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ABSTRACT Heart-rate variability (HRV), measured by the fluctuation of beat-to-beat intervals, has
been growingly considered the most important hallmark of heart rate (HR) time series. The HRV can
be characterized by various statistical measures both in the time and frequency domains, or by nonlinear
methods. During the past decades, an overwhelming amount of HRV data has been piled up in the research
community, but the individual results are difficult to reconcile due to the different measuring conditions
and the usually HR-dependent statistical HRV-parameters applied. Moreover, the precise HR-dependence
of HRV parameters is not known. Using data gathered by a wearable sensor of combined heart-rate and
actigraphy modalities, here, we introduce a novel descriptor of HRV, based on a modified Poincaré plot of
24-h RR-recordings. We show that there exists a – regressive biexponential – HRV versus HR ‘‘master’’
curve (‘‘M-curve’’) that is highly conserved for a healthy individual on short and medium terms (on the
hours to months scale, respectively). At the same time, we reveal how this curve is related to age in the
case of healthy people, and establish alterations of the M-curves of heart-attack patients. A stochastic
neuron model accounting for the observed phenomena is also elaborated, in order to facilitate physiological
interpretation of HRV data. Our novel evaluation procedure applied on the time series of interbeat intervals
allows the description of the HRV(HR) function with unprecedented precision. To utilize the full strength of
the method, we suggest a 24-hour-long registration period under natural, daily-routine circumstances (i.e.,
no special measuring conditions are required). By establishing a patient’s M-curve, it is possible to monitor
the development of his/her status over an extended period of time. On these grounds, the new method is
suggested to be used as a competent tool in future HRV analyses for both clinical and training applications,
as well as for everyday health promotion.

INDEX TERMS Holter-monitoring, poincaré-plot, RMSSD, heart-rate dependence, neuron-model.

I. INTRODUCTION
As all biological rhythms, heart rate (HR) carries inherent
stochastic features [1], usually represented by the beat-to-beat
variability of interbeat interval (heart rate variability, HRV).
It is generally accepted that HRV is largely influenced by
the autonomic nervous system, and, discounting some special
cases of arrhythmias which can easily be identified by statis-
tical methods, a positive correlation between HRV and the
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health state of heart is heuristically established [2]. The HRV
is a widely used parameter in heart disease characterization,
where it is considered to carry an important diagnostic value.
An elevated HRV is regarded as the sign of high fitness
and adaptability of the heart, while reduced HRV levels are
usually associated with various pathological conditions, such
as congestive heart failure, diabetic neuropathy, mental dis-
orders, post-traumatic stress syndrome, cancer, etc. [3]–[6].

Several methods have been introduced for the study of
HRV, such as frequency- and time-domain analyses, and
nonlinear descriptions. In time-domain analysis, the main
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descriptors are statistical measures of the variability of beat-
to-beat intervals, such as RMSSD, SDNN, SDSD, NN50,
etc. [7]. A typical problem considered here is that all these
parameters depend on physical activity (and also on HR),
so their evaluation over a given time interval will always
yield average values [8]. Unless, the patient is examined in
a fixed position, the dynamics of his physical activity will
inevitably affect the measurement. To solve this problem, var-
iousmeasurement protocols have been elaboratedworldwide,
amongst others, by the joint European and American task
force [9], which often prefer fixed-position registration of the
RR time series. This may, in fact, be a solution for the issue,
however it is not always feasible, and even if so, there might
be significant fluctuations of HR due to other effects (such
as excitement due to the examination, etc.), too, that should
ideally be ignored when calculating intrinsic HRV.

