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ABSTRACT This study aims to achieve the trajectory-tracking of an autonomous differential drive mobile
robot (ADDMR) in the presence of friction torques using the proposed Fuzzy Sliding-ModeControl (FSMC).
First, the complete model of the ADDMR is established including kinematic, dynamic and actuator models.
Then, the desired trajectory is planned and generated via Bézier curve combined with cubic time mapping.
The localization of the ADDMR is performed using the Monte Carlo Localization (MCL) technique and
LiDAR point cloud data. Subsequently, the proposed FSMC utilizes nonlinear sliding surfaces inferred based
on fuzzy logic to asymptotically attain the pose convergence. To investigate the feasibility and robustness
of the proposed FSMC, simulations and experiments are conducted under different operation conditions.
The results show that the proposed FSMC using LiDAR data in the feedback leads to excellent control
performance even in the presence of friction torques. It was also shown through simulations and experiments
that the established ADDMR model fits the actual ADDMR model very well.

INDEX TERMS Autonomous differential drive mobile robot, fuzzy sliding-mode control, Monte Carlo
localization, nonlinear sliding surface, Bézier curve.

I. INTRODUCTION
Online shopping has been drastically increasing over the
past year, especially during COVID-19 pandemics [1], [2].
Factories are racing to equip their warehouses with automated
logistic handling technologies [3], [4] or contactless delivery
service [5], [6]. For these reasons, there has been numerous
research on the control of mobile robots. The commonly used
configurations are robots driven by wheels speed differences
and they are controlled to follow a prescribed path from
initial to final position in a determinate time. The type of
robots driven by wheel velocity differences are called Dif-
ferential Drive Mobile Robot. The challenge of controlling
Autonomous Differential Drive Mobile Robots (ADDMRs)
comes from its nonlinearity. Specifically, its nonholonomic
property constrains its side movements. Many control tech-
niques are proposed to handle it, but the important issue is that
most of them only consider kinematics [7]–[22]. It is under-
standable because the consideration of its dynamic model
will increase the complexity and dimensionality of the model
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which leads to difficulties for a controller design standpoint.
However, kinematics does not consider mass and when an
ADDMR is driven at high speed, its dynamic model becomes
a necessity in addition to the kinematic model. Thus, some
controller design techniques have been taking the dynamic
model of the ADDMR into consideration. For example, the
works in [23]–[34] considered both kinematics and dynamics
for their vehicle models.

A significant task for the above-mentioned works is
trajectory tracking in which the robot must follow a pre-
defined path. The studies in [24] and [28] have posi-
tioned their ADDMRs on the path initially. Keighobadi and
Menhaj [24] stated that their proposed method could not fully
compensate initial position outside the path. In [25]–[27],
the results demonstrate tracking error convergence at arbi-
trary initial positions; however, the circular path just has
a constant velocity reference. Xu et al. [27] showed that
it is important to consider speed transition of the robot
movement. In most previous works, the ADDMR was given
a path without time constraints; therefore, the ADDMR
approaches each point in the path incrementally. This is an
important issue that the time arrangement along the planned
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path can lead to speed variations that the ADDMR has to
follow.

The most recent developments in trajectory-tracking using
fuzzy logic [14]–[22], [24], [30], [33]–[35] and sliding mode
control techniques [13], [29]–[32], [35]–[39] are the motiva-
tion behind the work presented herein, which takes advantage
of findings from both methods. Therefore, the FSMC based
on a LiDAR point cloud data is proposed here to control
an ADDMR system to follow a trajectory at prescribed time
from arbitrary initial positions under torque disturbances. The
contributions of this work are as follows:

1) A comprehensive ADDMR model consists of the
kinematic and dynamic models is presented here.
The model is augmented with the actuator dynam-
ics for a more realistic representation of the motion
of the ADDMR which has not been addressed
by Refs. [7]–[36].

