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ABSTRACT Histological examination of collagen fiber organization is essential for pathologists to observe
the wound healing process. A convolutional neural network (CNN) can be utilized to visually analyze
collagen fibers during tissue remodeling in histology images. In this study, a universal CNN (UCNN)
independent of the histological staining process is proposed to classify the histology images of burn-induced
scar tissues and characterize collagen fiber organization. Normal and scar tissues obtained from an in vivo
rodent model are stained using Masson’s Trichrome (MT) and Hematoxylin & Eosin (H&E). The proposed
universal model is trained using both MT- and H&E-stained histological image datasets over multiple
scales with color augmentation, and classification accuracies of up to 98% and 97% are achieved for the
MT- and H&E-stained image datasets, respectively. Regardless of the histological staining process used, the
collagen characteristics are visualized by determining the density and directional variance of the normal and
scar tissues by using the features extracted with the proposed universal model. Statistical analysis results
demonstrated clear differences between scar and normal tissues in terms of collagen fiber organization.
The proposed UCNN model can contribute to the development of an intelligent and efficient method that
pathologists can use to rapidly evaluate wound healing and tissue remodeling.

INDEX TERMS Histology image, collagen fiber characterization, scar tissue classification, convolutional
neural network, hue-saturation specificity analysis.

I. INTRODUCTION

Dermal wound healing is a dynamic process that can be
triggered by thermal tissue injury. It involves complex inter-
actions between dermal cells and the extracellular matrix
(ECM) [1]-[3]. The wound healing process essentially com-
prises three overlapping phases: inflammatory, proliferative,
and remodeling [3], [4]. The characteristics of collagen con-
stitute an index that can be used to quantify the wound healing
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process. Collagen is initially synthesized in the proliferation
phase by fibroblasts and myofibroblasts. Collagen accumu-
lation provides strength to healing tissues, and the shape,
quantity, and organization of collagen fibers change gradually
during tissue remodeling. Scar tissue is the connective tissue
that forms over a wound during the wound healing process.
The most prominent differences between scar tissue and nor-
mal tissue are the appearance of covalent cross-linking and
the amount of collagen fiber in the tissue. Dense distribution
and aligned orientation of collagen fibers are considered as
the main characteristics of scar tissue [5]. It is critical to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 34379


https://orcid.org/0000-0002-5681-2492
https://orcid.org/0000-0001-6068-5409
https://orcid.org/0000-0002-0861-1354
https://orcid.org/0000-0003-1300-066X
https://orcid.org/0000-0002-3733-7286

IEEE Access

T. T. A. Pham et al.: UCNN for Histology-Independent Analysis of Collagen Fiber Organization in Scar Tissue

evaluate the changes in the morphology and organization
of collagen fibers to assess the wound healing process and
establish methodologies for various medical approaches and
therapeutic interventions.

Histology is the study of tissues through staining and
microscopic examination [6], [7]. The method can reveal
remarkable bioinformatics, such as microstructural fea-
tures. For this reason, several histological studies have
been conducted to derive biomarkers for prognosis and
diagnosis [8], [9]. Histological staining methods enhance
the hue contrast of various tissue constituents under a
microscope without distorting the structure of a tissue
specimen. Histological images have been utilized to seman-
tically segment biological components (e.g., stroma, nuclei,
and cytoplasm) that are the most relevant for cancer diag-
nosis [10], [11]. Several histological stains are available,
for instance, Hematoxylin & Eosin (H&E) and Masson’s
Trichrome (MT) [12]-[14]. The H&E staining method is the
most widely used tissue staining method owing to its simplic-
ity and low cost. In H&E-stained histological images, nuclei
are stained dark blue owing to their hematoxyphilia, and the
cytoplasm and ECM are stained varying shades of pink owing
to their eosinophilia [6], [15]. Because collagen is one of
the substances deposited in the extracellular compartment,
collagen fibers and matrices can be stained different shades
of pink [15] in H&E-stained histology images. In MT-stained
histology images, collagen is stained blue or green, and other
skin appendages including hair follicles, sebaceous glands,
and granules are stained shades of red and purple [7]. In his-
tology images, color is an important discriminator of specific
stained structures in tissues. Although the color of collagen
fibers is not clearly differentiated with H&E staining, it is
easily discriminated from other tissue structures with MT
staining. Quinn ef al. (2014) introduced an image processing
method to quantify the density and directional variance of
collagen fibers during the wound healing process of cuta-
neous burns by using MT-stained histology images [14].
To quantify and characterize the organization of collagen
in tissue, various microscopy techniques, such as conven-
tional light microscopy, confocal microscopy, second har-
monic generation microscopy, and multiphoton fluorescence
microscopy, have been used [16]-[23]. Macros-Garces et al.
(2017) measured collagen bundle orientations in samples pro-
cessed using different staining and microscopy techniques,
including H&E staining with confocal microscopy [23].
Fereidouni et al. (2019) investigated brightfield (BF) and
fluorescence images of H&E-stained tissue samples to high-
light the collagen distribution in them by conducting spectral
phasor analysis [24].

