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ABSTRACT In this study, we propose a novel Wasserstein distributional tracking method that can balance
approximation with accuracy in terms of Monte Carlo estimation. To achieve this goal, we present three
different systems: sliced Wasserstein-based (SWT), projected Wasserstein-based (PWT), and orthogonal
coupled Wasserstein-based (OCWT) visual tracking systems. Sliced Wasserstein-based visual trackers can
find accurate target configurations using the optimal transport plan, which minimizes the discrepancy
between appearance distributions described by the estimated and ground truth configurations. Because this
plan involves a finite number of probability distributions, the computation costs can be considerably reduced.
Projected Wasserstein-based and orthogonal coupled Wasserstein-based visual trackers further enhance the
accuracy of visual trackers using bijective mapping functions and orthogonal Monte Carlo, respectively.
Experimental results demonstrate that our approach can balance computational efficiency with accuracy, and
the proposed visual trackers outperform other state-of-the-art visual trackers on several benchmark visual
tracking datasets.

INDEX TERMS Computer vision, distance measurement, probability distribution.

I. INTRODUCTION
Visual tracking is a fundamental technique that can be used
to predict target object (e.g., vehicle) trajectories. Recently,
visual tracking has enhanced its performance by defining
visual tracking problems in the Wasserstein space. This
Wasserstein space enables the accurate measurement of the
distance between probability distributions. Because it can
handle probability distributions, the Wasserstein distance has
been used in various computer vision applications (e.g.,
classification [1], detection [2], visual tracking [3], and 3D
representation [4]) and has been applied to several machine
learning tasks (e.g., semi-supervised learning [5], adversarial
learning [6], meta learning [7], reinforcement learning [8],
and metric learning [9]).

Conventional visual tracking typically adopts the matching
metrics in the Euclidean space, e.g., l1 and l2 norms, Kullback
Leibler divergence, and Jensen-Shannon divergence, while
having several limitations under real-world visual-tracking
environments. For example, l1 and l2 norms cannot accurately
measure the discrepancy between the distributions. Kullback
Leibler divergence is asymmetric, whereas Jensen-Shannon
divergence is discontinuous and is not proportional to the
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discrepancy between the distributions. Thus, a new match-
ing metric is required in the Wasserstein space, which has
been rarely explored in visual tracking. In particular, the
Wasserstein distance can measure the discrepancy between
probability distributions of the reference appearance and the
current target appearance at the estimated state. Because
visual trackers explicitly consider the discrepancy of prob-
ability distributions, they can encode the uncertainty in mea-
suring the distance from the distributional perspective.

However, calculating the Wasserstein distance requires
high computational costs and is intractable in real-world
settings with limited resources. To alleviate this prob-
lem, the following methods attempt to approximate the
Wasserstein distance: For example, Kolouir et al. [10] pro-
jected the Wasserstein distance into one-dimensional
spaces and presented the sliced Wasserstein distance.
Cuturi et al. [11] transformed the optimal transport problems
intomaximum-entropy problems to speed up the computation
and introduced the Sinkhorn distance. Genevaay et al. [12]
proposed a stochastic optimization method for dealing with
large-scale optimal transport problems. While these methods
havemade the distance computation tractable, they inevitably
degrade the Wasserstein distance accuracy.

Thus, it is important to balance the approximation with
accuracy in the computation of the Wasserstein distance.
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FIGURE 1. Framework of the proposed visual tracking system. The
proposed visual tracker proposes a new state at each time and estimate
the target appearance. Then, our visual tracker compares the reference
target appearance with the estimated target appearance from the
distributional perspective using three Wasserstein-based distances, which
are Sliced Wasserstein distance, Projected Wasserstein distance, and
Orthogonal coupled Wasserstein distance.

For this purpose, we adopt a variant of the sliced Wasser-
stein distance augmented by orthogonal coupling in the
course of Monte Carlo simulation on the Wasserstein dis-
tance [13], called orthogonal coupled Wasserstein (OCW).
Our OCW method can preserve the distance information in
high-dimensional space, although the method approximates
the Wasserstein distance to reduce computational cost.

In this study, we aim to solve visual tracking problems
using the proposed OCW. The proposed visual tracking
method represents a target appearance vector as a target
appearance distribution to cope with ambiguities in the
appearance representation. Subsequently, the OCW accu-
rately and efficiently minimizes the discrepancy between the
estimated and ground-truth target appearance distributions to
obtain an accurate target configuration.