2) A desired trajectory is planned using Bézier curve.
The n + 1 way-points on the trajectory are deter-
mined using an nth-order Bézier curve. Unlike work
in [27], the dynamic velocity command is embedded
in the trajectory itself rather than in the control pro-
cess. The advantage of the proposed approach is that it
lends itself to possible combination with other control
techniques in the closed-loop control design process.
It also enables the trajectory to have zero velocity at the
beginning and the end whereas previous works, such as
those in [7]–[36] did not consider this. The close-loop
performance of the ADDMR using the proposed con-
trol technique is validated experimentally using an
8th-order Bézier trajectory with cubic timemapping for
the time arrangement along the path.

3) A fuzzy logic control design with 9 inference rules
only combining a sliding mode control scheme leads
to effective closed-loop control of the ADDMR. Fuzzy
logic control offers multi-input, multi-output, model
free controllers for trajectory tracking (see for exam-
ple. [21] and [22]). In addition, the interpolative reason-
ing provides resilience against noisy measurement in
the ADDMR system. However, unlike existing unlike
existing techniques (e.g. [14]–[22], [30], [33]–[35])
where complex inference rules and membership func-
tions are used, relatively simpler inference rules are
used in the proposed control scheme. These lead to
computational cost reduction and provide flexibility in
the choice of computing devices used in the ADDMR
testbed; a major advantage in the implementation
phase.

4) LiDAR based Monte Carlo Localization (MCL) is
used for feedback control to improve the control per-
formance of the closed-loop system. The common
approaches described in the literature (see for exam-
ple [12], [29], [31]–[34]) use angular acceleration and
torque feedback which renders the implementation a
little more challenging. Instantaneous measurement of
the orientation and position are easily accessible and

implementable on an actual testbed [22]. Therefore,
a LiDAR is used here for pose feedback due to its
accuracy compared to GPS or odometry sensors by
Refs. [40]–[43].

5) Experiments and simulations are conducted to validate
the theoretical developments. Both the simulations and
experiments are conducted using different initial condi-
tions which have not been done in previous works (see
for example [10], [12], [13], [16], [17], [19]–[21], [23],
[23], [25]–[33], [35], [36]).

The rest of the paper is arranged as follows: In Section 2,
the system description, modelling, and problem formulation
are given. In Section 3, the trajectory planning, pose mea-
surement, and FSMC design are discussed. Discussions of the
simulation and experiment results are presented in Section 4.
Finally, concluding statements are made in Section 5.

II. SYSTEM DESCRIPTION, MODELING, AND PROBLEM
FORMULATION
The hardware configuration for the ADDMR experimental
platform is described here for which the equations of motion
will be derived. The system modeling is divided into 3 sub-
systems, i.e., kinematic, dynamic, and actuator models. The
details of each subsystem are explained in the following
subsections. The problem formulation for the ADDMR is
subsequently delineated using the equations of motion of all
subsystems.

A. SYSTEM DESCRIPTION
The experimental platform of the ADDMR and its diagram
are shown in Fig. 1. The main CPU from ADLINK AmITX-
SL-G with Intel i5-6500TE and 8GB Random Access Mem-
ory (RAM) is where the proposed controller is computed
and all the data from the STM32F microcontroller is stored.
Two A4950 DMOS Full-Bridge motor drivers generate volt-
ages to actuate two DC motors responsible for the motion
of the robot. The provided sensors are Quadrature hall
effect encoder and Inertial Measurement Unit (IMU) used
to measure the corresponding position and orientation of the
ADDMR; a LiDAR is also provided for measurements of
distance around the robot. The wheels are centered and with
center of mass is halfway in between. In addition, two castor
wheels are attached for the balance of the ADDMR.

B. SYSTEM MODELLING
The ADDMR is a type of mobile robots that the speed dif-
ferences for two actuated wheels cause forward, backward,
or turning movement. The illustration can be seen in the
following Fig. 2. To establish geometric relationship of the
ADDMR, an inertial frame {I } and a body frame {B} are
given. Frame reference {I } is attached to the floor and the
origin of body frame {B} is located on the center of mass of
itself as described in Fig. 2. The orientation of the robot is θ
with respect to the inertial framewhich is calculated by taking
angle measurement between the longitudinal axes of body
frame and inertial frame. The linear and angular velocities
of the ADDMR are calculated with respect to the point o,
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FIGURE 1. The ADDMR system used in the experiment.