Deep learning (DL) techniques have contributed greatly
to the current biomedicine revolution [25]-[30]. DL can
be used to extract complex patterns from annotated clin-
ical datasets for solving numerous diagnostic tasks, such
as disease diagnosis, treatment selection, and patient mon-
itoring [8], [31]. In medical image analysis, convolutional
neural networks (CNNs) have been widely used and have

34380

yielded promising results in terms of computer-aided diag-
nostics, segmentation, and object detection [31], [32]. Com-
putational pathology has been utilized to analyze tissues
corresponding to distinct biological features such as tumors
or stroma [15], [33]. Keikhosravi et al. (2020) utilized an
autoencoder to synthesize collagen-specific images from BF
images of H&E-stained tissue samples [11]. To avoid varia-
tions in the process of histology imaging, such as the imag-
ing system and staining manipulation, color augmentation
and normalization were introduced [33]-[37]. Tellez et al.
(2019) developed a CNN model based on color augmenta-
tion by varying the brightness, contrast, and hue-saturation-
value (HSV) transformation to classify H&E-stained slides
acquired from multiple sites [34].

In a previous study, we proposed a CNN model trained
using MT-stained histology images to classify normal tissue
and scar tissue and to characterize collagen fiber organiza-
tion (i.e., density and directional variance) [13]. Although
various staining methods can be used for histology imaging,
the biological structures in tissue are consistent. Thus, it is
expected that the corresponding histology images can be dif-
ferentiated, regardless of the colors of the structures in a tissue
sample. In this study, we propose a universal CNN (UCNN)
model that can be applied to both MT-stained and
H&E-stained histology images. This model can distinguish
between normal tissue and scar tissue, and it can visu-
ally characterize the microstructure of collagen fibers (den-
sity and directional variance). Because the main difference
between the two staining methods is the color feature,
we perform color augmentation and hue saturation speci-
ficity analysis. A burn injury is initially induced by applying
laser irradiation to in vivo rodent models. Both MT- and
H&E-stained histology images of the resulting scar tissue
on the skin are captured after four weeks of wound healing.
The classification and characterization performances of the
proposed UCNN model are evaluated using the MT- and
H&E-stained histology images, including individual normal
and scar tissue images and the whole histology images.

Il. MATERIALS AND METHODS

A. ANIMAL SCAR MODEL AND STAINED HISTOLOGY
IMAGES

In the experiments, we used eight male Sprague Dawley
rats (age = 7 weeks, weight = 200-250 g) to generate an
in vivo scar model. The Institutional Animal Care and Use
Committee at Pukyong National University approved all the
animal tests conducted in this study (Number PKNUIACUC-
2019-31). Each animal was anesthetized with 3% isoflurane
(Terrell isoflurane, Piramal Critical Care, Bethlehem, PA,
USA) by using a respiratory anesthesia system (Classic T3,
SurgiVet, USA) in a chamber. The scar model was created by
irradiating the back of each rat with a high-power laser light
to induce a thermal burn on the skin through photothermal
interactions. Before laser irradiation, the hair on the back
of each rat was removed using an electric hair clipper and
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waxing cream (Nair Sensitive Hair Removal Cream, Nair,
Australia) to maximize light absorption by the skin tissue.
As a light source, a 1470-nm laser system (FC-W-1470, CNI
Optoelectronics Tech. Co., China) was used to generate burn-
induced scars in the in vivo models. Because of strong light
absorption by water (absorption coefficient = 28.4 cm™!), the
selected wavelength led to a short optical penetration depth in
the skin, which limited the thermal burn to within the dermal
layer. A 600-um end-firing optical fiber was placed 25 mm
vertically above the skin surface (beam size = 0.3 cm?)
to deliver the laser light. Perpendicular irradiation created
a circular-shaped thermal burn on the skin with a diameter
of 10 mm. To reliably establish the burn wound without
carbonization, we applied a laser power of 5 W for 30 s on the
skin surface (i.e., corresponding irradiance = 16.7 W/cm?).
Four weeks after irradiation, because the wound healing
process was complete, a mature hypertrophic scar was fully
developed in each animal.

