PRNG
algorithm and the MAC function-based PRNG algorithm.

VOLUME 10, 2022 35153

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

Although its performance index is between the two, its resis-
tance to attacks is the strongest and provides a stronger secu-
rity defense for the RTPP system.

1) ENERGY CONSUMPTION OF ENCRYPTION
For electronic devices, the battery is the direct component that
provides energy, so we will calculate the energy consumption
of the encryptor by measuring the usage of the battery by
the encryption algorithm. Using a multimeter to measure
the voltage and current values required for the algorithm to
run, we will first find the power when the algorithm runs,
according to the formula: power = voltage value ∗ current
value, P (w) = U (v) ∗ I (A), the power value is obtained.
In this formula, the voltage and current values are taken as
the average of the measurement results of the algorithm run
thirty times. The average power is obtained and brought to
the formula: Q (J) = P (w) ∗ T (s), which gives the amount
of energy consumed by each encryption algorithm to run.

In this case, T is the time required to execute the algo-
rithm once, and its value remains the average time of thirty
measurements. Fig. 6 shows the energy consumption required
by the three encryption algorithms to execute 128 bytes,
256 bytes, and 512 bytes of data. From the figure, it can
be seen that the energy demand for running the CHMAC
algorithm lies between the two. Since energy consumption
is directly related to the algorithm’s complexity, one cannot
judge whether an encryption algorithm is good or not only
by the degree of energy loss. Among the three algorithms,
the CHMAC algorithm introduces chaotic mapping into the
embedded Hash, increasing the algorithm’s complexity and
improving encryption security.

FIGURE 6. Average energy consumption for three encryption algorithms
executing three bytes (MJ).

2) TIME CONSUMPTION OF ENCRYPTION
In addition to energy consumption, the algorithm’s execution
time is also a critical factor in determining its performance.
In general, the higher the algorithm’s complexity, the faster

it completes encryption and the better the algorithm’s per-
formance. The time consumed by the three algorithms to
execute 128 bytes, 256 bytes, and 512 bytes of data is shown
in Fig. 7. The Hash algorithm has the fastest completion time
because it has the lowest complexity. However, the security
of the keys it generates is less than that of the other two
algorithms. Therefore, although the Hash algorithm has the
fastest execution speed, it is not the best algorithm. Compared
with the HMAC algorithm, the CHMAC algorithm improves
the process of message grouping iterations, shortening the
execution time of data encryption.

FIGURE 7. Running time for three encryption algorithms executing three
bytes (ms).

3) THE MEMORY OCCUPATION OF ENCRYPTION
The proposed RTPP system works in standby mode when the
host generates browsing data. Once new private data is added,
RTPP will immediately enter working mode. Therefore, the
system memory needs to be occupied only with encrypting
the private data or adjusting its life cycle. The adjustment
data lifecycle phase mainly uses NOR flash memory and
3D-NAND flash memory, which requires more system mem-
ory in the encryption phase. Due to the limited memory, it is
essential not to occupy too much memory while ensuring
the encryption speed and quality. Therefore, the amount of
memory required to run the encryption algorithm is gener-
ally considered memory RAM usage [35]. Fig. 8 Shows the
RAM usage of the three encryption algorithms, and it can
be seen from the figure that the Hash algorithm has minor
RAM usage, followed by the CHMAC algorithm and the
HMAC algorithm. Although the memory usage of CHMAC
algorithm is not the least, the process of CHMAC algorithm
encryption is the most complicated among these three algo-
rithms. In a comprehensive view, CHMAC algorithm is still
the best.

The above three aspects of the evaluation results prove
that the proposed CHMAC algorithm designed in this

35154 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

FIGURE 8. Memory usage of the three encryption algorithms (Bytes).

paper is slightly better performance. However, none of
them is the smallest in terms of algorithm complexity, the
anti-interference ability of encryption.