Other studies, based on a statistical amount of measure-
ments, determine what the optimal range for each HRV
parameter is, but usually cannot provide an in-depth analysis
for individual cases [7]. As an alternative solution, the well-
documented HR-dependency of HRV is taken into account
by correcting it for HR, e.g., by normalization with HR [8] or
with exp(-HR) [10], which, respectively, assumes an inverse
or an exponential relationship between HRV and HR. Fourier
components (e.g. LF and HF) derived from fluctuations of the
RR(t) curve are used to describe HRV in the frequency range
[9]. These are often attributed to sympathetic and parasympa-
thetic nervous system effects, respectively. However, Billman
and others pointed out that this assignment is problematic,
because both components of the autonomic nervous system
actually contribute to both of the LF andHF components [11].
Recently, various non-linear mathematical methods for the
description of HRV have become increasingly popular, such
as entropy-, detrended fluctuation analysis, Poincaré plots,
etc [7]. The latter, for example, has been proven especially
useful in detecting certain types of arrhythmias, though, has
been less successful in contributing to the general description
of the HR-dependence of HRV [12], [13].

All in all, without a clear understanding of the HR depen-
dency of HRV, it does not seem possible to find a narrow
set of global parameters that would adequately characterize
individual persons’ HRV data. The question is whether there
could be established a person-specific HRV(HR) function
that is clearly defined, and does not explicitly depend on other
parameters like time, physical activity and its history, etc., but
only on HR. The results of Monfredi et al. imply that, if there
exists such a function, it should be of rather exponential
than hyperbolic nature [10]. They actually provide a general
experiential formula, with a single, decremental exponential,
which is apparently characteristic of all mammalian organ-
isms. However, their method of data evaluation, and hence,
the standard deviation of their HRV data does not allow its
validation for individual cases.

In this paper, we outline an attempt to overcome this
obstacle, using a special evaluation method for the HRV time
series. Based on a modified Poincaré plot of the data gathered

by a wearable heart-rate and activity sensor, we derive a mas-
ter curve (‘‘M-curve’’) for characterizing the HRV(HR) func-
tion, that shows remarkable invariance to most other explicit
variables (time, physical activity, etc.), and considered to
be taken as a specific measure to the individual. If the HR
interval is wide enough, the M-curve can normally be fitted
with two exponentials, and for more in-depth mathematical
description, we introduce a stochastic model on biomimetic
grounds. The new analysis is then applied to evaluate a data
base containing 24-hour long ECG recordings of healthy vol-
unteers and individuals freshly undergone myocardial infarc-
tion. The analysis reveals a statistically significant deviation
of model parameters of diseased patients from those in the
healthy reference group. Finally, we discuss the potential
applications of the new method in various disciplines of
clinical science and everyday life.

II. MATERIALS AND METHODS
The method for the derivation of the ‘‘Master curve’’ describ-
ing the HRV(HR) dependence, and its basic features were
demonstrated via a case study on a healthy volunteer (39-
years-old male), performing daily routine activities. The
study was approved by the Ethics Committee of the Medical
Research Council (ETT-TUKEB) operating as a board of the
Ministry of Human Capacities of Hungary (approval identi-
fier: IV/7109-1/2021/EKU), and conducted according to the
WMA declaration of Helsinki. Personal patient information
was handled confidentially, and written informed consent
was obtained prior to the study. The data of RR intervals
were collected by a Polar V800 wearable heart rate monitor,
equipped with a physical activity recording feature, vali-
dated for scientific use of HRV studies [14]. The evalua-
tion method was then applied to ECG data obtained from
the Telemetric- and Holter-ECG Warehouse (THEW) at the
University of Rochester Medical Center, New York, United
States [15]. The 24-h Holter recording data of 202 healthy
volunteers (DatabaseNormal, EHOL-03-0202-003, age rang-
ing from 9 to 82 years) and 93 patients with acute myocardial
infarction (Database AMI, E-HOL-03-0160-001, age ranging
from 27 to 90 years) were analyzed. The time series were
filtered for outliers by a sequential cluster analysis using the
‘‘dbscan’’ routine of MATLAB (MathWorks, 2020).