FIGURE 2. Frames and point of reference in the robot system.

i.e. the origin of body frame. Assume that there is a point
of contact between each wheel and the floor, there exists
resulting tangential velocities from their angular velocities
(φ̇r , φ̇l). The angular and linear velocities of the wheels are
proportional to the ratio of the wheel radius R. Hence, the
ADDMR’s velocities with respect to the inertial frame can be
obtained from its wheel angular rates [44]–[48] asI ẋBI ẏB

θ̇

 = R
2

cos θ cos θ
sin θ sin θ
1
L

−
1
L

[ϕ̇r
ϕ̇l

]
(1)

where θ is the orientation of the ADDMR. Moreover, the
relationship between the velocity of mass (Bẋ, θ̇ ) with respect
to body frame and wheels’ angular velocities are given by:[

ϕ̇r
ϕ̇l

]
=

1
R

[
1 L
1 −L

] [Bẋ
θ̇

]
(2)

In addition to the kinematic model of Eqs. (1) and (2), the
Newton-Euler approach is used to build up the dynamic
model of the robot. The ADDMR is assumed to have a
unified rigid body and the equations of motion are determined
with respect to reference {B} as shown in Fig. 2. Moreover,
two motors provide the ADDMR with longitudinal wheel
forces (Flwx ,Frwx) created by their corresponding torques
(τl, τr ) [45], [46], [49]. Hence, the linear and angular accel-
erations of the robot with respect to the body frame can be
represented as

Bẍ =
1
MR

(τl + τr ) (3)

θ̈ =
L
JR

(τr − τl) (4)

That means that the dynamicmodel of the ADDMRgenerates
linear velocity (Bẋ) and angular velocity (θ̇ ) after integration
when motor torques τr and τl are applied.

Combining the aforementioned kinematic with dynamic
models, the actuator model is derived to complete the
system’s equations of motion. However, designing the cor-
responding controller is very challenging due to the high
dimensionality of the system’s model. The actuated system
is comprised of two identical DC motors and the relations of
voltage and torque of the motor are formulated as follows:

Va = Raia + La
d ia
dt
+ ea

ea = Kbωm
τm = Kt ia
τ = Nτm

(5)

where Ra, La, Va, ia, and N are armature resistance, induc-
tance, voltage, current, and gear ratio, respectively. The back
emf ea is proportional to the rotational velocity ωm with
back emf constant Kb. Moreover, the motor torque τm is
proportional to the armature current ia with constant Kt and
the output torque τ is proportional to τm with gear ratio N .
Based on Eq. (5), an actuator model can be obtained. In the
subsystem, the two respective inputs are voltage Val of the
left motor and Var for the right motor. Here, τr and τl stand
for torques of the left and right motors which are the outputs
of the actuator model.

From the kinematic, dynamic, and actuator models, a com-
prehensive model is built for subsequently designing the
trajectory-tracking controller. In addition, τdr and τdl which
denote torque disturbances, are added to the dynamic model
to investigate the robustness of the closed-loop control system
when the proposed controller is applied.

C. PROBLEM FORMULATION
The objective of the proposed FSMC is to control the
ADDMR from an arbitrary initial position along a desired
trajectory in the presence of torque disturbances τdr and τdl .
The pose information obtained by an MCL technique using
LiDAR information to form nonlinear sliding surfaces. Then,
the nonlinear sliding surfaces are reasoned to satisfy the
reaching law (i.e., σ σ̇ < 0, where σ is a sliding surface)
via the designed fuzzy inference rules. When control law is
applied to the ADDMR system, the tracking errors asymptot-
ically converge to zero. The overall control block diagram is
shown in Fig. 3.

