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ABSTRACT Reheating furnaces are used to homogeneously reheat the steel stock (Billets, blooms or
slabs) at a temperature between 1000◦C and 1250◦C before hot rolling. Supply of accurate, stable, and
reliable control of temperature is most important for reheating furnaces in hot-rolled steel production. The
phenomenon of large time lags in temperature is an arduous problem that existed in the combustion system
of furnaces, it causes control system big overshoot, continuous oscillation, and may even make the system
unstable. In this paper, a prediction model based on gate recurrent unit (GRU) was established to forecast
the inside temperature of the furnace by using temperature, fuel, and air time series. Moreover, this paper
presents an approach which is combining a prediction model with a feedforward controller that can improve
the stability of the temperature control system. Established prediction model of temperatures by collecting
data from on-side, and evaluated the model and feedforward performance on the actual reheating furnace.
Compared with other dynamic models (recurrent neural network and long short-termmemory), the proposed
models outperformed by 15.63% and 26.07% on average in terms of the mean absolute error and root
mean square error, respectively. Moreover, the proposed control improve traditional PI controller by 33.43%
and 19.92% on average in terms of the mean absolute error and root mean square error, respectively. The
presented method can be used to reduce the temperature disturbances in the reheating furnaces.

INDEX TERMS Gate recurrent unit, combustion system, feedforward controller, furnace hearth temperature
prediction.

I. INTRODUCTION
In the steel rolling line, a reheating furnace is ascribed to
upstream equipment. It is used to heat up the temperature
of stock and satisfy the requirement of the rolling process.
Temperature uniformity on the slabs has influenced the life of
rolling equipment and the whole steel rolling line operation.
The regenerative reheating furnace considered here was
composed of three zones: preheating zone, heating zone, and
soaking zone respectively [1]. Each zone has over two pairs
of regenerative burners [2] on the sides of the furnace, shown
in Figure 1. The preheating was commonly used to heat cool
stock, specific types of steel or determined by operators,
the heating zone was used to heat up to typically between
1000◦C and 1200◦C and the soaking zone was used to
heat temperature as possible uniformity to typically between
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1100◦C and 1200◦C. In most cases, just enabling heating and
soaking zone was satisfied slab production requirements.

That is almost impossible to directly obtain slab surface
temperature or temperature distribution by using available
measurement techniques currently [3]. Therefore, tempera-
ture control means controlling the zone temperature, which
has measured from the thermocouple of the furnace inside
in the combustion system, and its temperature regulation
depends mainly on the control fuel flow. There are many
control ways for temperature, such as manual control, fuzzy
control, PI/PID single-loop control, etc., but cascade control
is the most common and widely used in the reheating furnace.

Unfortunately, temperature variation has non-linear, iner-
tia, and large time delay characteristics, so it is hard for the
temperature to achieve demands in accurate control. Some
research proposed prediction temperature to assist temperatu-
re control [4]–[6], but the prediction of the temperature of
reheating furnaces is a challenging task.
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FIGURE 1. Typical bird view of a reheating furnace [1].

This study deals with the design of temperature pre-
diction using gate recurrent units models, and carries out
the feedforward control in the on-site temperature of the
reheating furnace. Compare performance GRU with RNN
and LSTM in predicting temperature, and design a simple
structure of feedforward control. Because combine predict
the temperature in advance and effective feedforward control
strategy, it eliminates the time lag and accelerates response
time in temperature control. This paper presents the main
idea and demonstrates the performance of the method on
temperature control of the combustion system, which has
our proposed. The result shows that the proposed approach
outperforms the common cascade controller in terms of
temperature stability.

The remaining of the paper is organized as follows.
Section 2 surveys the techniques of temperature prediction
and control. Section 3 describes a method that is composed
of a temperature prediction model and feedforward control.
Section 4 presents the experimental results and analysis.
Finally, conclusions are given in Section 5.