III. RESULTS AND DISCUSSION
A. DERIVATION OF THE M-CURVE
For the characterization of the point-by-point HRV, the
Poincaré plot is the most popular tool [12], [13]. Figure1(a)
shows the traditional Poincaré-representation. Since these
plots are quasi-symmetric to a line making 45 degrees with
the X- and Y-axes, a Poincaré analysis of the RR or HR
time series often involves fitting of a tilted ellipsis to the
plot, in order to characterize the extent (the ‘‘width’’ and
‘‘length’’) of the set of points depicted, with respect to the
symmetry axis. Accordingly, such an evaluation describes the
time series with two numbers, corresponding to the maxi-
mal root-mean-square (RMS) of HRV, and the span of HR
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FIGURE 1. (a) Poincaré plot of a typical RR time series. (b) The same in Bland-Altman-like representation. (c) 1RR as a function of heart rate (mHR),
as calculated from the data in (b). The color code is to show the frequency of the data. (d) The RMSSD versus HR curve (M-curve), determined from data
in (c), as the RMS of the distribution of 1RR values at each HR. (The red lines stand for illustration of the way of calculation, at an ad hoc HR value.)

values [13]. A serious shortcoming of this analysis stems
from the ad-hoc nature of ellipsis-fitting. Namely, the points
of the plot are usually not distributed according to an ellipsis
(see Figure1(a)), so it allows to give only an approximate,
phenomenological information about HRV, rather than an
accurate description.

To overcome this problem, we introduced an evaluation
based on a modified Poincaré-plot.

A conventional Poincaré-plot can be defined according
to (1), where P is a set of ordered pairs of subsequent data
points of the RR or HR time series {Sn}, depicted in a
Cartesian representation (Sn is the X-, while Sn+1 is the Y-
coordinate of each point):

P ≡ {(Sn, Sn+1)} (1)

In order to be able to reveal the HR-dependence of HRV, first
we introduced a simple transformation of the representation
of the data, so that the distribution of the points will be
quasi-symmetric to the X-axis (rather than to the 45-degree
line).

The definition of the new, modified Poincaré plot (mP) can
be given as follows:

mP ≡ {((Sn + Sn+1) /2, Sn+1 − Sn)} (2)

A notable feature of this representation is that now the set
of points is quasi-symmetric to the X-axis (contrary, e.g.,
to an {(Sn, Sn+1 – Sn)} representation, see Figures S1(a)
and (b), which may be utilized in the analysis of other time
series, as well. (Note that (2) is formally similar to the
renowned Bland-Altman plot, often used for comparison of
two time-series, however, here we use subsequent points of
the same time series, instead [16].) For the sake of conve-
nience, we chose the following version of (1):

mPRR ≡ {((RRn + RRn+1) /2, RRn+1 − RRn)} (3)

which, with the definition of

mHRn ≡ 60/ ((RRn + RRn+1) /2) (4)

reads as

mPHR,RR ≡ {(mHRn, RRn+1 − RRn)} (5)
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In other words, we represented the point-by-point difference
of subsequent RR values (1RRn ≡ RRn+1 – RRn) as a
function of mean RR of subsequent points of the RR time
series (Figure 1(b), and a corresponding heart rate (Fig-
ure 1(c), denoted by mHR. If there are too many points to
distinguish on the plot, one may color-code for point density,
to better describe their distribution (Figure 1(c)). Instead of
fitting an ellipsis to the point set, we determined the RMS
of the {1RR} ∈ {(RRn+1- RRn)} value set corresponding to
each mHR ∈ {mHRn}, making use of the quasi-symmetric
feature of the {(RRn+1 - RRn)} point-distribution to the
X axis (Figures S1(b) and (c)). This treatment allowed the
determination of a characteristic HRV parameter as a function
of HR (i.e., the RMSSD vs. HR function called Master curve
or ‘‘M-curve’’), with a higher precision than earlier attempts
(Figure 1(d). (For a more detailed discussion of differences
and similarities with previous treatments, see Supporting
Information.)

In the following, first we demonstrate through a case study
that this function shows remarkable conservation features,
and it is specific to the subject. Next, we apply the eval-
uation method to analyze RR-data of healthy and diseased
individuals. Finally, we establish a stochastic model to for-
mally describe the M-curve, and hypothetically associate the
parameters of the model to some physiological descriptors of
the autonomic nervous system.

