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ABSTRACT The aim of this research is to propose a binary segmentation algorithm to detect the change
points in financial time-series based on the Iterative Cumulative Sum of Squares (ICSS). The proposed
algorithm, entitled KW-ICSS, utilizes the non-parametric Kruskal-Wallis test in cross-validation procedures.
In this regard, KW-ICSS can quickly detect the change points in non-normally distributed time-series with
a small number of observations after the change points than the state-of-the-art ICSS algorithm, entitled
AIT-ICSS. For the simulated financial time-series whose true location of the change point is known,
KW-ICSS detects the change points with the average true positive rate of 81% for the different number
of change points, whereas AIT-ICSS only exhibits 72.57%. Also, KW-ICSS’s mean absolute deviation
between the true and detected change points is less than that of AIT-ICSS for different significance levels.
The experiment also finds that the significance level, the model parameter, should be set to less than 10%.
For the real-world financial time-series whose true location of change points is unknown, KW-ICSS’s robust
detection of change points is observed from fewer detected change points and longer intervals between them.
Furthermore, KW-ICSS’s trend prediction for the short-term future performs with an average of 92.47%
accuracy, whereas AIT-ICSS shows 90.69%. Therefore, we claim that KW-ICSS successfully improves
AIT-ICSS.

INDEX TERMS Unsupervised learning, change point detection, iterative cumulative sum of squares,
Kruskal-Wallis.

I. INTRODUCTION
In recent years, time-series analysis has become more crit-
ical than ever before. The time-series data are one of the
elements that describe a system operation in a timely man-
ner. Such data appear in various fields, including medicine,
aerospace, finance, business, advertising, services, meteo-
rology, and entertainment. The time-series dynamics are
affected by external or internal factors [1]. In particular,
change point (CP) analysis aims to detect rapid changes in
time-series data when its distributional properties change [2].
CP analysis is closely related to CP estimation, or CP min-
ing [2]–[5], which aim to investigate segmentation, event
detection, anomaly detection, and clustering.
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Furthermore, CP analysis plays a critical role in establish-
ing an investment strategy in the financial sector. For instance,
investment decision-making in a portfolio can be determined
by considering the predicted changes in the momentum of
a market or asset price. In the era of data science, there
have been various efforts to predict the changes in market
momentum in both quantitative and qualitative approaches.
For instance, research on the simultaneous detection and
forecast of CPs in mean returns, volatility, and conditional
correlation have been studied [6], [7]. Most related studies
focus on estimating the CPs using a non-parametric method
to divide the financial time-series into segments with similar
characteristics such as mean, variance, and correlation while
holding their stationarity.

Specifically, CP analysis can be divided into real-time
(online) and retrospective (offline) methods. At first, the
online method is related to event or anomaly detection since
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it aims to detect (or predict) changes in time-series dynamics
in real-time. In contrast, offline detection is related to signal
segmentation since it aims to detect and analyze every CP to
interpret and explain the past time-series. In other words, the
offline method estimates all possible CPs by considering the
entire dataset at once or each batch of a specific period [8].
In this study, we develop a binary segmentation algorithm
based on an offline method that simultaneously improves
offline segmentation and online trend prediction. In terms of
estimating binary segmentation, many studies have attempted
to estimate CPs based on the change in the probability distri-
bution, the likelihood function [9]–[11], and the comparison
verification using F-test [12], [13]. Also, the Bayesian [14]
and cumulative sum (CUSUM) [15]–[22] methods have been
used to estimate the point of changes in time-series.

The proposed algorithm in this research utilizes the
iterative CUSUM method, which detects a point where its
distribution deviates from the normality as the CP. The effec-
tiveness of the CUSUM-based algorithm has been discovered
in analyzing the causality of the oil and US dollar exchange
rates, the time-varying relationship over time, and the transfer
effect of volatility [23], [24]. Also, the effectiveness of the
integrated cumulative sum of squares (ICSS) algorithm in
estimating the asymmetric volatility in oil prices has been
revealed [25]. Such algorithm has been utilized to analyze the
relevance of the commodity market, stock market, exchange
rate market, and offshore market and applied to improve the
prediction performance [26]–[31]. However, the limitations
of the initial ICSS method include the assumption of the
normal distribution of data, uncertainty in the robustness of
CPs depending on the size and scale of data, and impossibility
of ascertaining the number of CPs in advance. Therefore, the
CUSUM algorithm has been further developed to overcome
such limitations.