II. RELATED WORK
This section reviewed recently related studies, which include
temperature prediction and control. Reference [7] proposes
the Smith predictive compensation combined with fuzzy
PID control method, it establishes the mathematical model
of the furnace temperature control system. The verified
result has small overshoot, short response time and stability
characteristics in software simulation. Reference [8] adapts
PID algorithm of grey predicting’s neural network to control
the temperature, it was suitable for predicting a small sample
of data accurately, easily and conveniently. The experimental
results show that this method eliminates the overshoot
of the temperature and decreases dynamic response time
in the simulation. In reference [9], the extreme learning
machine improved by restricted Boltzmann machine is used
to predicted the change in the furnace temperature in advance.
The air-fuel ratio and the burner switching time can be
optimized, and besides, The melting efficiency of aluminum
melting furnace is improved. In reference [2], the estimated
zone temperatures model of the reheating furnace by using
RBF-based RNN (RBF-RNN) approach, and a model based
on the theory of heat transfer is derived to predict billet
temperatures. The proposed method of this study combines
an FNN decoupling controller (FNNDC) with a hybrid PSO
(HPSO), it was used to control the zone temperatures in a
real reheating furnace. The experimental results illustrated
this control method saved a great deal of fuel, and reduce the

FIGURE 2. Section view of reheating furnace of each zone.

error between the mean and target temperatures of a billet at
the furnace exit. Yielded large economic benefits, decreased
environmental pollution, and improved the quality of steel
products.

III. PROPOSED METHOD
A. FEATURES ACQUISITION
The drawing of the section view of the furnace was shown
in Fig. 2. In a temperature time series, neighboring samples
have high relationship. Table 1 shows the features collected
which are used to establish the prediction model. The furnace
inside temperature, air flow, and fuel flow data of each
zone are simultaneously recorded every 1 second. The slope
of the furnace inside temperature of each zone is also
calculated every 1 second. The temperature slope is a physical
quantity that describes in which direction and at what rate the
temperature changes, so it is probably useful for predicting
temperature. The temperature slope is evaluated as:

TSxt = TCx
t − TC

x
t−1 (1)

B. GRU, GATED RECURRENT UNIT
Some researchers proposed Recurrent Neural Network to
make predictions in time series [10]–[12]. However, the
disadvantage of RNN is, it can not remember long term
relationship and dependencies because of vanishing gradient,
so it has only short-term memory [13], [14]. The LSTM
model is an advanced RNN, it consists of forget gate, input
gate and output gate, which can control the retention or
discard of information in the sequence. It is also prevents
the RNN model from forgetting long-term states [15]. The
LSTM not only retains hidden state, but also has a cell
state represented the model longer memory of past events.
Therefore, the LSTM is very suitable for solving time series
prediction problems [15]–[17]. However, the LSTM has
larger amount of parameters than native RNN, which means
search space more vast and training procedure needs more
time, it is not benefit to search optimal solution.

The GRU model is a modified version of the LSTM
model, it not only merges the forget gate and the input gate
into an update gate but also drops the cell state, achieved
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FIGURE 3. The GRU model for many-to-many [17].

TABLE 1. Features for establishment of the prediction model.

reduction of amount of parameters. A GRU unit is composed
of reset gate and update gate, due to the simpler architecture,
it is contributes to train faster and search optimal solution
easily [13], [17]. The structure of a GRU unit is shown in
one cell in Fig. 3.

In the first step, reset gate is calculated using both the
hidden state from the previous time step and the input data
at the current time step, it be reserved by applying a sigmoid
function σ , as expressed in Eq (2).

rt = σ (Wr × xt + Ur × ht−1) (2)
where xt is input data at the current time step, ht−1 is the
hidden state from the previous time step, Wr and Ur are
the weighting vectors respectively. The result values will be
transformed to fall between 0 and 1 after using the sigmoid
function σ . Therefore, the gate could filter between the less-
important and more-important information in the subsequent
steps. Next, decided the information which will be kept from
the previous time steps together with the new inputs. 1) The
previous hidden state is multiplied by the reset gate and
then multiplied by a trainable weight. 2) The input data at
the current time step is multiplied by a trainable weight. 3)
Obtained result after summed value from 1) and 2), and that
information will be passed to the tanh function. This equation
expressed in Eq (3).

h̃t = tanh (Wh × xt + Uh × (rt × ht−1)) (3)
The resultant value is obtained from tanh function that is

means the candidate hidden state. If the value of rt is equal
to 1 then it means the whole information from the previous
hidden state ht−1 is being considered. Likewise, if the value

of rt is 0 then that means the information from the previous
hidden state is completely neglected.