III. TRAJECTORY PLANNING, POSE MEASUREMENT,
AND FSMC DESIGN
A. TRAJECTORY PLANNING
It is common in the robotics community to differentiate
between path and trajectory. A path is a spatial function that
connects an initial pose to a final one where as a trajectory is
a path which is a function of time [50]. In this work, a path
is a spatial function of arc length s where s = 0 is the initial
pose and s = 1 is the final pose. One of the well-known ways
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FIGURE 3. The overall control block diagram.

to generate paths is Bézier curves where the path is described
using a parametric equation. The n + 1 parameter points Pi
with i = 0, 1, . . . , n are used to form an nth-order Bézier
curve B(s) as:

B(s) =
n∑
i=0

Pi Bni (s), s ∈ [0, 1] (6)

where Bni (s) is a Bernstein polynomial given by

Bni (s) =
(
n
i

)
si(1− s)n−i, i = 0, 1, 2, . . . , n (7)

and
(
n
i

)
is a polynomial coefficient given by

(
n
i

)
=

n!
i!(n− i)!

(8)

Because a Bézier curve only goes through the first and the
last parameter points, the other points are used to determine
the shape of the curve. These points Vi are spaced points in
an equally divided arc length such that

Vi = B(i/n), i = 0, 1, 2, . . . , n (9)

This yields a Bézier curve that will always go through all the
Vi. The polynomial form of the Bézier curve in Eq. (6) can be
expanded into a matrix form of

A(s) =
(
s0 s1 . . . sn

)

·


Bn0B

n
0(−1)

0 0 . . . 0
Bn0B

n
1(−1)

1 Bn1B
n−1
0 (−1)0 . . . 0

...
...

. . .
...

Bn0B
n
n(−1)

n Bn1B
n−1
n−1(−1)

n−1 . . . BnnB
0
0(−1)

0



B(s) = A(s)


P0
P1
...

Pn


(10)

whereA(s) is an 1×(n+1) column vector that maps parameter
points Pi to Bézier points at arc length s. The corresponding
Pi to the designed Vi can be calculated by expanding Eq. (9)

as follows: 
V0
V1
...

Vn

 =

B(0/n)
B(1/n)
...

B(n/n)



=


A(0/n)
A(1/n)
...

A(n/n)



P0
P1
...

Pn



P0
P1
...

Pn

 =

A(0/n)
A(1/n)
...

A(n/n)


−1

V0
V1
...

Vn

 (11)

To form a smooth trajectory from the planned Bézier curve
path, a time mapping function of the arc length s(t) is
designed using a cubic polynomial as follows:{

s(t) = a0t3 + a1t2 + a2t + a3
ṡ(t) = 3a0t2 + 2a1t + a2

(12)

where the coefficients ai i ∈ {0, 1, 2, 3} are calculated based
on the intended initial and final conditions of s, and ṡ.
By combining the path with a cubic timemapping, the desired
trajectory is obtained for tracking control by the ADDMR
system.

B. POSE MEASUREMENT
To localize and control the ADDMR, its pose measurement
for feedback is required. In the experiment, in addition to
odometry, MCL is used to improve the accuracy of the pose
measurement via a LiDAR. TheMCL technique is inspired by
a recursive Bayes filter based on importance sampling to esti-
mate probability of robot poses using sensory measurement
data [51]. The states of the robot can be defined in a prob-
abilistic approach with the help of two distribution models
i.e. motion and observation models [52]. The motion model
p(xt | xt−1, ut ) represents the transition of probability distri-
bution of state x at time t based on the previous state xt−1 and
the control input ut . The observation model p(zt | xt ) incor-
porates reading of sensors zt to calculate the likelihood. The
wholeMCL algorithm is described in Table 1. The continuous
belief of states bel(xt ) in MCL is represented by a discrete
number of M particles Xt = {x