At first, the Bayesian rule was developed to resolve the
normality assumption [32] in ICSS algorithm. Also, the
sequential regime shift detection (SRSD) was developed as
an ICSS algorithm sensitive to outliers [33]. Note that the
Bayesian rule-based ICSS and SRSD were verified to be
effective in detecting CPs [34]. Also, the non-parametric CP
model, effective to non-normal distribution data, was devel-
oped by combining two-sample testing techniques with ICSS
based on the CUSUM statistics [35]. ICSS algorithm further
improved by combining the CUSUM and the kurtosis statis-
tic, which is entitled as AIT-ICSS. [18]. In terms of energy
volatility forecasting, the effectiveness of using AIT-ICSS
was discovered by utilizing its CPs as dummy variables in
prediction [36]; however, related studies also noted that the
CP of long memory data might be underestimated [37].

Secondly, many studies have been conducted to overcome
the robustness problem due to the time-window-based esti-
mation process of the ICSS [38]. For instance, Bayesian
analysis of linear models incorporating CPs contributes to
improve the robustness of the accuracy of distribution esti-
mation [39]. Also, the necessity to estimate an appropriate
time window could improve the algorithm’s robustness by

comparing various statistics based on Gaussian data [40].
As an extension, CP estimation using amulti-windowmethod
has been discovered to improve robustness, which promoted
theoretical research on consistency [41].

Lastly, a method to consider the variance of the regression
analysis’s coefficients and residuals is proposed to analyze
how to estimate the number of CPs [42], [43]. Note that the
initial ICSS algorithm is not robust when the time-series are
not normally distributed or trend. In this regard, utilization
of residuals or bootstrap theory to improve robustness were
also suggested [17], [44]. In addition, several studies are
ongoing to detect CPs elaborately. [45] proposed an algorithm
to understand the structural change of volatility based on a
wavelet, and [46] developed a new algorithm suitable for
farm animal behavior patterns. Beyond the typical usage of
estimating the severe change in time-series, several studies
also investigated to detect a smooth change, verifying the
effectiveness of the model to the non-normal distribution
data [47], [48].

The purpose of this research is to propose an improved
ICSS algorithm, called KW-ICSS, that modifies the existing
algorithm in terms of the performance of CP detection
and the integration in online binary prediction suitable for
financial time-series. The proposed algorithm is based on
CUSUM, which ranks a top-tier algorithm in the estima-
tion of F1-score or area under the curve (AUC) of the
precision-recall (PR) curve or receiver operating charac-
teristic (ROC) curve [49]. Especially, AIT-ICSS, the non-
parametric kernel-based method, is utilized as a benchmark
model due to its advantages in usages of non-normal distri-
bution [18]. Similar to AIT-ICSS, KW-ICSS algorithm also
utilizes a non-parametric approach. Inspired by the use of the
Mann–Whitney statistic as a non-parametric median compar-
ison algorithm in HeurMeth [50] and the Fisher ratio statistic
that estimates the volatility of CPs [12], [13], KW-ICSS
algorithm combines the Kruskal–Wallis (KW) test as the
extension to the Mann–Whitney algorithm used in AIT-ICSS
algorithm. In this context, KW-ICSS algorithm can be applied
to non-normal distribution data.

The novelty of this paper is as follows: At first, KW-ICSS’s
improvements in CP detection and trend prediction perfor-
mances are discovered for simulated financial time-series.
Note that the pre-specified true locations of CPs for sim-
ulated financial time-series allow the performance evalua-
tion on CP detection. The experiment shows that the α,
the model parameter, should be set to less than 10% in
terms of mean absolute deviation between the true and
detected CPs. Secondly, KW-ICSS’s robustness in CP detec-
tion is observed for various real-world financial time-series.
The algorithms are tested for 32 financial time-series from
the stock, treasury, currency, and commodity markets for
roughly 18 years of data. Since the true locations of CPs
are unknown, we investigate the circumstantial evidence on
the over-estimation phenomenon of CP detection, which is
known as the drawback of AIT-ICSS. The results show that
KW-ICSS detects fewer CPs with longer intervals for most
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financial time-series and significance levels less than 10%.
Lastly, the proposed algorithm’s significant improvement in
trend prediction is explored for real-world financial time-
series. Even though few cases exhibit lower trend prediction
performances, most real-world financial time-series show the
improved prediction performance for the significance levels
less than 10%.

The outline of this paper is organized as follows.
Section 2 introduces the related work of CP analysis in terms
of an unsupervised learning approach becoming increas-
ingly important. Section 3 describes the proposed algorithm
and metrics to evaluate the performance. Section 4 dis-
cusses the performance of the proposed algorithm based on
the simulated and real-world financial series data. Besides,
we show the empirical results from four different represen-
tative financial time-series to verify the algorithm’s perfor-
mance. Section 5 concludes.