For encryption algorithms, the length of the initial key
determines the security level of the encryptor; the longer
the key, the more resistant the encryption algorithm is to
attack and the higher its security. In terms of performance,
the longer the key, the longer the process of compressing and
iterating the key by the encryptor, the longer the encryption
time consumed by its complete encryption process, and the
more RAM it takes up. The CHMAC algorithm achieves
the optimal security of the encryptor without increasing the
performance cost. In the following, three aspects of the
correlation between the ciphertext and plaintext generated
by the CHMAC algorithm, randomness, and resistance to
attack will be analyzed. In order to make the analysis results
more accurate and reliable, 200 random text samples were
generated by the Lorem-Ipsum library to participate in this
experiment [36]. Among them, 100 random texts have a size
of 5000 bytes, and another 100 random texts have a size of
10000 bytes.

4) CORRELATION OF PLAINTEXT AND CIPHERTEXT
For an encrypted ciphertext, the less correlation it has with
the plaintext, the less the attacker can get the related plaintext
content, and at this time, the more secure the plaintext is,
the less the private content can be revealed. The correla-
tion between plaintext and ciphertext can be determined by
counting the ASCII characters values in the plaintext and
the ciphertext. As long as the ASCII value distribution of
the plaintext and the ciphertext does not show any pattern,
it proves that the plaintext and the ciphertext are not corre-
lated, and the private information after encryption is secure.
For the formed ciphertext, 0 to 256 ASCII characters indicate
that the encryption is secure and the formed ciphertext has
low predictability. Fig. 9 (a) and (b). show the ASCII distri-
bution of characters in plaintexts of 5000 and 10000 bytes,
respectively; Fig. 10 (a) and (b). are the ASCII distributions
of characters in the ciphertext after encryption for two random
texts without size bytes. Comparing the four graphs, we can

FIGURE 9. ASCII distribution of plaintext characters for 200 random texts
in the CHMAC algorithm.

FIGURE 10. ASCII distribution of ciphertext characters for 200 random
texts in CHMAC algorithm.

see that the characters in the random text before encryption
are random and irregular. After encryption, the characters
are uniformly distributed, indicating that the CHMAC algo-
rithm’s encryptor has a relatively high-security index.

5) RANDOMNESS OF THE CIPHERTEXT
After the encryption process, a ciphertext containing only
binary numbers is generated after the encryption process
encrypts the private data. Therefore, by counting the number
of binary numbers 0 and 1 generated by encryption separately,
it is possible to determine whether the encryptor satisfies
the characteristic of the randomness of encryption output.
Theoretically, the encrypted output is best when the number
of 0s and 1s is fifty percent each. At this point, the ciphertext
is not easy to find the pattern, and it is not easy to be broken,
which means that the generated ciphertext is secure. Table 4
shows the counts of 0s and 1s in the encrypted output after
encrypting 200 random samples by the CHMAC algorithm,

VOLUME 10, 2022 35155

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 4. Average number and percentage of ‘‘0’’ and ‘‘1’’ in 200 random encrypted samples.

along with the respective percentages. Here the count values
of each type of bytes are obtained as the average of such
texts. From the table, we can see that the average total per-
centage of ciphertext 0 and 1 generated by the encryptor of
CHMAC algorithm is basically around 50%, and the encryp-
tor designed in this paper fully satisfies the randomness.

The randomness of ciphertext can also be measured by
information entropy, which is the discrete probability of
detecting characters in a random text; the more chaotic the
ciphertext is, the greater the uncertainty of each character.
The information entropy value of the characters in the ran-
dom text is calculated according to the formula H (S) =∑
S
P(Si)log2

1
P(Si)

, where P(Si) is the probability of each

ASCII occurring in the ciphertext [37]. When the value of
the encrypted string is wholly distributed in the ciphertext, the
salient value of information entropy is equal to 4 for a random
text of 5000 bytes; the outstanding value of information
entropy for a random text is that of 10000 bytes is 8. Fig. 11 is
the value of information entropy for a random text. It shows
that the entropy value of the ciphertext characters generated
by the CHMAC algorithm is close to the entropy value of
excellent information entropy, which shows that it conforms
to the design principle of the encryptor.