Burn-induced scar tissue samples were harvested from
all of the animals after complete tissue re-epithelialization
by the ECM. Initially, all samples were fixed in 10%
formalin for 48 hours. Then, paraffin blocks were pre-
pared and sliced to a thickness of 5 um to prepare his-
tology slides (N = 10 slides per block). All histology
slides were stained with two different histochemical dyes:
MT and H&E (American MasterTech, California, USA).
A Motic Digital Slide Assistant System was used to
acquire high-resolution microscopy images of the histol-
ogy slides (MoDSA, Richmond, British Columbia, Canada;
40X and 0.26 pum/pixel resolution). The acquired MT- and
H&E-stained histology images (14269 x 6637 and
15059 x 4735 pixels, respectively) of the wounded skin
are shown in Figs. 1(a) and (b), respectively. The histology
images display the regions of interest (ROIs), namely the
normal region (ROI; orange dashed box on the left and right
sides) and the scar region (ROI; orange dashed box in the
middle of the image). The normal region consists of coarse
collagen fibers, whereas the scar region consists of fine
collagen fibers. In the MT-stained histology image (Fig. 1(a)),
the collagen fibers are stained blue, which distinguishes
them from the other structures (e.g., sweat glands, sebaceous
glands, and hair follicles) stained red or purple. Meanwhile,
in Fig. 1(b), the collagen fibers are mostly stained pink or
purple, which makes it challenging to differentiate them from
appendages owing to their similarity on the color spectrum.

B. DEEP LEARNING APPROACH

1) PROPOSED UCNN MODEL

Fig. 2 presents a block diagram of the proposed UCNN
model for classifying normal and scar tissues and charac-
terizing collagen fibers. The architecture of the proposed
UCNN model is identical to that of the model proposed in
our previous study [13]. In this study, we trained the model by
using MT- and H&E-stained histology images. Because the
proposed model is effective when applied to histology images
acquired using both staining methods, we call it the universal
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CNN (UCNN) model. The histology images (Fig. 2(a)) were
resized to the input size of the model (224 x 224 pixels)
by means of bilinear interpolation and normalized to [0, 1]
with respect to each channel for preprocessing (Fig. 2(b)).
The model comprises three blocks of stacked convolution
layers. The first two blocks consist of two convolution layers
and a max-pooling layer each. The last block consists of
a convolution layer, global average pooling (GAP) layer,
dropout layer, and sigmoid classifier. The GAP layer acts
as a structural regularizer, and the dropout layer is used to
prevent overfitting. The architecture of the proposed model is
illustrated in Fig. 2(c). A sigmoid classifier is employed in the
last layer to classify normal tissue and scar tissue by ensuring
that the output score lies in the interval [0, 1] (Fig. 2 (d)).

2) DATA GENERATION

As summarized in Table 1, the MT- and H&E-stained his-
tology image datasets of the two labeled groups (normal and
scar) with image sizes of 250 x 250 pixels (560 images in
each group) and 500 x 500 pixels (120 images in each group)
were prepared to train the proposed model. For augmentation,
the images were rotated to 18 different angles (from 5° to
180° in increments of 10°) to change the angle of the collagen
bundles. Moreover, they were flipped along the horizon-
tal and/or vertical directions. The basic augmented data of
10,400 images (5,200 images each of normal and scar tissues)
were generated. Then, to mimic the color and illumination
variations due to the staining process and image acquisition,
random color variation, including changes to brightness and
contrast in the ranges of [0.8—1.2] and [0.9—1.1], were applied
to the MT- and H&E-stained images, respectively. Then, the
images were further augmented in the HSV color space by
shifting hue and value in the range of [0.95-1.05] and satura-
tion in the range of [0.5—-1.5] for MT images and by shifting
the value channel in the range of [0.8—1.8] for H&E images.
Then, the augmented images were reconverted to the RGB
color space for training and validation purposes. Fig. 3 shows
the augmentation process used to generate the training data
for the proposed UCNN model. The training and validation
data were utilized in the ratio of 7:3. To avoid overfitting and
optimize the training hyperparameters (e.g., learning rate and
number of epochs), loss of validation data during the training
process was monitored.

TABLE 1. Training and test data.

Each staining dataset

Purpose Size
(pixel x pixel) Normal Scar Whole
Training 250 x 250 280 280
500 x 500 60 60
Test 500 x 500 690 690
1000 x 500 345 345
1017 x 1920 115 115
Not specified 21
Total test 1150 1150 21

To test the proposed model, three sets of images of different
sizes (500 x 500, 1000 x 500, and 1017 x 1920 pixels) were
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(b)
FIGURE 1. Photomicrograph of wounded skin tissue stained with (a) MT, (b) H&E. The
orange-dashed boxes on the left and right sides show the normal tissue regions (as the
control) that consist of coarse collagen fibers with skin appendages. The orange dashed
box in the middle of the image represents the burn-induced scar tissue region with fine
collagen fibers. The three solid yellow boxes inside the scar region are examples of ROIs
of various sizes (1: 250 x 250 pixels, 2: 500 x 500 pixels, 3: 1000 x 1000, and 4:
1017 x 1920 pixels; bar = 200 xm; 40X).
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FIGURE 2. Block diagram of proposed UCNN model, and processes for classification and characterization: (a) Training
and test images used for the proposed model, (b) pre-processing, (c) proposed UCNN model, (d) classification, and
(e-j) feature extraction and characterization.