Second, the update gate is computed using the previous
hidden state and current input data using the same formula,
like the reset gate. But each weight multiplied with the input
and hidden state is independent and unique to each gate,
which means the final vectors for the update gate are different
from the reset gate, as expressed in Eq (4).

zt = σ (Wz × xt + Uz × ht−1) (4)
The purpose of the update gate is to help the model

determine how much of the past information stored in the
previous hidden state needs to be retained for the future. In the
last step, obtaining the updated hidden state from the update
gate and hidden state. Apply element-wise multiplication to
(1-update gate) and hidden state from the previous time step.
Next, summed with the output, which is from the update
gate multiplied by the candidate hidden state, as expressed
in Eq (5).

ht = (1− zt)× ht−1 + zt × h̃t (5)
The new and updated hidden state will obtained from

the above operations. Furthermore, the model applied
many to many, which means multi-input produced multi-
output, shown in Fig. 3. Diversity model could be applied
in various cases and improved accuracy in prediction
probably.

In Table 1, the temperature, air flow and fuel flow of
furnace hearth are sequences of data points indexed in time
order. These features have high time series characteristics.
Thus it is suitable for time series learning network, and
chosen the GRU model in this study.

C. FEED-FORWARD CONTROL
The cascade control is a typical control system which is used
to temperature control, it’s extensively applied in combustion
system of reheating furnaces [18], [19]. In this study, the
feedforward control combined with cascade control is shown
in Fig. 4. Whereas TIC is master controller, FICa and FiCg
are slave controllers, TE represents measure temperature of
the furnace hearth, FTa represents measure air flow, and
FTg represents measure fuel flow. The output of the master
controller (TIC) is given as set point to the slave controller
(FICg) and also given as set point to the slave controller
(FICa) passing through air/fuel ratio (A/F Ratio) respectively
at the same time. The FICa and FICg control the air flow and
fuel flow respectively, two controllers adopt the double cross
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FIGURE 4. The architecture of the temperature controller.

Algorithm 1 Feedforward Control
Input:

1: Diversity = TSetpoint − TPredict
Output:

1: if
(
Diversity > Deadbandup

)
, thenCompensate

= min {Diversity2 , 10}
2: elseif (Diversity < Deadband low) ,
thenCompensate = max {Diversity2 ,−10}

3: elseCompensate = 0

limiting method proposed in [18], [19], it effectively ensures
response speed of the system and air-fuel ratio.

In order to increase response, extra added feedforward
strategy is practicable. Feedforward Control can act proac-
tively if there are any known upcoming disturbances.
In this study, the feed-forward controller uses information
from temperature prediction model to improve the control
performance and eliminate long lag time. In order to prevent
over response to disturbances or hunting, consider deadband
design is necessary. Moreover, control compensation must
be limited. The compensation obtained from feedforward
controller, and additional increases total output of TIC.
The procedure of the feedforward controller is described in
Algorithm 1. Whereas TSetpoint is the value that we want the
inside temperature of the furnace to achieve as steady as
possible, TPredict is a forecasted temperature obtained from
the temperature prediction model, Diversity is a disparity
between TSetpoint and TPredict ,Deadbandup andDeadband low
are respectively upper limit and lower limit of deadband.
The Compensate is an output of the feedforward control,
and the sum ofCompensate and the output of TIC is converted
to the set point of the slave controllers.

IV. EXPERIMENTS AND RESULT ANALYSIS
We analyzed the predictive performance of the RNN, LSTM
and GRU models. Next, we compare PI control to PI control
with feedforward. The experimental process was carried out
at a steel factory in Jiangsu, China.

FIGURE 5. Training data.

FIGURE 6. Testing data.