6) ATTACK RESISTANCE OF CIPHERTEXT
The ciphertext generated by a qualified cryptography must
be highly resistant to external attacks to ensure that private
information is secure Diffusion, obfuscation, and avalanche
effect are three basic principles of cryptography design [38].
Diffusion allows each bit of information in the plaintext to
affect many bits of information in the ciphertext, which can
hide the contents of the ciphertext. Obfuscation makes the
relationship between the statistical properties of characters
between the ciphertext and the key more complex, even if
the attacker obtains the relevant information of the ciphertext.
The avalanche effect belongs to an unstable equilibrium state.
When the plaintext or the fundamental changes slightly, the
ciphertext will produce a considerable change, such as half
of the binary bits in the ciphertext change in reverse. In order
to test the resistance of ciphertext to attacks, the next part
of this paper will analyze both the diffusion and obfuscation
properties and the avalanche effect of the plaintext, key,
and ciphertext parts. The diffusion and confusion properties
between the plaintext and ciphertext characters in the encryp-
tion algorithm are calculated. According to the formula of

FIGURE 11. Entropy values of ciphertext information for 200 random
texts in the CHMAC algorithm.

integrity metric, it has a value of 1 for all encryption algo-
rithms. According to Equation (5) [7], where n is the number
of bits of the plaintext input of the encryption method and m
is the number of bits of the ciphertext output generated by the
encryption method.

dc = 1−
1
nm
6≡
{
(i, j) |aij = 0

}
,

(i = 1, . . . , n; j = 1, . . . ,m) (5)

Fig. 12 shows the computed results of the diffusion and
confusion properties of the CHMAC algorithm. It shows that
the algorithm converges to 1 after the fourth iteration, which
is consistent with the diffusion and confusion properties of the
cryptograph. The avalanche effect is tested here by assuming
that half of the binary bits of the ciphertext will be reversed
and changed when the plaintext or key changes by one bit.
The avalanche effect value is calculated according to Equa-
tion (6), where ‘#X,’ ‘n’ and ‘WH ’ represent the ciphertext
data count, individual data bit count, and Hamming distance,
respectively. F(x) is the ciphertext data, and F(x(i)) is the
ciphertext data with one difference in the ith position [7].

da1 =
1

#X ∗ n

n∑
i=1

(
∑
x∈X

WH (F(x)⊕ F(x(i)))) (6)

Fig. 13 shows the change in the value of the avalanche
effect for the random text. Since the number of bits of the

35156 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

FIGURE 12. Integrity of the CHMAC algorithm.

FIGURE 13. Avalanche effect of CHMAC algorithm.

ciphertext change is assumed, the outstanding value of the
avalanche effect at this time should be 1. From the figure,
we can see that the value of the avalanche effect of the
CHMAC algorithm is closest to the ideal value after seven
rounds.

B. DISCUSSION OF AMHC AUTOMATIC REGULATION
RULES IN EMBEDDED SYSTEMS
The AMHC algorithm is a crucial part of the embedded
system RTPP to achieve automatic data lifecycle adjustment.
The AMHC algorithm achieves the compression of a large
amount of private data and changes the lifecycle of private
data in DLLCT by changing the weights of leaf tags. Next,
we will evaluate the compression performance of the AMHC
algorithm in software and the adjustment process of a data
life cycle in RTPP for the embedded system. Finally, we will
compare and analyze the advantages of the RTPP scheme
with those of the traditional scheme.