II. PROPOSED ALGORITHM
A. SINGLE BINARY SEGMENTATION PROCESS
The direction of CP estimation involves numerous iterations
of the segmentation process and is composed of two steps.
In the first step, segments are estimated by analyzing the
point of change with the highest likelihood in the full sample
period. Then, two additional segments are estimated in the
forward and backward directions based on this CP. Even-
tually, all possible CPs are estimated and set as the initial
CP value. In the second step, estimated initial CP values are
cross validated. Two segments before and after each CP are
set as subsample periods, and the segmentation process is
performed again to verify whether or not the estimated CPs
are valid. Afterward, if the newly estimated CP is correct, then
it is determined as the final CP. If any CP is different from the
initial CPs, it is set as an error, and the CPs are updated until
the error converges to zero to obtain the final CPs.

Algorithms based on the CUSUM test are used to estimate
CPs of the trend ofmean [15], [18], [51] and the time-seriesXt
is used as input data. Let Xt : t = 1, 2, · · · ,T be a sequence
of N dimensional random vectors, where T is the maximum
period in each random vector. The first dimension can be the
sequences for a specific market within a period of T , whereas
the other dimensions can be the sequences for others. Each
time sequence X1,X2, . . . ,XT can be written as

Xn = µn + Rn, 1 ≤ n ≤ T , (1)

whereµt is the average value of each time sequence, andRn is
a random component with zero mean E(Rn) = 0 and covari-
ance matrix of positive definite E(RnRTn ) =

∑
. We also

assume that the sequence of time is time t-dependent, and
Yt1 is independent of Yt2 for t1, t2, and |t1 − t2| > t .
The CP analysis tests the existence of the mean changes

from the initial to the final time of N ; thus, we can define the
null hypothesis of a constant mean as follows:

H0 : µ1 = µ2 = · · · = µN (2)

and the alternative hypothesis is

H1 : µ1 = · · · = µt∗i
6= µt∗i +1

= · · · = µN (3)

for the unknown CP of mean value t∗i ∈ 1, 2, . . . ,T .
If we consider the corresponding assumptions for the

stochastic process of time sequence, we can set the CUSUM
detector as test statistics with non-parametric form using
sequence (1) from the full sample period.

CUSUMk =

k∑
t=1

X2
t , k = 1, 2, · · · ,T (4)

Then, Dk statistics can be calculated as

Dk =
CUSUMk

CUSUMT
−
k
T
, k = 1, 2, . . . ,T (5)

where D0 = DT = 0.
The work of [18] showed that the CP estimation using

the existing Dk (IT) does not reflect the large kurtosis and
conditional heteroskedasticity out of the normal distribution.
Thus, they provided the modified version of the Dk statistics
with the non-parametric statistics, D′k , based on the Bartlett
kernel such that,

D′k =
1√
λ̂

[
CUSUMk −

(
k
T
CUSUMT

)]
, (6)

k = 1, 2, . . . ,T (7)

where

λ̂ = γ̂0 + 2
m∑
i=1

[
1−

i
m+ 1

]
γ̂i, (8)

γ̂i =
1
T

T∑
t=i+1

(r2t − σ̂
2)(r2t−i − σ̂

2), (9)

σ̂ 2
=

1
T
CT . (10)

If no sudden structural change occurs in the time sequence,
then D′k vibrates around zero; otherwise, it vibrates and
deviates from a specific boundary. Thus, the last step for
estimating the unknown CP requires the critical values for
several significance levels α. The asymptotic 95th percentile
of D′k statistic maxk

√
(T/2)|D′k | is 1.4058 [18]. Therefore,

the null hypothesis is rejected if the test statistics exceed the
asymptotic criteria. Note that t∗i is selected as a candidate for
the CP. We can define as t∗i under hypothesis H1, is given
by

t∗i = argmaxk
√
(T/2)|D′k | (11)

B. ITERATIVE SEGMENTATIONS FOR MULTIPLE CPs
The above hypothesis testing detects one CP at most and
does not confirm the remaining CPs in either direction for
the statistically stationary of the estimated detection. The
D′k statistics of the CUSUM detector just focuses on the
highest magnitude on the offline analysis of the full period;
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thus, we should rephrase the hypothesis of alternative H1 as
follows:

H1 : µ1 = · · · = µt∗1
6= µt∗1+1

= · · ·

= µt∗2
6= µt∗2+1

= · · · = µt∗τ 6= µt∗τ+1 = · · ·

= µN (12)

where t∗1 , t
∗

2 , . . . , t
∗
τ are multiple CPs.

A greedy technique to detect multiple CPs utilizes the
iterative binary segmentation (BS) algorithm. At first, when a
single CP is estimated over the entire period without observed
CP, we stop the process and accept the null hypothesis Ho.
Otherwise, the estimated CP divides the entire time sequence
into two segments. Secondly, the BS algorithm is repeated
to estimate the additional CP in each segment until no CP is
added in every segment.