prepared, and these sets contained 1380, 690, and 230 images, 3) MODEL TRAINING AND TEST

respectively. In addition to the individual normal and scar The parameters of first two blocks of the proposed UCNN
histology images, 42 whole histology images containing both model were initialized using the pre-trained weights of
normal and scar regions were utilized (21 for each staining VGG-16 (VGG: Visual Geometry Group, 16: number
method). of learnable parameter layers) by using the ImageNET
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(a) normal and (b) scar tissues, and H&E-stained histology images of (c) normal and (d) scar tissues. (e) Monochrome

representation with varying hue and saturation (#: number).

dataset [38]. The parameters of the last convolution layers and
the sigmoid layer of the model were initialized by means of
Xavier random initialization. The parameters of the proposed
UCNN model were trained using both MT- and H&E-stained
histology images (Table 1).

Table 2 lists the hyperparameters used to train the UCNN
model. An Adam optimizer with a learning rate of 0.0001 was
used. A binary cross-entropy loss function was applied for
classification. The regularizer L2 imposed penalties on the
last convolution layer and the sigmoid layer during opti-
mization. The number of epochs was 75, and the process
was stopped early when no improvement in validation loss
was observed over the last 10 epochs. The batch size of
the model was 10. The model was trained and tested on a
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computer equipped with an Intel®Core™i7-8700 CPU @
3.2 GHz, NVIDIA GeForce GTX 1050 Ti graphical process-
ing unit (GPU), Python 3.7.9, and the Keras module within
TensorFlow 1.14.0.

4) PERFORMANCE EVALUATION

The proposed UCNN model was compared to Efficient-
NetBO, EfficientNetB2 [39], and support vector machine
(SVM) [40]. EfficientNetBO and EfficientNetB2 were
initialized with the weights pre-trained using the ImageNET
dataset, and the last sigmoid layer was trained using both
MT- and H&E-stained histology images (Table 1). In the
case of SVM, features were extracted and quantized using
the scale-invariant feature transform (SIFT) algorithm [41]

34383



IEEE Access

T. T. A. Pham et al.: UCNN for Histology-Independent Analysis of Collagen Fiber Organization in Scar Tissue

Both-tailed

{Yes (P>0.05)

No significant
diffience

—> All comparisions

-
@
-
A
.
)
o
z
o

s DenSitYScar_prevmus & Densnyscar_current

e Variancescar_previous & Variancescar_current

- DenSitynormal_previous & DenSitynormal_current
- Variancenormal_previous & Variancenormal_current

Right-tailed

Yes (P<0.05)
No

1 Yes (P<0.05)

Significantly
less

FIGURE 5. Flowchart of statistical analysis for characterization of density and variance of scar and normal tissues
(All comparisons: density and variance of normal and scar tissues obtained in our previous and current
studies. _previous: values obtained in our previous study and _current: values obtained in the present study).

TABLE 2. Configuration of training process.

Hyperparameters UCNN
Loss function Binary
Ccross-
entropy
Optimizer Adam
Regularizer L2
Learning rate 0.0001
Number of epochs 75
Batch size 10
Drop-out probability 0.5

and K-means clustering algorithm, respectively [42]. Then,
a bag of features was used to reconstruct the main features for
SVM to distinguish between normal tissue and burn tissue in
histology images [43]. The SVM was configured as follows:
regularization parameter 40 and Gaussian kernel with scale
gamma 0.002.

To evaluate the classification performance of the proposed
model, its accuracy, precision, recall, receiver operating char-
acteristics (ROC), area under the curve (AUC), and con-
fusion matrix were obtained using the test data presented
in Table 1 [44]. For EfficientNetBO and SVM, accuracy,
precision, and recall were measured to compare their clas-
sification performances with that of the proposed method.

5) HUE-SATURATION SPECIFICITY ANALYSIS

Fig. 4 shows the hue and saturation spectra of the
MT- (Figs. 4(a) and (b)) and H&E-stained (Figs. 4(c) and (d))
histology images of normal and scar tissues. The collagen part
occupies a vast area in the histology images of the scar tissue.
Histograms of the hue spectra indicate that the majority of
the color spectrum of the MT-stained histology image is
in the blue range (i.e., corresponding color hue: 0.55-0.65)
while that of the H&E-stained histology images is in the
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pink range (i.e., corresponding color hue: 0.75-0.95). The
saturations of the MT- and H&E-stained histology images lie
in the range of [0.75—1] and [0.25-0.6], respectively. A hue-
saturation specificity analysis was performed to analyze the
color sensitivity of each neuron in the trained UCNN model
to select filters for collagen extraction [45]. One thousand
monochrome images were generated by varying the hue
between 0 and 1 in increments of 0.02 [45] and the saturation
between 0 and 1 in increments of 0.05, as well as fixing
the value to 1 by following the monochrome representation
in Fig. 4(e). Then, the generated monochrome images were
used as input images for the trained UCNN model to realize
monochrome activation in the hue-saturation specific feature
extraction process.