B. INDEPENDENCE OF THE M-CURVE FROM ACTIVITY
AND DATE
Figure 2a shows the M-curves determined before, during
and after a 1-hour long sub-maximal training of a volunteer,
in semi-log representation. It can be seen that in the common
HR range, the two curves are overlapping each other, i.e.,
the M-curve follows the same trend before and after training.
It is often established in the literature that the RR variability
decreases during, and shortly after, a physical exertion [17].
Our analysis reveals that, on the hours scale, this effect does
not accompany with a change of HRV at a certain HR, but
rather with a ‘‘shift’’ on the M-curve towards the higher-HR
region reached during, and shortly after, the exercise. (Note,
however, that these results do not exclude deviations from
the M-curve on a shorter time scale, e.g., that of minutes.)
Apparently, different activities related to the daily routines on
different days do not influence the M-curve of an individual
on a daily basis, either. According to our measurements,
though, these factors may well change the HR range, but the
actual shape of the 24-hour M-curve will not be effected.

The question arises, whether or not the reproducibility of
M-curve persists on longer time scales, too. For this reason,
we registered RR data of the same volunteer on subsequent
days or weeks, and after a half-year-long intermission period.
Figure 2(b) shows a series of daytime M-curves calculated
from the data collected. Although, the daily activities (shown
in the insert) are very different (due, e.g., to occasional train-
ings), the central part of the M-curves remained practically
the same. Significant differences occur only at the extrema

of HR, i.e., the maximum and minimum HR values of the
curves show variation, due, e.g., to the presence or absence
of a strong training on the particular day that seem to shift
the HR set towards higher values. (The steep cutoffs at small
HR values are an artifact of the method due to sparse data.)

C. GENERALIZATION AND AGE DEPENDENCE
Since all the above findings were demonstrated via a case
study, the question arises whether similar statements apply
to other individuals, too. Processing data from 202 vol-
unteers and additional 93 patients in the THEW database,
we found that the M-curves of the vast majority (>95%)
of healthy volunteers and a considerable part (>50%) of
diseased patients showed the same, biexpoential-type pattern.
It should be noted, however, that the ‘‘second’’ (slower-
changing) exponential-like component was present only in
those cases where the recorded HR range was sufficiently
wide (that is, when the HR extended ca. 110 bpm). For
different people, the M-curves showed smaller or greater
differences, contrary to the location of the transition range,
which appeared to be rather conservative, between 110 and
130 bpm.

In order to reveal any systematic dependence of the HRV
on the age of the healthy individuals, we performed an
age-class cohort study to determine the ‘‘averagedM-curves’’
for several age groups (Figure 3(a)). In other words, we calcu-
lated the mean HRV values of individuals belonging to each
age group, at each HR value. Notably, these group-averaged
M-curves show the characteristic feature of two exponential-
like phases.

According to our analysis, the, e.g., HRV(80) data give a
decent measure to distinguish HRV data upon age change
(Table 1, Figure 3(b)). (We chose this measure because of its
simplicity, and since HR = 80 data frequently occur in most
HR time series. Area-under-curve analyses – e.g., for the 80<
HR < 100 range – did not give significantly better results.)
Note that similar statements concerning the age-dependence
of HRV have been established earlier on different grounds
[18]. In themost comprehensive study, Tsuji et al. determined
the SDNN of interbeat intervals and the average heart rate
from 2-hours-long ECG recordings of each patient. Inves-
tigating age-selected cohorts of 1192 healthy subjects, they
found that HRV was determined by age and HR to a different
extent, but both in an ‘‘inversely associated’’ manner.

D. EFFECT OF DISEASE
To see whether heart disease may have an effect on the M-
curve, we applied the method to data of patients with acute
myocardial infarction (AMI). In this case, we identified a
number of unusual patterns on the modified Poicaré-plots
(e.g, Figure 4(a) and Figure S2(a)) indicative of different
types of arrhythmias [13], hence, the correspondingM-curves
appeared in various anomalous shapes (e.g., Figure S2(b)).
Nevertheless, for some 50% of the AMI patients, the M
curves showed the ‘‘regular’’ biphasic decay. Considering
only these data, we calculated the averaged M-curves of
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FIGURE 2. Reproducibility of M-curve. (a) M-curves calculated from data recorded before, during and after a submaximal training of a
volunteer (<85% of max HR), in semi-log representation. (b) M-curves recorded on individual days. The insert shows the dates of
recording and the corresponding cumulative physical activities in kcal.