1) COMPRESSION PERFORMANCE OF AMHC ALGORITHM
The compression performance of the AMHC algorithm is
analyzed by comparing it with static Huffman coding and

dynamic Huffman coding in terms of the size of the data
after compression and the processing time of the compression
process. Due to the complexity and diversity of private data,
we selected five types of text, English, Chinese, Internet, Pic-
ture, and Random with fixed character size, for testing [35].
Table 5 is the size of the five types of text after compression
by the three algorithms, where the second column is the initial
size of the five types of text (in MB), and the third column is
the size after compression by the three algorithms (in Byte).
It was evident from the figure that the size of the data com-
pressed by the AMHC algorithm is smaller than the other two
algorithms. Some of the data compressed by dynamic Huff-
man coding is smaller than static Huffman coding. In addition
to the size of the compressed data, the compression time is
also a critical factor in excellent compression performance.
Table 6 shows the compression times for the five types of
text under the three compression methods, and this time is
the average time obtained for each type of text executed
100 times in each algorithm. As can be seen from the figure,
static Huffman coding is the fastest, dynamicHuffman coding
is about half the time used for static Huffman coding, and
the AMHC algorithm takes a little bit slower than dynamic
Huffman coding. Although the execution time of the AMHC
algorithm is slightly longer, the compression performance of
the AMHC algorithm should be considered better among the
three in terms of the functions it implements and the size of
the compressed data.

2) PERFORMANCE OF DATA LIFECYCLE ADJUSTING
IN RTPP SCHEME
Each tag is valid for one year in DLLCT, and it is up to
the AMHC algorithm to decide whether to extend or shorten
the life cycle of the tag. The key to this algorithm is the
construction of the algorithm tree. Theweights of the leaf tags
of this tree will change every day. By determining whether the
leaf weight of the first level-sensitive tag of the fourth group
of tags is greater than 3, the system determines whether the
life cycle of the user’s fourth group of privacy tags is longer
or shorter. Suppose the leaf weight of the first-level sensitive
tag is greater than 3. In that case, the first three levels of
sensitive tags of the fourth group of tags are set to shorten
the lifecycle with a one-twelfth decrease in leaf weight, and
the remaining sensitive tags are set to extend the lifecycle
with a one-twelfth increase in leaf weight. The related tags
in the DLLCT will be recorded one by one to extend or
shorten the lifecycle. If the leaf weight of a level 1 sensitive
tag is less than 3 and no command is issued to delete the
data immediately. In this case, the life cycle of that data
is automatically shortened at this point by default. Then all
of its fourth set of sensitive tags are recorded as shortened
lifecycle, and the leaf weight is reduced by one-twelfth.When
extending the data lifecycle, a small number of electrons
will flow at the 3D flash interface, reducing the BER and
achieving an extended data life cycle. Fig. 14 clearly shows
that the electron influx at the flash interface dominates, the
number of electrons at the oxide interface increases, and the

VOLUME 10, 2022 35157

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 5. Compression performance of three algorithms.

TABLE 6. Coding execution time of three algorithms.

FIGURE 14. Electronic migration for BER reduction.

BER of the data changes from week to week. Fig. 15 shows
the change in BER over eight days for the extended data life
cycle. The BER decreases by one-twelfth for an extended data
life cycle. When shortening the data lifecycle, there will be a
little electron outflow at the 3Dflash interface so that the BER
will increase by one-twelfth consequently. Fig. 16 shows the
predominance of outflowing electrons and the decrease of
electrons at the interface of the oxide layer. Fig. 17 shows
the change of BER within eight days for shortening the data
life cycle.

3) PERFORMANCE OF IMMEDIATE DATA DELETION IN RTPP
SCHEME
When the system receives a delete command for data, the
AMHC algorithmwill immediately zero theweight of the leaf
tag corresponding to this data, and the related tags in DLLCT
will be deleted accordingly. At this time, many electrons will
flow out at the 3D flash interface so that the BER reaches the

FIGURE 15. BER variation over an extended data lifecycle of eight days.

maximum, and the immediate delete command of the data is
realized. Fig. 18 is a schematic of the electron flow, which
shows that almost no electrons are present at the oxide layer
interface. Fig. 19 is a hypothetical. The immediate deletion
command is received on the fourth day, and the BER of this
data changes in eight days.