The contributions of the proposed method are as follows:

• We develop a novel sliced Wasserstein-based visual
tracking system (SWT), in which two appearance dis-
tributions described by estimated configurations and
ground truth configurations become similar via the opti-
mal transport plan. This plan can be conducted using
a finite number of probability distributions; thus, the
computational costs can be considerably reduced.

• We present a novel projected Wasserstein-based visual
tracking system (PWT), in which the discrepancy
between the aforementioned slicedWasserstein distance
and true Wasserstein distance can be minimized using
bijective mapping functions.

• We propose a novel orthogonal coupled Wasserstein-
based visual tracking system (OCWT), in which the
aforementioned projected distance can induce accurate
projection directions using orthogonal Monte Carlo.

Figure 1 describes the framework of the visual tracking
system.

The remainder of this paper is organized as follows.
Section II relates the proposed method to the existing meth-
ods. Sections III, IV, and V propose a visual tracking method
based on the sliced Wasserstein, projected Wasserstein,

and orthogonal coupled Wasserstein distances, respectively.
Section VI-A describes the experimental settings used in
this study. We compare the proposed visual tracker with
other state-of-the-art methods using the object tracking
benchmark (OTB) and large-scale single object tracking
(LaSOT) datasets in Sections VI-C and VI-D, respectively.
Section VI-B analyzes our proposed visual trackers in depth.
We conclude the study in Section VII.

II. RELATED WORK
While visual tracking has a long history, in this section,
we discuss the methods most relevant to our study, which
can be categorized into three groups: Wasserstein distribu-
tional visual tracking, visual tracking via projection, and deep
learning-based visual tracking.

A. WASSERSTEIN DISTRIBUTIONAL VISUAL TRACKING
Yao et al. [14] transformed visual tracking problems into
transportation problems via linear programming algorithms,
where 1-Wasserstein distances (i.e., earth mover’s dis-
tances) were used as a distance metric. Danu et al. [15]
employed the Wasserstein distance in a particle filter formu-
lation to compare estimated multi-target states with ground
truths in multi-sensor environments. Zeng et al. [3] mea-
sured the discrepancy between target-specific features using
the 1-Wasserstein distance to accurately track vehicles.
Danis et al. [16] used the Wasserstein distance to evaluate
Bluetooth data via a sequential Monte Carlo method.

In contrast to these methods that use Wasserstein dis-
tributions to enhance the visual tracking accuracy, we use
the orthogonal coupled Wasserstein distance to balance the
accuracy with computational efficiency.

B. VISUAL TRACKING VIA PROJECTION
Xiao et al. [17] designed random projection matrices to
find subspaces that make visual trackers robust to noise.
Zhang et al. [18] transformed visual tracking problems into
projection problems, in which a robust target representa-
tion model is learned via a projection onto the l + p ball.
Zhang et al. [19] proposed a visual tracker based on a struc-
turally random projection for dimensionality reduction of the
template space, in which the original distance was preserved
with an efficient computation. Danelljan et al. [20] projected
color names on an orthonormal basis of a 10-dimensional
subspace to extract sophisticated color features for visual
tracking.

In contrast to these methods that project the Euclidean
space into the subspaces of the target appearance, we project
the Wasserstein space and explicitly guide the projection
direction for accurate visual tracking.

C. DEEP LEARNING-BASED VISUAL TRACKING
Li et al. [21] presented Siamese deep neural architec-
tures combined with region proposal networks, which
aimed to search for candidate regions for target objects.
Valmadre et al. [22] proposed deep neural networks based
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on correlation filters that efficiently compared deep features
with reference features. Zhang et al. [23] introduced very
deep neural networks to extract representative features for
accurate visual tracking. Bertinetto et al. [24] made Siamese
networks fully convolutional for accurate and fast matching.
Li et al. [25] applied meta information to deep neural net-
works for fast adaptation in different visual tracking envi-
ronments and changes in target appearances. Zhu et al. [26]
enhanced the discriminative power of deep neural networks
using both negative and positive samples for target objects.
Choi et al. [27] boosted the adaptive representation ability of
deep neural networks using gradient information for visual
tracking. Bhat et al. [28] used discriminative classifiers for
deep neural networks, in which classifier weights were gen-
erated via a novel optimization technique. Guo et al. [29]
presented dynamic Siamese network architectures that enable
the update of target appearances online.

In contrast to these methods, we do not use complex
deep neural architectures. Nevertheless, our proposed visual
tracker exhibits state-of-the-art visual tracking performance,
because target appearances are described by Wasserstein dis-
tributions; thus, several variations in target appearances can
be covered during visual tracking.