FIGURE 3. (a) Group-averaged M-curves of healthy volunteers belonging to different age classes. Sections with the dashed line
identify the mean RMSSD values at mHR = 80. (b) Cohort mean HRV(80) values as a function of age.

TABLE 1. Age-group distribution and the corresponding HRV(80) parameters of healthy individuals of the database analysis shown in Figure 3.

healthy and hospitalized AMI patients belonging to the same
age group (between 45 and 60 years, 45 and 55 patients,
respectively), shown in Figure 4(b). It can be seen that the
latter curve runs below the one of the control group in the
60 < bpm < 100 HR range.

E. COMPARISON TO EARLIER RESULTS ON THE HRV(HR)
DEPENDENCE
Most of the traditional time-domain analyses of HRV usually
yield one (or a few) global parameter(s) that characterize
the variability of the whole HR (or RR) time series. This is

36610 VOLUME 10, 2022



A. Búzás et al.: Novel Approach in Heart-Rate-Variability Analysis Based on Modified Poincaré Plots

FIGURE 4. The HRV(HR) characteristics of patients with myocardial infarction. (a) Bland-Altman-type representation of HRV data of an individual
typical of arrhythmia. (b) Cohort-averaged M-curves of healthy and heart-attack patients (black and red symbols, respectively), belonging to the same
age class (45-60 years).

normally a sort of averaged HRV value, corresponding to the
HR time series registered under pre-defined particular mea-
suring conditions, this way limiting the HR range, in order to
avoid the HR-dependence of HRV.

Since the high-profile publication of Monfredi et al. [10],
there is an ongoing debate about the ‘‘proper normaliza-
tion’’ of HRV by HR, as well as about the possible ‘‘dis-
entanglement’’ of the two state-describing parameters [17].
According to the, perhaps, most accepted approach, the actual
HRV measure should be normalized by the average HR
[8], [9], [19], [20] correcting for the well-known fact of
HR-dependence of HRV, assuming a reciprocal relationship
between the two. This looks a logical method if one assumes
that the distribution of HRV, measured normally as RMSSD
or SDNN, is constant in the time domain, where the registered
RR time series are naturally represented. This would also
imply that HRV could be described by a single parameter,
which is an appealing perspective. On the contrary, Boyett
et al. claim that the HRV(HR) function is a single, unique
exponential for (healthy) humans and mammals, in general.
On the one hand, this would mean a steeper dependence
than the simple reciprocal relation, implying that data derived
using the latter assumption are flawed, and on the other,
would establish a strict coupling between HRV and HR,
implying that the HRV-effects are, mostly and simply, due
to the change of HR, impairing the diagnostic value of the
former. They constructed a simpler and a more complex
biophysical model based on the stochastic nature of ionic
currents charging the membrane of the pacemaker cells,
to interpret the exponential-like relationship between HRV
and HR they inferred. Although, both models were able to
account for describing the descending tendency of the HRV

data as a function of HR, the fit of the simulated values to
the experimental ones showing fairly high standard deviation,
was rather poor in both cases [10].

VanRoon et al. argue that the quality of the gathered
data does not allow to assess their exponential or reciprocal
dependencies on the HR scale spanned, but votes for the
simpler (reciprocal) case [21]. Gasior et al. use an improved
correction factor proportional to the inverse 3rd power of HR
(see also Supporting Information) [22]. In a recent paper,
vandenBerg et al. investigated 10-s ECG records of a pop-
ulation of 13,943 individuals, both males and females, with
a wide age distribution, and tested 4 different methods for
correcting HRV by HR, assuming linear, exponential, hyper-
bolic or parabolic relationship between the two quantities.
They also concluded that the data scattered too much to allow
clear distinction among the 4 cases, however they found the
exponential correction slightly superior to the others, though,
not perfect, especially at high HR values [23].