C. CROSS-VALIDATION OF MULTIPLE CPs USING THE
Kruskal–Wallis TEST
Although the BS algorithm can be easily implemented with
low time complexity of O(N logN ), it tends to overestimate
the CPs [52], [53]. Therefore, the ICSS segmentation algo-
rithm includes a cross-validation [15]. It verifies the estimated
CP by reapplying the BS algorithm for only the two segments
before and after each estimated CP whether theH0 is rejected
or not. If the null hypothesis H0 is not rejected, then the
estimated CP is excluded. If a new CP is not the same as the
existing CP is estimated, then the existing CP is replaced with
a new estimated CP. This process is repeated until the existing
CPs’ error and updated CPs converge to zero..

In this study, we use a new cross-validation approach. The
procedure is the same as AIT-ICSS, but the non-parametric
KW test [54] is used as an algorithm for cross-validation.
The KW test is widely used in non-parametric comparison
tests, and it is a method of comparing and estimating whether
or not the distribution is the same regardless of the number
of data or the distributional assumption based on the median
value. The advantage of the KW test is its no consideration of
the normal assumption of data distribution. Moreover, in the
existing algorithm, the high performance is only obtained
when the number of data is large, and the normal distribution
assumption is satisfied. However, the KW test can be used
for comparing two or more independent samples with small
sizes. That is, it can be used for comparison of non-normally
distributed data whose number of observations is insuffi-
cient. CP detection in real-time (online) is difficult since the
estimation requires many new data to divide the point of
distributional change in time-series. Therefore, in reality,
at least ε new data is required for the algorithm to determine
CPs between the existing and new data. That is, the smaller
the ε, the more powerful the online algorithm is. With the
advantage of small ε, we expect that the proposed approach
can simultaneously achieve the increased robustness of the
results in offline and possible high performance in online
analysis.

The KW test inputs are two sequences of each segment
before and after each CP; these inputs verify that each
sequence has the same variance as an unknown heavy-
tailed distribution. If the null hypothesis of equal variance
is rejected, then CPs are selected as updated CPs. This pro-
cess is repeated until the error between the initial CPs and
the updated CPs converges to zero; then, the final CPs are
selected. The KW statistics can be obtained as follows:

KW =
[

12
N (N + 1)

] 2∑
j=1

X2
j

nj

− 3(n+ 1) (13)

where nj is the number of data of the j-th segment, n =∑2
j=1 nj is the total sample length of two segments, and

X2
j indicates the squared values of the rank sum of two

segments. In the presence of many ties, the test statisticsKW ∗

can be corrected as

KW ∗ =
KW

1− (n3 − n)−1
∑l

j=1(k
3
j − kj)

(14)

where kj is the number of ties of the j-th segment of ties.
The KW test is used only in the cross-validation process

and not in the initial CP construction because it tends to
overestimate. That is, the KW test estimates the CPs even
with minimal data. However, if it is used only in the eval-
uation, then robustness can be improved. The existing algo-
rithms also use the verification process, but they are not strict
(e.g., using a qualitative method or an approach that ignores
a specific error). Therefore, this study handles this limitation
with the advantages of the non-parametric KW algorithm.
Again, the KW test can be used for non-normally distributed
data, and it uses only the significance level as a parameter
without calculating additional critical values in hypothesis
testing.

P(χ2
α ≥ KW ) < α (15)

where χ2
α and α represent the chi-squared statistic and asso-

ciated significance level, respectively.

D. PERFORMANCE EVALUATION FOR TREND PREDICTION
We compare the trend prediction performance of KW-ICSS
against AIT-ICSS. At first, the unsupervised trend prediction
for financial time-series from the algorithm is performed as
follows. Let t∗i be the time when the algorithm detects a CP.
Then, we compute averages of current time series with before
and after a CP such that,

X̄1 = (1/2)(Xt∗i −1 + Xt∗i )

X̄2 = (1/2)(Xt∗i + Xt∗i +1) (16)

Then, the short-term future trend after the CP is predicted
to be upward (downward) when X̄1 < X̄2 (X̄1 > X̄2). Note
that the prediction can be performed at time t∗i + 1. Such
prediction process is suggested based on the assumption that
the existence of CP could indicate a turning point in which the
direction of past trend changes. In this regard, the prediction
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can be performed using the time-series data before time t∗i +1,
which does not require supervised learning through train/test
split.