(i)
t ,w

(i)
t }

M
i=1 [53]. The weight

w(i)
t is approximately proportional to the probability of robot

at states x(i)t . The initial belief bel(x0) is uniformly distributed.
Hence, the initial weights w0 are also uniform and the states
x0 are initially sampled from all possible state values with
uniform distribution [54]. Line 4 in Table 1 propagates the
particles using the system dynamics to generate hypothetical
state xt . This process represents a sampling from distribution
p(xt | xt−1, ut ). Line 5 in Table 1 calculates the likelihood
representing measurement probability zt from particle x(i)t ,
that is p(zt | x

(i)
t ). In this study, LiDAR beams are utilized

33716 VOLUME 10, 2022



H.-M. Wu, M. Q. Zaman: LiDAR Based Trajectory-Tracking of ADDMR Using Fuzzy Sliding Mode Controller

TABLE 1. Monte Carlo localization algorithm.

to measure the likelihood of each particle. Line 6 in Table 1
assigns the states and likelihoods to a temporary particles X̄ .
Line 8 in Table 1 commonly referred to as re-sampling step
in which j ∈ [1,M ] integers are drawn proportionally to the
likelihoods wt . The newly selected particles are assigned to
the reference of j in Line 10. Particles with bigger likelihood
are more likely to be drawn multiple times. Hence, more
particles are distributed to the most probable states.

Here, a simulated example is displayed. The result shown
in Fig. 4 indicates particles (blue dots) convergence history.
The robot moves in a counterclockwise direction and the
position is marked in green dashed line as a ground truth.
The mean position of particles is taken as a predicted location
and marked by an orange line. As seen from the figure,
the particles gradually concentrate and converge to the real
location of the robot.

C. FUZZY SLIDING-MODE CONTROL DESIGN
Based on the established comprehensive model and local-
ization of the ADDMR, the proposed FSMC is designed
to control an ADDMR to track the desired trajectory. The
proposed FSMC has two inputs; i.e., heading error eθ and
position error ep, and two outputs; i.e., Val and Var . The
details are further described in the following subsections.

1) NONLINEAR SLIDING SURFACES DESIGN
Prior to designing the FSMC, nonlinear sliding surfaces are
first designed. The distance error ep and heading error eθ
information are defined to construct nonlinear sliding sur-
faces. To clearly understand how both errors are calculated, a
geometrical schematic shown in Fig. 5 describes the relation
between the inertial frame {I }, robot frame {B}, and the
planned Bézier trajectory T = B(s(t)). Vector IPB and IPT
are the robot position and trajectory position relative to the
inertial frame. The trajectory position relative to the body
frame is denoted by BPT . In this way, it can be calculated by
utilizing homogeneous transformation matrix ITB ∈ SE(2)[

BPT
1

]
=

ITB
−1
[
IPT
1

]

=

cos θ − sin θ I xB
sin θ cos θ I xB
0 0 1

−1I xTI yT
1

 (13)

FIGURE 4. Particles convergence history in an occupancy grid map using
MCL algorithm.

FIGURE 5. Geometric relation between the target and the robot.

and the position error is the magnitude of BPT as follows:

ep =
√

BxT
2
+ ByT

2 (14)

Using Eq. (13), the heading error eθ is

eθ = atan2(ByT ,B xT ) (15)

where atan2(·) is a full-quadrant inverse tangent with output
between [−π, π] [55]–[58]. The function atan2(·) is preferred
over the tan−1(·) = atan(·) function for converting Cartesian
coordinates to their corresponding polar coordinates.

The control objective is to make ep and eθ asymptotically
converge to zero. Firstly, the following nonlinear sliding sur-
faces sp and sθ constructed by tracking errors are designed.
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Here, the sliding surface sp corresponds to trajectory tracking
and sθ corresponds to robot’s heading tracking represented as{

sp = ėp + kpep + fpsign(ep)
sθ = ėθ + kθeθ + fθ sign(eθ )

(16)

where kp, kθ , fp, and fθ are positive constants and sign(·)
is a signum function [13], [15], [21], [26], [29], [31], [32],
[35], [36]. Eq. (16) can be proved that once the sliding sur-
faces approach to zero, the corresponding tracking errors also
approach to zero. Then, the fuzzy logic is proposed to regulate
nonlinear sliding surfaces towards zero and the details are
described in next subsection.