6) CHARACTERIZATION OF COLLAGEN FIBERS

a: COLLAGEN DENSITY

Figs. 2 (e), (f), (h), and (j) illustrate the process of extract-
ing collagen characteristics by using the features obtained
from the pooling layer in block 1 (first yellow box in
Fig. 2(c)) in the proposed model. Feature numbers were
assigned according to the filter training order, which repre-
sents the order in the third dimension of the output of each
layer (Fig. 2 (c)). For the MT- and H&E-stained images,
features 8, 28, and 53 and features 19, 46, and 53, respec-
tively, were utilized to extract collagen-dense regions in the
images based on the results of hue-saturation specific analy-
sis. Because appendage structures exhibited higher levels of
activation in the H&E-stained histology images, an additional
mask was generated following Otsu’s method [46] by using
features 3 and 52 for appendage removal. After averaging
the features, the collagen-positive map (CP) was generated
as follows:

CP (mg) = 1/(1 + 20 a0)) ¥
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where m, is the average activation of the selected feature
maps, and b is calculated by means of multiple linear regres-
sion between the saturation of the original image and the
averaged feature map, as follows:

b = ki * (mg + 0.5 * stdy) + kp * stdy + k3 2)
where my and std; denote the mean and standard devia-
tion extracted from the saturation (Fig. 2(e)), respectively;
stdy is the standard deviation of the averaged feature map;
k1 and k, are slope coefficients, and k3 is a bias, which are
calculated by fitting a plane to the means of average activation
(my), statistical representations of saturation (m, and stdy),
and standard deviations of the average activation (stdy). The
values of (k1, k2, k3) are (0.15, 0.95, 0.29) and (0.59, 0.95,
0.17) for the MT- and H&E-stained images, respectively.
To calculate the local collagen density, the collagen-positive
map was convolved with the disk kernel [14]. The disk kernel
size was adjusted according to the size of the input image.
Finally, the density map D(x, y) was obtained by up-sampling
to the original image size by means of bicubic interpolation.

b: DIRECTIONAL VARIANCE

Six of the most strongly activated features of the last con-
volution layer in the proposed UCNN model (block3_conv
in Fig. 2(g)) were utilized owing to their directional filter
patterns and high levels of contribution to the classification
decision [13]. Figs. 2(g), (i), and (j) represent the process
of calculating the directional variance. The magnitude map
M (x, y) was calculated as follows:

M(x,y) = (1/N) % y_fi(x, y) 3)
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where fi(x, y) is the ith normalized feature map of the con-
volution layer of block 3, where i € {4,14,41,45,46,53}, and
N is the number of selected features. The resultant map was
convolved with the disk kernel and resized to the original
image size by means of bicubic interpolation. Then, the direc-
tional variance map V (x, y) was generated by normalizing the
magnitude of collagen pixel density, as follows (Fig. 2(j)):

Vix,y)=1-M(x,y)/D(x,y) “

c: STATISTICAL ANALYSIS

The differences in density and directional variance between
normal tissue and scar tissue were examined using Wilcoxon
signed rank statistics, where p < 0.05 was considered sta-
tistically significant [47], [48]. The results of our previous
work involving MT-stained histology images and those of
the present work involving MT- and H&E-stained histology
images were compared. To evaluate the differences in density
and directional variance between the previous and current
studies, we conducted a two-tailed hypothesis test. The null
hypothesis (HO) was that there is no significant difference
between the mean values of density and directional variance
extracted in the previous study and those extracted using
the approach proposed in the present study. To investigate
whether there was an improvement in the characterization
performance of the approach proposed in the current study,
a one-tailed hypothesis test was conducted to compare the
mean values of normal and scar tissues in terms of density
and directional variance. In the one-tailed test, an alternative
hypothesis (H1) was employed to demonstrate that density or
directional variation in the normal tissue extracted using the
previous approach was significantly greater than or less than
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mask for H&E-stained image.

that extracted using the proposed approach. Moreover, a one-
tailed test was conducted to indicate any significant decrease
or increase in density and directional variance between nor-
mal and scar tissues when applying the proposed approach
to MT- and H&E-stained histology images. Fig. 5 shows
the flowchart of the statistical analysis performed herein to
evaluate the performance of the proposed approach in char-
acterizing the density and variance of normal and scar tissues.