Then, the true trend should be defined for comparison. The
CUSUM detector can be simply used to define the true trend,
but it might not be appropriate since the mean value before
and after the CP may differ depending on the initial value,
the outlier, and the number of CPs. Therefore, the moving
average convergence–divergence filter is used as a direction
of change indicator, which provides higher weights to more
recent values [55]. It estimates the local movement within a
specific window interval and the movement of the continuous
variation of the time-series. MACD based on the exponential
moving average approach can be defined as follows:

EMAl(t) =
2

l + 1
Xn +

l − 1
l + 1

EMAl(t − 1) (17)

where l is the lag parameter. The MACD is derived from the
difference between a short-term l2 lag of EMA and a long-
term l3 lag of EMA such that

MACD(t) = EMAl2 − EMAl3 . (18)

Then, the trend indicator (TI ) is calculated by the subtraction
of a short-term l1 lag EMA of the MACD sequence from the
original MACD sequence such that

TI (t) = MACD(t)− EMAl1 (MACD(t)) (19)

where l1 < l2 < l3. TI is analogous to the second derivative
with respect to time over an interval around the CP because it
involves multiple subtractions. In this study, we utilize a trend
indicator for short-term future that estimates the direction of
the time-series for a future time horizon, h. Let TI (t∗i + h)
be the value of accumulated trend indicator from the detected
CP at time t∗i to t∗i + h such that

TI (t∗i + h) =
t∗i +h∑
t=t∗i

TI (t). (20)

where h is set to be 10 for the experiment. The true trend is
upward (downward) when TI (t∗i + h) > 0 (TI (t∗i + h) < 0).
Then, we compare the direction of financial time-series at CP
drawn from the algorithmwith that from TI (t∗i +h) to evaluate
the prediction performance.

III. RESULTS & DISCUSSIONS
A. PERFORMANCE ON SIMULATED FINANCIAL
TIME-SERIES
The proposed algorithm’s characteristics and performance
are analyzed based on simulated financial data containing
CPs. One of the advantages of using simulated data is that
the performance of CP detection, an unsupervised learning
problem, can be evaluated. The second is to confirm the
properties of the algorithm’s parameters at the CPs of the
time-series and evaluate the appropriate parameters.

The simulated data is generated using the tradi-
tional AutoRegressive Moving Average (ARMA) algorithm

[56]–[60], which estimates the mean and variance of data
properly [61]–[65]. In this study, we use an ARMA(1,1)
process. At first, 100 samples of time-series with a length (N )
of 1000 for each sample are generated. The average of all the
generated series is selected randomly in a specific range for
each series’s consistency by reflecting the number of CPs.
In the case of one CP, there are two periods before and after
the CP. Then, one of 0 and 1 is selected for the average of
each period. Similarly, when two or three CPs exist, the mean
of each period is randomly selected from 0, 1, and 2 without
duplicate.Moreover, the variation of themean value is limited
to 0.5, which is half of the mean interval. Therefore, the mean
size before and after the CP does not exceed. Note that the
simulated data is generated under Python 3.8.5 environment
using the ARMA generate sample function in the statsmodels
package. The function parameters are set to default values,
and AutoRegressive and Moving average coefficients are set
to be valued between 0 and 1 to generate data satisfying
stationarity.

KW-ICSS algorithm’s CP detection ability is compared
with that of AIT-ICSS algorithm. The total number of CPs,
NCP = 0, 1, . . . , 5, are included in the simulated data. Note
that max (NCP) is set to five since it achieves the average
of mean absolute deviation between the actual and estimated
CPs less than one. We set each CP at the time point t∗i =
(iN )/NCP, where i = 1, 2, . . . ,NCP − 1. Each magnitude
of change, {µ0, µ1, . . . , µNCP}, is randomly selected from
a set of {0, 1, . . . ,NCP} without duplicate. Therefore, the
magnitude increases or decreases randomly at each time of
change. Note that the default significance level, α, for the
cross-validation is set to 5% for the experiment.

At first, we plot the snapshots of each simulation for a
different number of CPs set on the simulated time-series in
Figure 1. The black vertical lines indicate the designed CP in
the simulation data. The solid blue line refers to the increasing
trend after a CP, whereas the dashed red line refers to the
decreasing trend. For all numbers of CPs in simulated data,
KW-ICSS detects the CPs more accurately than AIT-ICSS.
As seen in Figure 1-(c,d,e), AIT-ICSS overestimates the num-
ber of CPs, whereas KW-ICSS does not. Therefore, we can
visually confirm the robustness of KW-ICSS algorithm.

Then, we summarize the results of CP detection from
100 simulated financial time-series in Table 1. When cal-
culating the true positive rate (TPR), we set the detection
of CPs as a success if the values of detected CP is within
±5 for the designed CP in simulated time-series. In both algo-
rithms, the TPR increases as the number of CPs increases.
Specifically, KW-ICSS outperforms AIT-ICSS algorithm for
all paired cases. Note that the bold text in the table represents
the superiority in performance. If one CP exists, the TPRs
of AIT-ICSS and KW-ICSS algorithms are 35% and 65%,
respectively, indicating that KW-ICSS successfully improves
the CP detection ability. Besides, in other sub experiments,
KW-ICSS shows much higher TPR than AIT-ICSS. Based
on the average, TPRs of AIT-ICSS ranges from 35% to 82%,
whereas those of KW-ICSS show higher performances from

34694 VOLUME 10, 2022



K. Kim et al.: Unsupervised CP Detection and Trend Prediction for Financial Time-Series

TABLE 1. Performances of CP detection and trend prediction for AIT-ICSS and KW-ICSS algorithm in simulated financial time-series.