D. OTHER VISUAL TRACKING
Li et al. [30] proposed a dual-regression framework for
visual tracking, which combines discriminative fully convo-
lutional module (for discriminative ability) and a fine-grained
correlation filter (for accurate localization). Fan et al. [31]
introduced a novel interactive learning framework for visual
tracking, in which multiple convolutional filter models are
interacted with each other and their responses are fused based
on the confidence scores. Liu et al. developed robust visual
trackers for thermal infrared objects based on multi-level
similarity models under the Siamese framework [32], via the
multi-task framework [33], and using the pretrained convolu-
tional neural networks [34].

Muresan et al. [35] introduced a multi-object tracking
method based on a affinity measurement function and a con-
text aware descriptor for 3D objects. Karunasekera et al. [36]
presented a multi-object visual tracking system using a new
dissimilarity measure that considers object motion, appear-
ance, structure, and size. Braso and Laura [37] proposed fully
differentiable message passing networks for multi-object
tracking, which is formulated as network flows.

In contrast to these methods, we presented a novel mathe-
matical approach based on the Wasserstein distance to boost
the visual tracking performance. Thus, this approach can
be integrated into existing visual trackers to improve their
performance. Please note that using the Wasserstein distance
enables us to use many of useful mathematical properties.

III. SLICED WASSERSTEIN-BASED VISUAL TRACKING
A. SLICED WASSERSTEIN DISTANCE
The p−Wasserstein distance Wp measures the discrepancy
between two probability distributions (i.e., µ, ν ∈ P

(
Rd
)
),

where P
(
Rd
)
denotes the set of distributions defined on

Rd and the p-th moment. We then define the p−Wasserstein
distance as follows:

Wp(µ, ν) =
[

inf
γ∈0(µ,ν)

∫
Rd×Rd

||x − y||p2γ (dx, dy)
]1/p

, (1)

where 0(µ, ν) denotes the set of joint probability distribu-
tions defined on Rd

× Rd (i.e., 0(µ, ν) ⊆ P
(
Rd
× Rd

)
).

In (1), we can find the optimal transport plan γ between µ
and ν, inducingWp.

The Wasserstein distance in (1) can directly consider prob-
ability distributions. However, it is difficult to define the set
of joint probability distributions 0(µ, ν). Thus, conventional
approaches [38] approximate ν as {νm}Mm=1 and Wp(µ, ν) as
argµmin

∑M
m=1 wmWp(µ, νm), where wm denotes the m-th

weight. As an alternative approach, µ and ν are assumed to
have one-dimensional probability distributions (i.e., µ, ν ∈
P
(
R1
)
). Then, we can find the optimal transport plan γ

using a finite number of probability distributions, which can
considerably reduce the computational costs. This approach
induces a sliced Wasserstein distance [13], [39].

To compute the sliced Wasserstein distance, we define the
unit sphere Sd−1 in Rd . Subsequently, for a vector s ∈ Sd−1,
we define the projection map proj, which transforms x ∈ Rd

into ≺ s, x �∈ R1 (i.e., projs(x) =≺ s, x �). We define
the projection of the probability distribution µ as proj#s (µ).
Using proj#s (µ), we can deal with one-dimensional probabil-
ity distributions. Then, the sliced Wasserstein distanceWslice

p
is defined as follows.

Wslice
p (µ, ν) = Es∈Sd−1Wp

(
proj#s (µ), proj

#
s (ν)

)
. (2)

In (2), E is implemented via a Monte Carlo simulation with
N samples (i.e., s1, · · · , sN ∈ Sd−1) as (3).

W̃slice
p (µ, ν) =

1
N

N∑
n=1

Wp

(
proj#sn (µ), proj

#
sn (ν)

)
. (3)

B. VISUAL TRACKING
With W̃slice

p , we present a novel sliced Wasserstein
distance-based visual tracker. In the visual tracking con-
text, µ and ν indicate the estimated and ground-truth target
appearance distributions, respectively. We adopt empirical
distributions for µ and ν, which are defined as follows:

µ =
1
M

M∑
m=1

I(xm), ν =
1
M

M∑
i=1

I(ym). (4)

In (4), I(xm) denotes an indicator function (i.e., I(xm) = 1,
if x = xm; otherwise, I(xm) = 0). We extract M appearance
feature vectors usingM moments.