4) ADVANTAGES OF THE RTPP SCHEME AT WORK
As shown in Table 7, compared with the three traditional
schemes, PP-SSS [4], Enhanced PP-SSS [5] and PDLCS [6],

35158 VOLUME 10, 2022

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

TABLE 7. Comparison of RTPP scheme and traditional scheme.

FIGURE 16. Electronic migration for increasing BER.

FIGURE 17. BER variation over a shortened data lifecycle of eight days.

FIGURE 18. Electronic migration for maximum BER.

the RTPP scheme proposed in this paper has unique advan-
tages in the following five aspects. The first point is that it sets
a specific life cycle for private data, which saves the memory
occupation of the system and effectively improves its effi-
ciency. Traditional schemes do not have a specific lifecycle,
and only change the survival cycle of data through the BER
until the BER is zero before the data is permanently deleted
in hardware. The second point is that the RTPP scheme is

FIGURE 19. BER change over eight days for data with immediate deletion
command.

designed with encryption algorithms to encrypt private data.
Only the PDLCS [6] scheme among the traditional schemes
encrypts the data with a simple random encryption. In part A
of this section, the encryption algorithms of the two schemes
are experimented with. The experimental results show that
the encryption algorithm of the RTPP scheme is significantly
better in terms of performance and security. The third point
is that this scheme designs a life cycle table of data label
to classify the privacy data in detail, when a user’s privacy
is deleted, it will not affect the rest of the privacy data, and
the system still works normally, the traditional scheme does
not make accurate classification. The last two points compare
whether this solution and the traditional solution can flexibly
control the data lifecycle. The results show that this solution
can flexibly extend and shorten the data lifecycle and immedi-
ately and permanently delete the data on the hardware within
the specified data lifecycle. Only the PDLCS [6] scheme can
do it among the traditional schemes. The core technologies
of these two schemes are different; the RTPP scheme uses
the AMHC algorithm and the PDLCS [6] scheme is the
Inverse Huffman-Coding VTH Modulation (IHVM) algo-
rithm, whose core ideas belong to Dynamic Huffman cod-
ing. In part B of this section, the algorithms proposed by
the two schemes are compared, and the experimental results
show that the algorithm of the RTPP scheme is slightly
better.

VOLUME 10, 2022 35159

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

VI. CONCLUSION
In order to protect personal privacy and make private data
‘‘automatically forgotten,’’ this paper proposes a flexible and
adjustable private data lifecycle control RTPP scheme for
embedded systems. This system encrypts the private data
using pseudo-random function cryptography based on the
chaos principle and completely deletes users’ private data by
controlling life cycle tags. To avoid storing too much private
data and occupying a large amount of system memory, the
RTPP smartly links the compression of private data with its
lifecycle regulation by modified Huffman coding techniques.
This method can flexibly regulate the life cycle of private
data, maximizing the protection of users’ privacy and security
issues. The proposed solution can be further improved by car-
rying a performance study on the security metrics in various
rounds in the RTPP. It is required to probe the possibility of
reducing setting groups of tags while preserving the high-
security criteria and the security assessment of cryptanalytic
attacks for this embedded system.

REFERENCES
[1] P. Carey, ‘‘Outsourcing personal data processing,’’ in Data Protection a

Practical Guide to UK and EU Law, 5nd ed. Oxford, U.K.: Oxford Univ.
Press, 2018, pp. 175–176.

[2] W. Stallings, ‘‘Handling of personal information and deidentified, aggre-
gated, and pseudonymized information under the California consumer
privacy act,’’ IEEE Secur. Privacy, vol. 18, no. 1, pp. 61–64, Jan. 2020.

[3] A. Bayle, M. Koscina, D. Manset, and O. Perez-Kempner, ‘‘When
blockchain meets the right to be forgotten: Technology versus law in the
healthcare industry,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI),
Dec. 2018, pp. 788–792.