A. DATA AND ENVIRONMENT
The heating and soaking zone is enabled when slab produc-
tion or heat insulation. The preheating zone is determined
enabled according to slab temperature before entry into the
furnace, if it’s necessary. So we don’t discuss preheating zone
in this paper.

We chose continuous 34 hours data on October 2021,
24 hours ahead of data as training, 10 hours behind of data
as testing, and shown in Fig. 5 and Fig. 6 below.
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TABLE 2. Parameters of establishment model.

There are many statistical indicators which are used to
determine the predictive performance of the model [13],
[15], [20], [21]. In this study, evaluated the performance of
model by using the coefficient of determination (R2), the
mean square error (MSE), the mean absolute error (MAE),
the maximum error (MaxError), and the minimum error
(MinError). The coefficient of determination is very good at
measuring the degree of similarity between the actual data
and the predicted values. R2, MAE , MSE , MaxError and
MinError can be evaluated as:

MSE =
1
n

∑n

i=1
(oi − yi)2 (6)

MAE =
1
n

∑n

i=1
|oi − yi| (7)

R2 = 1−

n∑
i=1

(oi − yi)2

n∑
i=1

[
oi − 1

n

n∑
i=1

oi

]2 (8)

MaxError = |oi − yi| (9)

MinError = |oi − yi| (10)
where oi is the actual value, yi is the predicted value. When
the R2 value equals to 1 and the MSE value verges on 0, the
performance of this model is outstanding.

B. TAINING
The past 60 seconds are selected as input variables to
the training samples, each second contains 8 features from
Table 1. The output variables are the forecasted temperature
of thermocouple-2 of furnace hearth after the next 13 to
17 seconds (i.e. TC2

t+13 (
◦C) ,TC2

t+14 (
◦C) ,TC2

t+15 (
◦C) ,

TC2
t+16 (

◦C) , TC2
t+17 (

◦C)). The 15th second prediction
temperature (TC2

t+15 (
◦C)) is selected as inside temperature

in advance, and prediction model is obtainable by training
the samples. The epochs (max training time) are set as
100, the nodes and layers of the model are adjustable
parameters. In order to find the optimal parameters for
different neural network structures (namely RNN, LSTM
and GRU), we designed 6 set parameters shown in
Table 2.

From this table, each model has different optimal parame-
ters for each zone, that’s also what we want. The GRU model
has the lowestMSE for the heating zone when the number of
cells and layers were respectively 90 and 7, whereas for the
soaking zone the number of cells and layers were respectively
60 and 5.

TABLE 3. Training result.

TABLE 4. Testing result.

FIGURE 7. Temperature prediction of heating zone.

C. TESTING
In the testing step, compared the performance of GRU with
RNN and LSTM. The RNN model selected parameters when
the number of cells and layers were respectively 60 and 3 for
heating zone, whereas for the soaking zone the number of
cells and layers were respectively 90 and 3. The LSTMmodel
selected parameters when the number of cells and layers
were respectively 60 and 7 for heating zone, whereas for the
soaking zone the number of cells and layers were respectively
60 and 3.

Fig. 7-8 displays the comparison between actual values
and predicted data of the three models. The three models
have good performance in predicting temperature, so the
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FIGURE 8. Temperature prediction of soaking zone.

FIGURE 9. Prediction error of heating zone.

prediction curves are almost overlapping. To go a step further,
we showed the prediction error of three models for each
second in Fig. 9-10, and the prediction error is obtained
from |o_i-y_i |. For a clearer comparison, the R2, MSE ,
MAE , MaxError , and MinError of each model are listed
in Table 4. The R2 for RNN, LSTM, and GRU are 0.9986,
0.9985, and 0.9988 in heating zone and 0.9979, 0.9985, and
0.9989 in soaking zone. The MSE of the three models are
0.4333, 0.4765, and 0.3698 respectively in heating zone, and
0.5029, 0.3427, and 0.2706 respectively in soaking zone.
In addition, theMAE of the three models are 0.5238, 0.5534,
and 0.4725 respectively in heating zone, and 0.5506, 0.4470,
and 0.3994 respectively in soaking zone.