Ill. RESULTS
A. CLASSIFICATION OF NORMAL AND SCAR IMAGES
Fig. 6 shows the learning curves obtained during training
(Fig. 6(a)), ROC curves of MT- and H&E-stained histology
images (Figs. 6(b) and (c)), and confusion matrices of the
proposed model for each staining method (Figs. 6(d) and (e)).
Table 3 summarizes the classification performance of
SVM, EfficientNetBO, EfficientNetB2, and the proposed
UCNN model for MT- and H&E-stained histological
datasets. The proposed UCNN model achieved accura-
cies of 98.7% and 97.9% in the classification of MT- and
H&E-stained image, respectively. Both EfficientNetBO and
EfficientNetB2 performed good quantitative results for
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TABLE 3. Comparison of classification performance of models.

SVM  EfficientNet EfficientNet UCNN

Staining  Metric

method B0 B2
Accuracy (%) 88.8 94.1 92.8 98.7
MT Precision 0.893 0.950 0.941 0.987
Recall 0.888 0.941 0.928 0.987
Accuracy (%)  86.6 97.8 99.5 97.9
H&E Precision 0.876 0.98 0.995 0.981
Recall 0.869 0.978 0.995 0.979

H&E-stained images (accuracies 97.8% and 99.5%, respec-
tively), but not for MT-stained images (accuracies 94.1% and
92.8%, respectively). The proposed UCNN model outper-
formed SVM by 9.9% and 11.3% in terms of classification
accuracy when applied to MT- and H&E-stained images,
respectively. Overall, the proposed model achieved superior
precision and recall for both MT- and H&E-stained images.
Thus, the features extracted using the proposed model with
strong classification performance can expectedly be used
to characterize the collagen properties of both MT- and
H&E-stained histology images.
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B. HUE-SATURATION SPECIFICITY ANALYSIS

The upper rows of Figs. 7(a—c) show the monochrome
activation images obtained as a result of the hue-saturation
specificity analysis performed using the features of the
block1-pool layer, while varying the color hues (i.e., X-axis)
and saturation (i.e., y-axis) between O and 1. The color bar
shows the range of monochrome activation. The lower rows
of Figs. 7(a—c) show the corresponding feature maps of the
sample histology images in Fig. 4 (Figs. 4 (a), (c): normal
and (b), (d): scar). Fig. 5(a) shows the feature maps 8§, 28,
and 53 selected for the MT-stained images based on the
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results of a hue specificity analysis. These features, the high
activation spectrum of which was in the range of green to
blue color (corresponding hue: 0.2-0.8), illustrate the col-
lagen regions at higher activation levels (brighter pixels)
and the background and other structures at lower activation
levels (darker pixels). For the H&E-stained images, Fig. 7(b)
shows the feature maps 19, 46, and 53 from the top three
activations and the corresponding activated spectrum in the
H&E-staining color range (blue (nucleic)-pink (collagen)-red
(blood cells), corresponding hues: 0.6—1 and 0-0.2). Features
3 and 52 (Fig. 7(c)) with activation in blue and dark purple
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(corresponding hue: 0.6-0.8) were selected to exclude the
region with other structures, as illustrated in Fig. 7(c).

C. CHARACTERIZATION OF COLLAGEN FIBERS
Figs. 8 and 9 illustrates the characterization results of the
MT-stained images (Figs. 8(al-a4) for normal tissue
and (a5-a8) for scar tissue) and H&E-stained images
(Figs. 9 (al-a4) for normal tissue and (a5-a8) for scar
tissue) of various input sizes. Regarding collagen den-
sity, Figs. 8(b1-b8) and Figs. 9(b1-b8) represent the den-
sity maps corresponding to the histology images shown
in Figs. 8 (al-a8) and Figs. 9 (al-a8). Overall, the colla-
gen density values of the normal tissue (Figs 8 (bl-b4)
and Figs. 9 (b1-b4)) are lower than those of the scar tissue
(Figs. 8 (b5-b8) and Figs. 9 (b5-b8)) by 42% and 39%,
respectively. Finally, Figs. 8 (c1-c8) and Figs. 9 (c1-c8)
show the directional variance of the images shown in
Figs. 8 (al-a8) and Figs. 9 (al-a8), as determined using
the proposed method. The mean of directional variance of
the normal tissue is significantly higher (42%) than that of the
scar tissue in the cases of the MT- and H&E-stained images.
The whole histology image of the MT- and H&E-stained
tissues (Figs. 10 (al, a2)) containing both normal and scar
regions was used to visualize the collagen density and direc-
tional variance. The scar region (middle) contained denser
and more well-oriented collagen than the normal regions (left
and right sides in Figs. 10 (al, a2)). The collagen density was
higher in the scar tissue region (Figs. 10 (b1, b2)). The scar
tissue in the middle of the images exhibited significantly low
directional variance, meaning that the collagen fibers were
more aligned with each other (Figs. 9 (c1, c2)).