[4] S. Tanakamaru, H. Yamazawa, and K. Takeuchi, ‘‘Privacy-protection
solid-state storage (PP-SSS) system: Automatic lifetime management of
internet-data’s right to be forgotten,’’ in Proc. Symp. VLSI Circuits (VLSI
Circuits), Jun. 2015, pp. C130–C131.

[5] H. Yamazawa, K. Maeda, T. Ogura Iwasaki, and K. Takeuchi, ‘‘Privacy-
protection SSD with precision ECC and crush techniques for 15.5×
improved data-lifetime control,’’ in Proc. IEEE 8th Int. Memory Workshop
(IMW), May 2016, pp. 1–4.

[6] S. Suzuki, K. Mizoguchi, H. Watanabe, T. Nakamura, Y. Deguchi,
K. Mizushina, and K. Takeuchi, ‘‘Privacy-aware data-lifetime control
NAND flash system for right to be forgotten with in-3D vertical cell
processing,’’ in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC),
Nov. 2019, pp. 231–234.

[7] Y. Liu, S. Tian, and W. Hu, ‘‘Design and statistical analysis of a new
chaotic block cipher for wireless sensor networks,’’ Commun. Nonlinear
Sci. Numer. Simul., vol. 17, no. 8, pp. 3267–3278, Aug. 2012.

[8] Y. Wang, K.-W. Wong, X. Liao, and T. Xiang, ‘‘A block cipher with
dynamic S-boxes based on tent map,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 14, no. 7, pp. 3089–3099, Jul. 2009.

[9] G. Zaibi, F. Peyrard, A. Kachouri, D. Fournier-Prunaret, and M. Samet,
‘‘Efficient and secure chaotic S-box for wireless sensor network,’’ Secur.
Commun. Netw., vol. 7, no. 2, pp. 279–292, Feb. 2014.

[10] B. Liu and Q. Chen, ‘‘A method of generating pseudorandom binary
sequences based on 3D chaotic mapping,’’ in Proc. 3rd Int. Conf. Inf.
Manage. (ICIM), Apr. 2017, pp. 243–246.

[11] C. Jianqiu, X. Huarong, and L. Zhangli, ‘‘Image dual scrambling encryp-
tion algorithm based on parameter variable chaotic system,’’ in Proc. Int.
Conf. Electr. Inf. Control Eng., Apr. 2011, pp. 4238–4242.

[12] J. Peng, S. Pang, D. Zhang, S. Jin, L. Feng, and Z. Li, ‘‘S-boxes con-
struction based on quantum chaos and PWLCM chaotic mapping,’’ in
Proc. IEEE 18th Int. Conf. Cognit. Informat. Cognit. Comput. (ICCI∗CC),
Jul. 2019, pp. 1–6.

[13] S. Patel, K. P. Bharath, and R. M. Kumar, ‘‘Symmetric keys image encryp-
tion and decryption using 3D chaotic maps with DNA encoding tech-
nique,’’ Multimedia Tools Appl., vol. 79, nos. 43–44, pp. 31739–31757,
Nov. 2020.

[14] Y. Li and X. Li, ‘‘Chaotic hash function based on circular shifts with
variable parameters,’’ Chaos, Solitons Fractals, vol. 91, pp. 639–648,
Oct. 2016.

[15] J. S. Teh, A. Samsudin, and A. Akhavan, ‘‘Parallel chaotic hash function
based on the shuffle-exchange network,’’ Nonlinear Dyn., vol. 81, no. 3,
pp. 1067–1079, Aug. 2015.

[16] S. M. S. Hussain, S. M. Farooq, and T. S. Ustun, ‘‘Analysis and imple-
mentation of message authentication code (MAC) algorithms for GOOSE
message security,’’ IEEE Access, vol. 7, pp. 80980–80984, 2019.