65% to 86%. Similarly, the mean absolute deviations (MAD)
of algorithms are compared. Note that the MAD is calculated
by taking the absolute value of the difference between the
locations of detected and designed CPs. The smaller the
value, the higher the CP estimation performance. The result
shows that for every sub-experiment except for the case of
four CPs, KW-ICSS algorithm estimates the CPs more accu-
rately than AIT-ICSS. In the case of four CPs, KW-ICSS’s
relatively inaccurate detection of third(CP3) and fourth(CP4)
CPs severely increases its MAD.

Also, we compare trend prediction performance based
on the success rate of predicting the direction of the trend
indicator for the short-term future, TI (t∗i + 10), in Table 1.
The larger the number, the better the trend prediction perfor-
mance. Again, the bold text in the table represents the supe-
riority in performance. The success rates of AIT-ICSS in the
short-term future range from 81% to 96%, whereas those of
KW-ICSS are range from 90% to 98%. Specifically, the aver-
age success rate of AIT-ICSS is approximately 0.93, whereas
that of KW-ICSS is approximately 0.96. Interestingly, the
success rates increase as the numbers of CPs increase for
both algorithms. In summary, the average success rates of
KW-ICSS outperforms those of AIT-ICSS for all number
of CPs. Therefore, we conclude that KW-ICSS outperforms
AIT-ICSS for the ability to predict short-term future trends.

Lastly, we explore the MAD for different significance
levels, α, in Eq.15. Since the CPs of simulated financial time-
series are known, it is possible to evaluate the algorithm’s
CP detection ability for different significance levels. The
boxplots composed of the entire MADs for different numbers
of CPs are illustrated in Figure 2. Note that Figure 2-(a) shows
the MAD of a wide range of significance levels from one
to 15, whereas Figure 2-(b) show the MAD of a range of

small significance levels from one to nine for comparison.
In general, MAD increases as the significance level increases,
indicating the risk of overestimated CPs at a high significance
level. Since the notable increase of MAD is observed from
11% for both algorithms, the significance level should be
managed under 10% for accurate detection of CPs. Further-
more, KW-ICSS algorithm outperforms AIT-ICSS algorithm
at all significance levels.

B. PERFORMANCE ON REAL-WORLD FINANCIAL
TIME-SERIES
For the real-world experiment, we employ 5563 (N = 5563)
daily closing prices of the 32 financial time-series from the
stock (13), treasury (7), currency (6), and commodity (6)
markets, which includes 18 years of daily closing prices from
2001-01-01 to 2020-12-31, to evaluate KW-ICSS algorithm.
Note that the data are obtained from the Thomson Reuters
Datastream. Figure 3 shows the entire financial time-series
based on the min-max scaling. The results show that each
market shows different movements and structural changes
(i.e., CPs). At first, a statistical test is performed to determine
if such structural changes exist in real financial data. The
true location of the CP of real-world financial time-series is
unknown. However, some circumstantial evidence can help to
check the existence of CPs. For instance, the time-series data
may not be normally distributed if a structural change occurs,
indicating time-varying trend or variance. In this context,
we examine the descriptive statistics and analyze the nor-
mality, heteroscedasticity, and stationary tests as summarized
in Table 2. At first, each sector’s mean and variance are
different, and most of the markets have positive skewness.
Moreover, the result shows that all markets follow a non-
Gaussian distribution due to their nonzero kurtosis. Secondly,
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FIGURE 1. Detected CPs for AIT-ICSS (left) and KW-ICSS (right) in simulated time-series.

34696 VOLUME 10, 2022



K. Kim et al.: Unsupervised CP Detection and Trend Prediction for Financial Time-Series

FIGURE 2. Mean absolute deviation for different significance level.

TABLE 2. Descriptive statistics of asset prices in each financial sector.

the ARCH test, which examines the equal variance, rejects
H0 strongly at the significance level of 1% in lags 10 and 20.
Lastly, the price series of all markets are non-stationary since
the augmented Dickey-Fuller (ADF) test does not reject the
null hypothesis in which data are not a constant structure due
to the trend, variance, or seasonality of the time-series.