FIGURE 10. Prediction error of soaking zone.

Results show that RNN model is better than LSTM model
for predicting temperature in the heating zone, but the LSTM
model is better than RNN model for predicting temperature
in the soaking zone. Compared GRU to RNN and LSTM,
the GRU model has lower prediction error than those of the
other models in the heating and soaking zone, it means the
GRU model has more predictive performance in heating and
soaking zone. The temperature varies of heating zone is more
than soaking zone, so It’s easier to get an accurate model
of soaking zone. Besides, some other factors, such as the
maximum error and minimum error of the model, it will also
affect the choice of the optimal model.

D. PRACTICAL APPLICATION EXPERIMENT
Based on the analysis above, we selected the GRU model
to combine feedforward in the PI controller, named the F-
PI controller. The prediction model was executed on the
host-computer, the proposed system architecture as Fig. 11.
The host-computer implemented functions that are used
to received features from PLC and feedback predicting
temperature to PLC every 1 second. The tasks of PLC were
collected information from on-site equipment, transferred
features to the host-computer, and determined the position
of the control valve. We conducted the prediction model as
feedforward control, and evaluated control efficiency in the
heating and soaking zone. There are many variables in the
reheating furnace, so it’s impossible if the same situation of
the test.

The testing situation describe as
1) The steel type was SWRCH22A.
2) Slab Temperature before entry reheating furnace: 30◦C
∼ 150◦C.

3) Both set point of PI and F-PI controllers are 1080◦ in
the heating zone.

4) Both set point of PI and F-PI controllers are 1152◦ in
the soaking zone.
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FIGURE 11. Proposed system architecture.

FIGURE 12. Control efficiency of heating zone.

5) Same parameters of controllers such as proportional
and integral term.

6) Running times and production of the two control
models are respectively 2 hours and 131.1 tons.

7) Measured temperature of thermocouple-2 is selected as
TIC process value.

The set point is the target value for the combustion system,
whereas the process value is the actual temperature in furnace
of heating and soaking zone. The input variables are obtained
from PLC then output predicting the temperature of 15th
second of advance to PLC, this process was carried out every
second.

Fig. 12-13 presents the control effectiveness of PI and
F-PI (PI with feedforward) for heating and soaking zone. The
results show that feedforward activation when temperature
over or under set point ± 3◦C, so the temperature could be
heated up or down in advance. In addition, the temperature
values more close to the set point for F-PI controller.
However, the performance of F-PI is almost the same as PI
controller in the soaking zone. Because of the temperature

FIGURE 13. Control efficiency of soaking zone.

TABLE 5. Comparisons of performance for temperature control.

variation smoothly in the soaking zone, the feedforward is
hardly enabled.

In heating zone, the MAE for PI and F-PI controllers
are 2.70 and 1.57, the MSE for PI and F-PI controllers are
10.57 and 4.39, and the RMSE for PI and F-PI controllers
are 3.25 and 2.09. In soaking zone, the MAE for PI and
F-PI controllers are 1.32 and 1.29, the MSE for PI and
F-PI controllers are 2.37 and 2.17, and the RMSE for PI
and F-PI controllers are 1.54 and 1.47. The F-PI controller
exhibited the lowerMAE ,MSE , RMSE andMaxError values
in heating zone, whereas the lower MAE , MSE and RMSE
values in soaking zone. This thus implies that the F-PI has
more effective on temperature control. The aforementioned
values are listed in Table 5. Notably, temperature smooth
control affected fuel burnup possibility.

V. CONCLUSION
This study proposes an applied GRU model to forecast the
15th second inside temperature of the reheating furnace in
advance, and feedforward control for heating and soaking
zone. Compared with other dynamic models, namely RNN
and LSTM models, the predictive performance of the GRU
model significantly outperformed the other two dynamic
models. Moreover, the combined predictive model with PI
controller for feedforward of the combustion system of
reheating furnace. Compared with PI controller, the proposed
controller with feedforward provides more accurate control
on temperature, it not only improves rolling mill production
line stability but also reduces fuel burnup and carbon
reduction possibility if the temperature is unnecessary.
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