[17] Y. Yang, G. Cao, M. Qu, J. Huang, and Y. Gao, ‘‘HSATA: Improved SATA
protocol with HMAC,’’ in Proc. 27th Int. Conf. Comput. Commun. Netw.
(ICCCN), Jul. 2018, pp. 1–6.

[18] S. I. Naqvi and A. Akram, ‘‘Pseudo-random key generation for secure
HMAC-MD5,’’ in Proc. IEEE 3rd Int. Conf. Commun. Softw. Netw.,
May 2011, pp. 573–577.

[19] B. J. Mohd, T. Hayajneh, and A. V. Vasilakos, ‘‘A survey on lightweight
block ciphers for low-resource devices: Comparative study and open
issues,’’ J. Netw. Comput. Appl., vol. 58, pp. 73–93, Dec. 2015.

[20] Y. Wang, Z. Liu, J. Ma, and H. He, ‘‘A pseudorandom number gener-
ator based on piecewise logistic map,’’ Nonlinear Dyn., vol. 83, no. 4,
pp. 2373–2391, Mar. 2016.

[21] D. Erdos, ‘‘The ‘right to be forgotten’ beyond the EU: An analysis of wider
G20 regulatory action and potential next steps,’’ J. Media Law, vol. 13,
no. 1, pp. 1–35, Jan. 2021.

[22] M. Nur and L. Andrawina, ‘‘Designing engineering data management sys-
tem in research and development company,’’ J. Phys., Conf. Ser., vol. 1339,
no. 1, Dec. 2019, Art. no. 012099.

[23] D. Zhang, H. Wang, Y. Feng, X. Zhan, J. Chen, J. Liu, andM. Liu, ‘‘Imple-
mentation of image compression by using high-precision in-memory com-
puting scheme based on NOR flash memory,’’ IEEE Electron Device Lett.,
vol. 42, no. 11, pp. 1603–1606, Nov. 2021.

[24] Z. Lun, S. Liu, Y. He, Y. Hou, K. Zhao, G. Du, X. Liu, and Y. Wang,
‘‘Investigation of retention behavior for 3D charge trapping NAND flash
memory by 2D self-consistent simulation,’’ Proc. Int. Conf. Simulation
Semiconductor Processes Devices (SISPAD), 2014, pp. 141–144.

[25] C. Gao, M. Ye, Q. Li, C. J. Xue, Y. Zhang, L. Shi, and J. Yang, ‘‘Construct-
ing large, durable and fast SSD system via reprogramming 3D TLC flash
memory,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Oct. 2019, pp. 493–505.

[26] P. Poudel, B. Ray, and A. Milenkovic, ‘‘Microcontroller TRNGs using
perturbed states of NOR flash memory cells,’’ IEEE Trans. Comput.,
vol. 68, no. 2, pp. 307–313, Feb. 2019.

[27] Y. Yamaga, C. Matsui, Y. Sakaki, A. Kobayashi, and K. Takeuchi, ‘‘Real
usage-based precise reliability test by extracting read/write/retention-
mixed real-life access of NAND flash memory from system-level SSD
emulator,’’ in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2017,
pp. PM12.1–PM12.5.

[28] J.-M. Sim and Y.-H. Song, ‘‘Asymmetric read bias for alleviating cell-to-
cell interference in 3DNANDflash memory,’’ in Proc. IEEE Region Symp.
(TENSYMP), Aug. 2021, pp. 1–4.

[29] L. Bai, M. Wang, and J. Yi, ‘‘Design of NOR FLASH data read-write
controller based on FPGA,’’ in Proc. 7th Int. Symp. Mechatronics Ind.
Informat. (ISMII), Jan. 2021, pp. 104–110.

[30] T. Nakamura, Y.Deguchi, andK. Takeuchi, ‘‘9.1x error acceptable adaptive
artificial neural network coupled LDPC ECC for charge-trap and floating-
gate 3D-NAND flash memories,’’ in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Apr. 2018, pp. 1–4.