D. STATISTICAL ANALYSIS
Fig. 11 presents the results of a statistical analysis of the
collagen density and directional variances extracted from the
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histology images obtained using two different staining meth-
ods (left: MT-stained, right: H&E-stained). The bar graphs
presented in Figs. 11(a) and (b) show the means of density
and directional variance, respectively. The mean collagen
density of the normal tissue (0.47 £+ 0.086) is 38% lower
than that of the scar tissue (0.76 £ 0.067) owing to an
increase in the amount of denser collagen fibers during tissue
re-epithelization. The normal tissue with a basket weave-
like collagen fiber pattern has randomly distributed collagen
bundles. Thus, the mean of directional variance of fibers in
the normal tissue, as extracted using the proposed method,
is 0.67 £ 0.139. By contrast, the collagen fibers in the scar
tissue are aligned; therefore, the directional variance of colla-
gen fibers in the scar tissue is noticeably lower (0.44 £ 0.083)
than that in the normal tissue. The directional variance of the
scar tissue is significantly lower (34%) than that of the normal
tissue. All comparisons of density and directional variance of
the histology images of normal and scar tissues have a signifi-
cant p-value (p < 0.001) in terms of the Wilcoxon signed rank
statistics.

In a statistical comparison between the results of the
present and previous studies, the scar tissues stained using
the two staining methods were not significantly different
(p > 0.05) in terms of density and directional variance.
In case of the normal tissue, the mean density determined
using the previous approach was significantly higher than that
determined using the proposed approach (p < 0.001). By con-
trast, the directional variance determined using the previous
approach was significantly lower than that determined using
the proposed approach (p < 0.001). These results demon-
strated that the proposed UCNN model enhances the discrim-
ination between scar tissue and normal tissue, with a greater
difference in characterization (i.e., density and directional
variance).
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IV. DISCUSSION

In the present study, we demonstrated the ability of the
proposed UCNN model in terms of both classification and
characterization of MT- and H&E-stained histology images.
The results of our previous study proved that collagen orga-
nization can be clearly differentiated and characterized using
MT-stained histology images [13]. However, distinguishing
collagen organization using H&E-stained histology images
remained challenging owing to the narrow derivation of the
staining color. Although the color components of various
staining methods are different, the tissue structures remain
the same. Thus, we proposed a UCNN model and a method
for visually characterizing histology images, regardless of the
staining method (i.e., H&E and MT staining in this study).
In addition, the classification results indicated that the pro-
posed UCNN model could extract the primary features of
tissues to differentiate between normal and scar tissues (accu-
racy > 97%), regardless of the staining method used. To prove
the multi-scalability of the proposed model, test and training
image data of different sizes were used, as summarized in
Table 1. Because it was not possible to split the data into sev-
eral groups under the same condition (i.e., image size), cross
validation [49], such as k-fold or Monte Carlo, was inappli-
cable. Given that we had a sufficient amount of data, a large
test dataset was utilized instead to validate the network.
The performance of the proposed network confirmed that
it was trained well with a small amount of training
data.

The EfficientNetBO and EfficientNetB2 models yielded
adequate classification performance. Also, advanced models
with higher image resolutions, such as EfficientNetB7 [39],
can also be trained to achieve improved classification
performance. However, the architectures of the advanced
models are rather complicated from the viewpoint of extract-
ing features for characterization purposes. It will be further
investigated to utilize the advanced models for the charac-
terization. The performance of SVM was worse than those
of EfficientNetBO, EfficientNetB2, and the proposed model.
SVM and EfficientNet can be further optimized by tuning its
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hyperparameters by using the grid search tool [50]. However,
this is beyond the scope of the present study, which focuses
on classification and feature extraction for characterization
from the DL model. The results of the present study indicate
that the color- and texture-based features obtained using the
proposed model can be utilized to analyze the organization
of collagen bundles. The collagen densities of normal and
scar tissues, as extracted using the proposed method, differ
significantly (38%). In addition, directional variance, which
is the strongest differentiator of collagen fiber organization
post tissue remodeling after a burn injury, decreased notably
(34%) for the scar tissue than it did for the normal tissue.
The results of this study indicate that the proposed approach
that utilizes the features extracted using the proposed UCNN
model can possibly replace expensive tissue characterization
methods.