2) FUZZY INFERENCE LOGIC DESIGN
In fuzzy inference logic design, the sliding surfaces are
inputs and the actuator voltages are outputs to control the
left and right wheels. In the beginning, sliding surfaces are
normalized using gains knp and knθ yielding ŝp = knpsp
and ŝθ = knθ sθ . The normalized values are then evaluated
using triangular fuzzy membership functions shown in Fig. 6.
For each sliding surface, there are 3 membership functions
comprising {N : Negative,Z : Zero,P : Positive}. In addition
to the fuzzified inputs, this work also uses fuzzified voltage
outputs for each actuator. The fuzzification of the outputs are
the triangular type with 3 linguistic voltage representations
{N : Negative,Z : Zero,P : Positive} shown in Fig. 7. Then,
fuzzy rules are designed in the inference engine as follows:

R1 : if (ŝp = N AND ŝθ = N ) then (Vfr = N ,Vfl = P)

R2 : if (ŝp = N AND ŝθ = Z ) then (Vfr = P,Vfl = P)
...

...
...

R9 : if (ŝp = P AND ŝθ = P) then (Vfr = N ,Vfl = P)

(17)

The t-norm AND operator in this work is MIN (·) function.
The consequence of every rule is aggregated using t-conorm
MAX (·) function. The complete list of the rules is displayed in
the following Table 2. The concluding functions, i.e. µ̂fr (Vfr )
and µ̂fl(Vfl), are determined based on the designed rules and
fuzzy set operations. Then, a crisp value is obtained by means
of the centroid method expressed as follows:

Vr =

∑
Vfr
Vfr µ̂fr (Vfr )∑
Vfr
µ̂fr (Vfr )

Vl =

∑
Vfl
Vfl µ̂fl(Vfl)∑
Vfl
µ̂fl(Vfl)

(18)

Based on the proposed FSMC design, discussion of the cor-
responding simulation and experiment results is presented in
the next section.

FIGURE 6. Fuzzy membership functions µp and µθ of inputs ŝp and ŝθ ,
respectively.

FIGURE 7. Fuzzy membership functions µfr and µfl of outputs Vfr and
Vfl , respectively.

TABLE 2. Complete list of fuzzy inference rules.

IV. DISCUSSION OF SIMULATION AND EXPERIMENT
RESULTS
The proposedmethod applied to theADDMR system is tested
to follow the planned Bézier trajectory. The trajectory is
designed using the following via points as

V =



0 0
0.5 −0.5
0 −1.0
−0.5 −1.5
0 −2.0
0.5 −2.5
0 −3.0
−0.5 −3.5
0 −4.0


(19)

The via points are chosen to mimic a sinusoidal path. Using
Eq. (11), we find the parameter points and the corresponding
matrix form of the Bézier curve as follows (20), as shown at
the bottom of the next page. The resulting path can be seen
in Fig. 8.

To follow a speed variation in the trajectory, the path is
designed to end at 60 s with a nonlinear arc length function
as follows:{
s(t) = −9.3 · 10−6t3 + 8.3 · 10−4t2 − 3.2 · 10−18t
ṡ(t) = −27.9 · 10−6t2 + 16.6 · 10−4t − 3.2 · 10−18

(21)
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FIGURE 8. The planned Bézier path B(s).

FIGURE 9. The evolution of arc length (a) s(t) and (b) ṡ(t) over time
period.

TABLE 3. List of parameters in the simulation.

and the evolution of s(t) and ṡ(t) can be seen
in Fig. 9.

In practical situation, there are some torque disturbances
generated from frictions or uneven floors. In order to inves-
tigate this effect, friction torque τf and uncertainty torque τu
are applied to the ADDMR control system. Both disturbances

FIGURE 10. Disturbance torques τf and τu.