[31] C. Ma, Z. Zhou, L. Han, Z. Shen, Y. Wang, R. Chen, and Z. Shao,
‘‘Rebirth-FTL: Lifetime optimization via approximate storage for NAND
flash memory,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
early access, Oct. 26, 2021, doi: 10.1109/TCAD.2021.3123177.

[32] S. T. Klein, S. Saadia, andD. Shapira, ‘‘Forward lookingHuffman coding,’’
Theory Comput. Syst., vol. 65, no. 3, pp. 593–612, Apr. 2021.

[33] A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira, ‘‘Weighted adaptive
Huffman coding,’’ in Proc. Data Compress. Conf. (DCC), Mar. 2020,
p. 368.

[34] S. Tanakamaru, H. Yamazawa, T. Tokutomi, S. Ning, and K. Takeuchi,
‘‘19.6 hybrid storage of ReRAM/TLC NAND flash with RAID-5/6 for
cloud data centers,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2014, pp. 336–337.

[35] J. Moon and S. Lee, ‘‘Design of H.264/AVC entropy decoder without
internal ROM/RAMmemories,’’ in Proc. 3rd Int. Symp. Commun., Control
Signal Process., Mar. 2008, pp. 1464–1467.

35160 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCAD.2021.3123177

Y. Zhao et al.: Automatically Privacy Protection Solution for Implementing Right to Be Forgotten in Embedded System

[36] M. Sharafi, F. Fotouhi-Ghazvini, M. Shirali, and M. Ghassemian, ‘‘A low
power cryptography solution based on chaos theory in wireless sensor
nodes,’’ IEEE Access, vol. 7, pp. 8737–8753, 2019.

[37] X.-J. Tong, Z. Wang, Y. Liu, M. Zhang, and L. Xu, ‘‘A novel compound
chaotic block cipher for wireless sensor networks,’’ Commun. Nonlinear
Sci. Numer. Simul., vol. 22, nos. 1–3, pp. 120–133, May 2015.

[38] X.-Y. Wang and Q. Yu, ‘‘A block encryption algorithm based on dynamic
sequences of multiple chaotic systems,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 14, no. 2, pp. 574–581, Feb. 2009.

YANAN ZHAO received the B.E. degree in the
Internet of Things Engineering from Qufu Nor-
mal University, China, in 2020. She is currently
pursuing the M.A.Eng. degree with the Faculty
of Information Technology, Beijing University of
Technology, China. Her research interests include
security, privacy, and federated learning.

NONG SI (Member, IEEE) received the M.S.
degree in electrical engineering from the Blekinge
Institute of Technology, Sweden, and the Ph.D.
degree from the Electronic Engineering Depart-
ment, Beijing University of Technology, China.
His research interests include security, privacy, and
communication networks. He is a member of the
IET and CCF.

YU SUN received the B.E. degree in telecommu-
nication engineering from Anhui Polytechnic Uni-
versity, China, in 2021. She is currently pursuing
the M.A.Eng degree with the Faculty of Informa-
tion Technology, Beijing University of Technol-
ogy, China. Her research interests include security,
privacy, and federated learning.

XIN GAO received the M.E. degree in automa-
tion engineering from the Artificial Intelligence
and Automation Department, Beijing University
of Technology, China, in 2003. His research inter-
ests include embedded systems and wireless com-
munications.

HAOPENG TONG is currently pursuing the B.E.
degree in telecommunication engineering with
the Faculty of Information Technology, Beijing
University of Technology, China. His research
interests include information systems and telecom-
munication networks.

GENG YUAN is currently pursuing the degree
with the Faculty of Natural Science, Kristianstad
University, Sweden. He also studied and worked
with the Blekinge Institute of Technology and
Lund University, Sweden. His research interests
include the algorithm, applied machine learning,
and statistical learning for data science. In 2007,
he was awarded the Runner-Up Prize of the Inter-
national Young Design Entrepreneur of 2007 by
British Council.

VOLUME 10, 2022 35161