Analogous to the experiment on the simulated financial
time-series, we apply theAIT-ICSS andKW-ICSS algorithms
to the real-world financial time series. The main difference
between the simulated and real-world financial time-series is
the true location of CPs. Therefore, we focus on the inferring
improvements in over-estimation of CPs and trend prediction
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FIGURE 3. Scaled time plot for each financial sector.

based on the number of detected CPs and prediction perfor-
mance, respectively. At first, we plot the representative cases
of detected CPs for different financial markets using α = 5%
in Figure 4. Note that the solid blue line refers to the increas-
ing trend after a CP, whereas the dashed red line refers to the
decreasing trend.We can visually observe the change of time-
series movement after the detected CPs in both AIT-ICSS and
KW-ICSS algorithms. In general, KW-ICSS has a smaller
number of detected CPs than AIT-ICSS, which suggests
reducing the over-estimation phenomenon in AIT-ICSS algo-
rithm. For instance, NASDAQ in the stock market shows
the reduction of the number of detected CPs from ten in
AIT-ICSS to eight in KW-ICSS. 20-year US T-Bill in the
treasury market also shows the reduction of detected CPs
from seven in AIT-ICSS to five in KW-ICSS. In contrast,
EUDOLLR in the currency market indicates the increase of
the number of detected CPs from three in AIT-ICSS to four
in KW-ICSS. However, the additional CP around 2007 suc-
cessfully detects the decreasing trend with a red dashed line.
CRUDOIL in the commodity market shows the reduction of
the number of detected CPs from 11 in AIT-ICSS to 10 in
KW-ICSS. Specifically, KW-ICSS avoids the redundant over-
estimation of decreasing trends around 2008.

Then, we summarize the performances of CP detection
using AIT-ICSS and KW-ICSS for different significance lev-
els and sectors in Table 3. Note that the performances are
investigated via the number of detected CPs, the length of
average intervals between the CPs, and success rates of trend
indicators for the short-term future. The bold text indicates
the superiority or equivalent performances. In the case of
the average number of detected CPs in each sector, the trea-
sury and currency markets show the largest and smallest
number for all significance levels, respectively. Analogous
to the simulated financial time-series, the average number
of CPs increases as the significance level increases. Inter-
estingly, most of the average numbers of the detected CPs
of KW-ICSS are less than or equal to those of AIT-ICSS
except for the currencymarket in 1% and 5% significance lev-
els. Furthermore, most of the average intervals of KW-ICSS
for the stock, treasury, and commodity markets are greater
than or equal to those of AIT-ICSS except for the stock
market in 13% and 15%. However, the average intervals of
KW-ICSS commoditymarket are less than those of AIT-ICSS
except for the 5% and 7% significance levels. In summary,
KW-ICSS has less tendency to over-estimate the CPs than
AIT-ICSS.
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TABLE 3. Averages of detected CPs, interval, and success rates of trend indicators for different sectors and significance levels.

The performance of trend prediction is also investigated
for different significance levels and sectors in Table 3. Most
of the success rates of KW-ICSS for the short-term future
trend prediction are greater than those of AIT-ICSS except for
the stock market in 11% significance level and treasury and
currency markets in 13% and 15% significance levels. From
the simulated financial time-series, we observe the dramatic
increases of mean absolute deviation of CP detection when
the significance level increases above 10%. Although the CPs
of real-world financial time-series are unknown, we infer
that the algorithms with below 10% significance level can
be suitable for practical usage. In this regard, we conclude
that the KW-ICSS improves the AIT-ICSS in terms of CP
detection and trend prediction.

We further investigate the performances of the entire
financial time-series in Figure 5. The blue (yellow) color

scheme indicates the improved (lowered) performance by
KW-ICSS. Note that the symbols for the individual market
are listed in Table 2. The number of CPs in Figure 5-(a)
shows that KW-ICSS improves the CP detection performance
for all significance levels in general except for the currency
and commodity market. Specifically, the lower CP detec-
tion performances in most significance levels below 10%
are observed for FTALLSH of the stock market, JAPAYE$
and BRACRU$ of the currency market, and CORNUS2 and
GOLDBLN of the commodity market. The interval lengths
in Figure 5-(b) show a similar pattern to the number of
CPs since two measures are closely related in the calcula-
tion. In general, the success rates of short-term future trend
prediction in Figure 5-(c) shows improved performances.
However, some cases of lowered performances are also
observed. For instance, the success rate of TTOSP60 of the
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FIGURE 4. Representative cases of the detected CPs of AIT-ICSS (left) and KW-ICSS (right) for different financial sectors.

stock market shows the lowered performance for all signif-
icance levels. Also, those for KORCOMP and DAXINDX

of the stock market, FRTCM1Y of the treasury market,
and JAPAYE$ and BRACRU$ of the currency market show
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FIGURE 5. Performance measures for different markets and significance levels.

lowered performances for the significance levels under 10%.
As shown in Table 3, KW-ICSS improves the CP detection
and trend prediction performances of AIT-ICSS. However,
some financial time series exist whose performances are
decreased for all significance levels. Therefore, it is necessary
to decide whether to utilize KW-ICSS through back-testing
for the past data for each financial time series.