While we used only RGB color features in the previous
study [13], herein, we conducted a hue-saturation specificity
analysis. Hue-saturation specificity analysis helps one to
extract color features. Thus, the main color components of
the histology images examined in the 2D histogram analysis
(Fig. 4) could be selected from the extracted color features
(Fig. 7). In this light, we developed a universal model for
two different staining methods that represent various tissue
structures with different colors. The model utilized the first
two blocks pre-trained using ImageNet because they were
observed to be highly sensitive to the color of the input
images, which is a prominent feature for extracting a collagen
mask. To extract the specific color features of the histology
images, we used three steps. First, hue-saturation specificity
analysis was performed to visualize the color features (hue
and saturation) from the network (Fig. 7). Next, the main
color components (hue and saturation) of the collagen area in
the MT- and H&E- stained histology images were determined
from 2D histogram analysis (Fig. 4). Finally, the match-
ing color features between the hue-saturation specificity
analysis and the 2D histogram analysis were selected for
MT- (features 7, 28, and 53) and H&E- (features 19,
46, and 53) stained images, respectively. Although the
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histogram of the example MT-stained images used in this
study (Figs. 4 (a, b)) contained collagen areas stained with a
strong shade of blue (i.e., hue > 0.5), the collagen areas in
the MT-stained images ranged from green to blue in color
(i.e., hue: 0.2-0.8) owing to variations in the staining pro-
cess [7]. Thus, hue features ranging from 0.2 to 0.8 were
included in the feature map (Fig. 7). In addition, it was
observed that the characterization process deteriorated when
the image saturation was low (< 0.4) because the color
representing collagen was extremely close to white color,
and the hue colors were diminished (Fig. 4(e)). Thus, the
sigmoid function (Eq. (1)) was applied to compensate for the
decrease in saturation based on a linear regression between
saturation and activation of the extracted features. According
to the slope (k1 in Eq. (2)), the MT-stained histology images
were less affected by saturation than the H&E-stained histol-
ogy images. The results obtained using the proposed UCNN
model demonstrated that variations in the histology staining
process (e.g., color variation) did not compromise the clas-
sification and characterization performance of the proposed
model. Further investigations with broader variations in the
staining and scanning processes are necessary. Given that
the training images were resized to the input size of 224 x
224 pixels to facilitate utilization of the pre-trained network
weights, the performance of the proposed UCNN model can
be degraded when it is applied to images with resolutions
higher (i.e., 1000 & 500, 1017 & 1920, and 500 & 500) than
that of the input images. However, the results of this study
proved that the trained model performed adequately well in
terms of classification and characterization when applied to
multi-scale images.

Directional
variance

v 2"
o

FIGURE 12. Misclassified cases for MT-stained normal and scar tissues
and H&E-stained normal tissue (from top to bottom) and the
corresponding density and directional variance.
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As demonstrated by the confusion matrices (Figs. 6 (d, e)),
the proposed UCNN model mislabeled a few test instances.
Fig. 12 showed examples of the misclassified cases, including
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MT-stained normal and scar tissues and H&E-stained normal
tissues. It is observed that these histology images contain
smaller proportions of collagen than the other structures,
such as glandular cells and follicles. Although misclassified,
the characterization results (density and directional variance)
obtained in these cases are acceptable. This confirms that
the proposed model learns and differentiates the features
properly, regardless of the staining method. Further investi-
gation is necessary to understand whether the misclassified
cases affect the characterization performance of the proposed
approach.

While the color-based features of the collagenous regions
in the MT- and H&E-stained images could be selected
using the results of the hue-saturation specificity analysis
(Figs. 4 and 7), the texture-based features representing the
directional variance could be extracted from the last convo-
lution layer. Our observations in this study were consistent
with our expectation that as the tissue undergoes remodel-
ing, the collagen fibers are organized in a denser and more
aligned manner in terms of their distribution and orientation.
Moreover, the proposed approach can be applied to whole
histology images for characterization, as illustrated in Fig. 10.

For the proposed UCNN model, it was observed that the
color-based features constituted the key factor in both clas-
sification and characterization. The proposed model utilized
RGB color images that were augmented in the HSV color
space. In future studies, DL models using input images in
color spaces other than the RGB color space (e.g., HSV,
CIELAB) can be investigated [51], [52]. For color augmenta-
tion, color normalization methods, including color deconvo-
lution and various DL models, can be utilized [33], [36], [37].
Furthermore, an extended universal model for the classi-
fication and characterization of histology images obtained
using other staining methods (e.g., picrosirius red, Movat’s
pentachrome) will be investigated [53], [54]. Although the
current study was limited to differentiation and characteri-
zation between two categories (i.e., normal tissue and scar
tissue), it can be extended to various types of scars such as
normal, keloid, hypertrophic, and depressed scars that are
formed after a burn injury [4]. In the future, we intend to
investigate collagen quantification for distinguishing other
types of scars. For clinical and prognostic applications, it is
important to exploit the characteristics of collagen fiber
organization to intergrade information related to various
pathological studies, including cancer, aging, wound healing,
and diabetes [9]-[11], [31]. In this regard, the promising
results obtained herein demonstrate the competence of the
proposed model in assisting pathologists to achieve prompt
and accurate diagnoses.

V. CONCLUSION

The proposed UCNN can classify and characterize colla-
gen organization after tissue remodeling by using MT- and
H&E-stained histology images. Regardless of the staining
method in use, we were able to utilize the proposed model to
extract significant features for characterization by employing
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the results of hue-saturation specificity analysis. In the future,
we will extend the proposed UCNN model to various staining
methods and ensure that it can stage scars for quantitative
assessments in clinical scar treatment.
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