In view of this debate, our low-noise M-curves can be
decisive. The linearity of the M-curve in semi-logarithmic
plot clearly shows an exponential type of dependence at HR
values below ca. 100 bpm. On the other hand, we also show
that the general HRV(HR) function can be described by two
components, whose slopes are usually different for different
subjects (see below), so the M-curve may be taken as charac-
teristic to the individual, and it is rather conservative on the
time scale of days or even months. On the scale of decades,
however, the M-curve does depend on age, indicating an
overall decrease of HRV for elderly people, and a similar
effect can be observed for patients of heart disease.

Our results also imply that it is generally not enough to
characterize HRV by a single parameter (e.g., after proper
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FIGURE 5. A simple, stochastic integrate-and-fire model of HR and HRV.
(a) An electrical substitution circuit of the model. Cm is the membrane
capacitance, and Vm is the membrane potential which is short-cut by a
discharge device, if it exceeds a threshold level. (b) Schematic
representation of the time course of Vm. Black line symbolizes the
physiological signal, while the red line is the outcome of our model.

normalization of the raw data), but the whole HRV(HR)
function must carry important physiological information.

F. STOCHASTIC MODEL
In order to facilitate a deeper physiological interpretation of
these findings, we elaborated a stochastic model that can
account for the characteristic features of the M-curve. Fol-
lowing earlier approaches [10], [24], we considered a simple
integrate-and-fire neuronmodel tomimicHRV,where awhite
noise (δ) of ‘‘d’’ RMS is added to an actual It current associ-
ated to any corresponding interval, RRIt, of the {RRn} time
series, to result the charging ion current, I ′t , at the subsequent
RR-interval, RRIt ′ (Figure 5):

I ′t = It + δ (6)

Due to the presence of the noise term, the time intervals
between adjacent firing spikes (representing the RR intervals
in this model) show a stochastic distribution. It is, however,
assumed that It � δ.

In mathematical terms,

RRIt = τ + APD = 1VmCm/It + APD (7)

HRIt = 60/RRIt (8)

Monfredi et al. [10] assume a constant perturbation of It , i.e.,
according to our notation, a HR-independent noise term, δ.
For a fixed HRIt determined by a given It , the change to the
next RR interval, with the notation of Figure 5, reads as

1RR (It = const.) ≡ RRIt ′ − RRIt

≡
1VmCm

I ′t
−
1VmCm

It

=
1VmCm
It + δ

−
1VmCm

It

=
1VmCm
It + δ

It − δ
It − δ

−
1VmCm

It

≈ 1VmCm
δ

I2t
(9)

where 1Vm is the difference between the negative peak and
the threshold, Cm is the membrane capacitance, APD is the
action-potential duration (considered to be 160 ms), and τ is
the diastolic interval [10].

Due to the intrinsic asymmetry of the distribution of the set
of {1RR(It = const.)} values at a given RRIt (or HRIt ), how-
ever, we chose a Bland-Altman-like representation, as it was
described under section III.A, yielding a quasi-symmetric
distribution of the {1RR(It = const.)} subset of points of the
Poincaré plot around a given mHR = 60/ [(RRIt+RRIt’) /2]
(see Figures S1(a) and (b)). Using the notation of the model
in Figure 5,

RRI + RRI ′

2
=

1
2

(
1VmCm
It + δ

+ APD+
1VmCm

It
+ APD

)
=

1
2

(
1VmCm
It + δ

It − δ
It − δ

+
1VmCm

It

)
+ APD

≈
1VmCm

2

(
It − δ

I2t
+

It
I2t

)
+ APD

= 1VmCm

(
It − δ/2

I2t

)
+ APD (10)

and

mHR =
60

RRI+RRI ′
2

=
60

1VmCm
(
It−δ/2
I2t

)
+ APD

=
60

1VmCm
Ĩt
+ APD

(11)

where

Ĩt =
I2t

It − δ/2
=

I2t
It − δ/2

It + δ/2
It + δ/2

≈ It + δ/2 (12)

Following the nomenclature of (6), (7), and (9), It ≈ Ĩt −
δ/2, I ′t ≈ Ĩt + δ/2, and the distribution of points on the
{1RR} set around a given Ĩt will be described by

1RR
(
Ĩt=const.