Although the performance of the KW-ICSS algorithm
improved that of the AIT-ICSS algorithm, it has the disadvan-
tage that computing time according to data length takes longer
in KW-ICSS. Figure 6 presents computing time for each algo-
rithm. The x-axis is the length of the data, whereas the y-axis
is the actual computing time in seconds. The average of each
financial time-series is calculated by repeating the change
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TABLE 4. Computation time on CP estimation for different financial time-series.
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FIGURE 6. Computation time on CP estimation for each algorithm.

point estimation ten times while increasing the data length
for each algorithm, and the scale of the y-axis is the same
for comparison. Note that the straight line for each sector is
the average of all associated financial time-series, and the
range expressed means ±1.5 standard deviation. AIT-ICSS
algorithm estimates the change point quickly without exceed-
ing 1 second on average, even with 5000 data points (roughly
20 years), while KW-ICSS takes about 4 seconds and takes up
to 6 seconds depending on the market. Table 4 summarizes
the computation time in details. Regardless of the financial
market, KW-ICSS takes roughly four times more computa-
tion time to estimate the CPs than AIT-ICSS for all financial
time-series. However, the computation time for KW-ICSS
still takes only a few seconds, whose performance is sufficient
for usual real-time high-frequency trading such as minutely,
hourly, and daily investment strategies.

IV. CONCLUSION AND FUTURE WORK
For decades, CP analysis has been studied in data mining,
statistics, and computer science. CP analysis aims to esti-
mate timely action in many real-world problems and detect
immediate change points in time-series; thus, detecting CPs
is essential in many practices. This study aims to develop
a binary segmentation algorithm, KW-ICSS, by improving
AIT-ICSS algorithm. Note that the CUSUM-based algorithm
is considered one of the best algorithms in estimating the
F1-score or AUC of the PR curve or ROC curve in detecting
the CPs.

The main contributions of this research are two-fold.
At first, to the best of our knowledge, this is the first attempt to
incorporate the Kruskal–Wallis (KW) test for CUSUM-based
CP analysis. Since the KW test requires a relatively small
amount of data to detect the point of distributional change
in time-series, the proposed algorithm can simultaneously
be used as a retrospective (offline) and real-time (online)
method. The KW test, a non-parametric comparison method,
can also investigate the non-normally distributed time-series

data. In this context, KW-ICSS is a generalized algorithm that
can detect trends in non-stationary prices in real-time.

Secondly, we discover that KW-ICSS algorithm’s
improved performance and robustness, which supports the
validity of utilizing the KW test. Throughout the experi-
ments, we discover that KW-ICSS algorithm is superior to
AIT-ICSS algorithm for simulated and real-world financial
time-series. In case of the simulated financial time-series
whose CPs are known, KW-ICSS shows a much higher TPR
than AIT-ICSS as the number of CPs increases. Moreover,
KW-ICSS algorithm shows higher detecting performance
with fewer estimated CPs than AIT-ICSS, which infers the
robustness of the algorithm. The lower MAD also supports
such results for KW-ICSS for all significance levels. The
prediction performances for short-term future trends are also
improved in simulated data for all number of CPs. There-
fore, KW-ICSS’s improvements for CP detection, robustness,
and trend prediction are confirmed for simulated financial
time-series. Also, we explore that the significance level of
the algorithm should be less than 10% to avoid the over-
estimation of CPs. In the case of the real-world financial
time-series whose CPs are unknown, we could investigate the
circumstantial evidence on CP detection based on the average
number of detected CPs and the average length of intervals.
The results show that KW-ICSS, in general, is more robust
than AIT-ICSS in CP detection. Furthermore, the prediction
performances are improved in most financial markets and
significance levels.

Despite its contributions, our work has some limitations.
The first limitation is the existence of decreased performances
in CP detection and trend prediction in some financial mar-
kets. Therefore, to apply KW-ICSS, a practitioner should
examine the target financial time-series with its past data to
confirm its applicability. The second limitation is the com-
putation time. KW-ICSS is clearly consumed more time than
AIT-ICSS. Nonetheless, the computation time of KW-ICSS
takes only a few seconds. Therefore, the proposed algorithm
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can still be applied to real-time high-frequency trading. The
last limitation is the variety of benchmarks. This research
solely focuses on improving AIT-ICSS algorithm. In this
context, the performance of KW-ICSS algorithm is only
compared with AIT-ICSS algorithm. For further research,
the model’s performance should be evaluated against other
types of unsupervised binary segmentation algorithms. Also,
KW-ICSS can be applied to any time-series data. Hence, the
applications of KW-ICSS for CP detection and trend predic-
tion in climate, voice, image, health data can be considered
for future work.
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