FIGURE 11. Trajectory-tracking responses of the simulated ADDMR in the
presence of disturbance.

are formulated as follows:

τd = τf + τu

τf = Tvϕ̇ +

Tc + (Ts − Tc)e
−|
ϕ

ϕ̇s
|

 sign(ϕ̇)

τu = [0.1+ 0.1 sin (10π t)+ 0.01 cos (62π t)] sign(ϕ̇)
(22)

B(s) =
(
s0 s1 . . . s8

)
·



1 0 0 0 0 0 0 0 0
−8 8 0 0 0 0 0 0 0
28 −56 28 0 0 0 0 0 0
−56 168 −168 56 0 0 0 0 0
70 −280 420 −280 70 0 0 0 0
−56 280 −560 560 −280 56 0 0 0
28 −168 420 −560 420 −168 28 0 0
−8 56 −168 280 −280 168 −56 8 0
1 −8 28 −56 70 −56 28 −8 1





0 0
−0.3 −0.5
5.7 −1.0
−9.0 −1.5

0 −2.0
9.0 −2.5
−5.7 −3.0
0.3 −3.5
0 −4.0


(20)
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FIGURE 12. ep and eθ responses of the simulated ADDMR in the
presence of disturbance starting from different initial positions.

FIGURE 13. Sliding surfaces responses of the simulated ADDMR in the
presence of disturbance for case 1.

The friction torque is based on friction model with stribeck
effect [59], [60] where Tv, Tc, Ts, and ϕ̇s are viscous fric-
tion, coulomb friction, stiction friction, and stribeck veloc-
ity constants, respectively. The friction model gives varia-
tion of disturbance torque with respect to angular velocity
of the wheels ϕ̇. Furthermore, the uncertainty torque gives
variation of disturbance torque with respect to time which
includes low and high frequency components. The system
and control parameters in the simulation are listed in Table 3
and the illustration of the disturbance is shown in Fig 10.

FIGURE 14. Tracking responses of each case in the experimental
implementation.

FIGURE 15. Linear velocity vx and angular velocity θ̇ responses of each
case in the experimental implementation.

During simulations and experiments, the ADDMR is initially
placed outside the path. The initial positions for each case are
(xci, yci) = {(−1.2, 0.8), (0.5, 1), (−0.5, 1.5)} and the initial
orientation is θci = 90◦ for all cases.

It is clearly seen from Fig. 11 that the proposed FSMC can
achieve excellent trajectory-tracking of the ADDMR despite
the presence of disturbance torques. Similarly, the orientation
tracking is also good and displayed in Fig. 12 where the rise
time of ep is 2 s and the rise time of eθ is 1.26 s. Moreover,
Fig. 13 shows that the sliding surface of case 1 converges to
zero as the robot successfully follows the planned trajectory.
The provided simulations validate that the proposed method
is capable of controlling the ADDMR to follow the planned
trajectory under torque disturbances.
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FIGURE 16. ep and eθ responses of each case in the experimental
implementation.

In the experiments, the proposed FSMC is implemented
on ADLINK NeuronBot. The robot follows the same tra-
jectory at the same initial conditions as the simulations.
The implementation result can be seen in Fig. 14 where the
trajectory-tracking is satisfactory despite the presence of
the floor disturbances. Compared to the simulations shown
in Fig. 11, the curvatures are smaller when approaching
the desired trajectory. This is because the robot operates
indoors and its speed limit is needed for safety consider-
ation. As seen in Fig. 15, the linear velocity of the robot
does not exceed 0.4 m/s. As a result, eθ is reduced much
faster than ep as shown in Fig. 16 where the robot made
a sharper move compared to the simulations. Furthermore,
it can be seen from error responses that the robot completes
the trajectory-tracking in a specified time.

V. CONCLUSION
In this study, the FSMC technique is proposed to control
an ADDMR subject to torque disturbances. In addition, the
comprehensive model of the ADDMR consisting of kine-
matics, dynamics, and actuator dynamics is established. The
trajectory is planned via Bézier curve. In addition, the pose
measurement of the ADDMR is measured through MCL
technique based on a LiDAR point cloud data. The numerical
and experimental validation results prove the effectiveness
and robustness of the proposed control scheme.
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