)
=
1VmCm

I ′t
−
1VmCm

It

≈
1VmCm
Ĩt+δ/2

−
1VmCm
Ĩt−δ/2

≈−1VmCm

(
δ

Ĩ2t

)
(13)

Assuming an amplitude distribution, described by a Gaussian
of zero mean, for the current noise, its standard deviation for
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FIGURE 6. (a) Experimentally determined RMSSD values (open circles) and the result of model-fitting (solid line), as a function of heart rate
(mHR). The corresponding noise amplitude (‘‘d’’ parameter) of the model, as determined from (6). (b) The result of model-fitting of the M-curve
in semi-logarithmic representation.

small δ values can be approximated as

RMS
{
1RR

(
Ĩt = const

)}
≈ 1VmCm

d

Ĩ2t
(14)

where d denotes RMS({δ}). If one assumes a HR-
independent current noise, hence, a constant ‘‘d’’, as in [10],
it is easy to see from the equations, that one gets back a
hyperbolic-like (namely, a reciprocal quadratic) relationship
between HRV and HR, which cannot fit the measured data
with decent precision. Hence, we released the assumption
of a constant-mean Gaussian noise distribution for δ, which
allowed a variation in ‘‘d’’ as a function of HR (in our
notation, mHR). The d(mHR) function was then determined
by fitting the model to the experimental data (i.e., to the M-
curve).

As it is shown in Figure 6(a), the d(mHR) function
obtained this way can be decently approximated by a
descending and a subsequent ascending phase, below and
above a transition range around 110 bpm, respectively. Hence
it appeared to be straightforward to consider two components
in the noise term, δ(It ), as well, to account for the two phases
observed for d(mHR). For the sake of simplicity, quasi-linear
functions of Ĩt with slopes of α and β, are used to describe
the ascending and descending phases, respectively:

δ
(
Ĩt
)
= αf+

(
Ĩt − Ia

)
δa + βf+

(
Ib − Ĩt

)
δβ (15)

where α and β are constant scale factors, δα and δβ are
stochastic multiplicators sampled from independent normal
distributions of 0 mean and 1 standard deviation, while f+

stands for the positive-part function, and Ia and Ib are switch-
off and switch-on values, respectively. (That is, if It < Ia, then
the first term, while for It < Ib, the second term is zero.) From
this, using the independence of the two normal distributions,

d
(
Ĩt
)
= RMS

({
δ
(
Ĩt
)})

can be expressed as follows:

d
(
Ĩt
)
=

√(
αf+

(
Ĩt − Ia

))2
+

(
βf+

(
Ib − Ĩt

))2
(16)

Fitting the experimental M-curve by the set of equations (7),
(8), (13) and (16), we could establish that the model is able
to describe the experimental data with high accuracy (Fig-
ure 6(b)), and α, β, Ia and Ib parameters can be determined
(see also SI).

Based on this result, it is straightforward to assume that
the noise term in the RMSSD from our model (‘‘d’’) can be
considered as a result of two stochastic processes dominating
below and above the transition zone. While the contribution
of the former one shows a descending tendency with increas-
ing heart rate, the weight of the latter one is slightly increasing
with it (Figure 6(a)).

Without aiming to give a strict physiological interpretation
of the parameters of the stochastic model able to describe
the experimental M-curve, we cannot resist calling the atten-
tion to the striking similarity between their behavior and
that of the components of the autonomic nervous system.
According to the widely accepted view, HR is determined by
the sympatho-vagal balance, in which framework increasing
parasympathetic activity decreases HR and increases HRV,
while increasing sympathetic activity acts oppositely (Fig-
ure 7). In the absence of vegetative control (e.g., during auto-
nomic blockade), an intrinsic HR is set around 100-110 bpm,
below which value parasympathetic, while above it sympa-
thetic effects dominate.

Given the same tendency established for the noise compo-
nents of our model, it is reasonable to assume a close connec-
tion between these and the components of the ANS, however,
a more established support for this hypothesis should be the
subject of follow-up studies.
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FIGURE 7. Similarity between the HR-dependences of the two
components of our noise parameter (d) and the two components of the
autonomous nervous system (ANS), as generally assumed [25].

G. POSSIBLE APPLICATIONS OF THE M-CURVE
Even in the absence of a solid physiological interpretation of
the data, knowing the tendency of the characteristic statistical
parameters (e.g., HR(80), α and β in Figure S5) as a func-
tion of age, one can establish reference values for the age
groups. Hence, we suggest a protocol for HRV registration
and evaluation based on the new method: A preferably 24-
hour (or longer) RR-recording should be registered once a
year, from which the M-curve characteristic of the patient
can be determined by high accuracy. In between, shorter
measurements - still appropriate to determine the HR(80)
value by high precision - are sufficient to follow changes in
the status.

In addition to the opportunity of medium and long-term
monitoring, the precise description of the M-curve allows the
determination of an instantaneous HRV value on the minutes
scale, where temporary deviation from the M-curve may
occur (Figure S7). These are supposed to be characteristic
to the momentary state of the patient, independent from the
actual HR value. For this purpose, the exact knowledge of
a person’s HRV(HR) function would be essential, but the
presently applied methods either use a raw measure of HRV,
or correct it by an ill-defined normalization function (see
Figure S4). Since the M-curve describes the medium-term
HRV(HR) function with high precision, normalization of a
short-term (e.g., 5-minute) HRV(HR) recording according
to the M-curve should be informative for the actual state.
The question how circadian rhythms, respiration, hormone

secretion or gender difference could affect the M-curve will
be the subject of follow-up studies.

H. LIMITATIONS OF THE STUDY
Note that since the precision of the M-curve is growing with
the length of the time series, normally several-hours-long
recordings are required for determining an M-curve that can
be used as a decent reference base. In addition, for a complete
analysis, it is important to have a broad HR range, extend-
ing the data towards HR values above the breaking point
(achieved, e.g., by a training of an elevated physical activity
period). It is also important to note that our present study
does not intend to interpret sleep data, while the most obvious
limitation of our study is that certain systematic heart-rhythm
problems may compromise the ‘‘regular’’ shape of M-curves
(Figures S2(a) and (b)), hence, our model cannot account for
such cases.

IV. CONCLUSION
We introduced a new representation of heart rate variability
data, based on a Bland-Altman-like mathematical transfor-
mation of the Poincaré-plot, which allows a natural visual-
ization of the beat-to-beat variability of interbeat intervals as
a function of heart rate. The graphs of an individual show
striking reproducibility on the daily and monthly scales, and
physical activity also does not seem to affect their shape, only
causes shifts along the same curve (that we call Master- or
M-curve). Recordings of beat-to beat intervals on the hours
scale allow the construction of a high-quality M-curve, deter-
mining the HRV(HR) function with unprecedented precision,
as compared to the conventional representations.

As a function of heart rate, in a semi-logarithmic plot M-
curve shows a linear dependence with negative slope between
ca. 60 and 100 bpm, while above this interval the rate of
regression is weaker, implying a biexponential-like decay.
Analyzing data from a public ECG-database, we found that
the M-curves of the vast majority (>95%) of healthy vol-
unteers and a considerable part (>50%) of diseased patients
showed a similar pattern. For different people, the M-curves
showed smaller or greater differences, but arranging the data
in age groups revealed a clear shift of the averaged M-curves
to lower ranges, by progressing age. The HRV(80) data are a
good representation of this tendency, and the averaged values
can be taken as a normal reference. The plots of heart patients
withmyocardial infarction differ significantly in shape and/or
range.

Nevertheless, our results also suggest that a single param-
eter is not sufficient to fully describe the complex features
of HRV data. We show that an integrate-and-fire stochastic
neuron model is able to fit the experimental HRV(HR) graphs
of healthy people with high precision, at the same time offer-
ing plausible clues for a physiological interpretation of the
HRV(HR) relationship.

The new method is suggested to be used as a competent
tool in future HRV analyses, for both clinical and training
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applications, as well as for everyday health promotion (in
cardiology, polysomnography, sports, training, etc.).
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