We define a target object configuration at time t as Ot =
{o1, o2, o3}, where o1, o2, and o3 denote x-axis position,
y-axis position, and scale of the target in an image, respec-
tively. Given the best target configuration at time t − 1,
Ôt−1, our goal of visual tracking is to find the best target
configuration at time t , Ôt . For this purpose, we randomly
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Algorithm 1 Sliced Wasserstein Distance-Based
Tracker (SWT)

Input: Ôt−1
Output: Ôt
1:
{
O(c)
t

}C
c=1
∼ N

(
Ôt−1, 62

)
2: for c = 1 to C do
3: W̃slice

p (µ(c), ν) = 1
N

∑N
n=1Wp

(
proj#sn (µ

(c)), proj#sn (ν)
)

4: end for
5: c∗ = argminc W̃slice

p
(
µ(c), ν

)
for c = 1, · · · ,C

6: Ôt = O(c∗)
t

Algorithm 2 Projected Wasserstein Distance-Based
Tracker (PWT)

Input: Ôt−1
Output: Ôt
1:
{
O(c)
t

}C
c=1
∼ N

(
Ôt−1, 62

)
2: for c = 1 to C do
3: Wproj

p (µ(c), ν) = 1
MN

∑N
n=1

∑M
m=1

∣∣∣∣∣∣projsnewn
(xm)−

projsnewn
(b(ym))

∣∣∣∣∣∣p
2

4: end for
5: c∗ = argmincW

proj
p

(
µ(c), ν

)
for c = 1, · · · ,C

6: Ôt = O(c∗)
t

search for candidate configurations around Ôt−1. Thus, our
motion model is based on a normal distribution, as follows.{

O(c)
t

}C
c=1
∼ N

(
Ôt−1, 62

)
. (5)

In (5), O(c)
t denotes the c-th candidate configuration that is

proposed based on a normal distribution with center Ôt−1 and
standard deviation 6. Subsequently, we measure the sliced
Wasserstein distance W̃slice

p between appearance distributions
described by candidate configuration O(c)

t and ground truth
configuration OGTt , which are µ(c) and ν, respectively. Our
objective is to find the best index c∗, in which the corre-
sponding appearance distributionµ(c) described by candidate
configuration O(c)

t can minimize the distance:

c∗ = argmin
c

W̃slice
p

(
µ(c), ν

)
for c = 1, · · · ,C . (6)

In (6), the best target configuration at time t is Ôt = O(c∗)
t .

Algorithm 1 shows the entire pipeline of the proposed visual
tracker based on the sliced Wasserstein distance.

IV. PROJECTED WASSERSTEIN-BASED VISUAL TRACKING
A. PROJECTED WASSERSTEIN DISTANCE
Using the sliced Wasserstein distance, we can considerably
reduce the computational cost, but can obtain erroneous
results, because there exists discrepancy between sliced
Wasserstein distance and true Wasserstein distance. In partic-
ular, according to s in (3), the projected vector projs(x) can be

Algorithm 3 Orthogonal Coupled Wasserstein
Distance-Based Tracker (OCWT)

Input: Ôt−1
Output: Ôt
1:
{
O(c)
t

}C
c=1
∼ N

(
Ôt−1, 62

)
2: for c = 1 to C do
3: W̃ort

p (µ(c), ν)= 1
N

∑N
n=1Wp

(
proj#sortn (µ(c)), proj#sortn (ν)

)
4: end for
5: c∗ = argminc W̃ort

p
(
µ(c), ν

)
for c = 1, · · · ,C

6: Ôt = O(c∗)
t

biased [40]. In particular, projs(x) < projs(x
′) does not make

projs(y) < projs(y
′). To solve this problem, bijective map-

ping has been introduced to measure the sliced Wasserstein
distance [13]. Bijective mapping induces

projs
(
b(y)

)
< projs

(
b(y′)

)
, if projs(x) < projs(x

′). (7)

In (7), the bijective mapping b(·) can be implemented by
sorting {ym}Mm=1, which results in

{
ysortm

}M
m=1, and selecting

ysortargsort(xm)
for xm, where argsort returns indices that sort

{xm}Mm=1 and argsort(xm) returns the index of xm.
Subsequently, the projection is conducted using a new

projection vector snew ∈ Sd−1, which is different from s in
(7). Using snew, we can prevent the aforementioned projection
from being biased. The projectedWasserstein distance is then
defined as (8).

Wproj
p (µ, ν) =

1
MN

N∑
n=1

M∑
m=1

∣∣∣∣∣∣projsnewn
(xm)− projsnewn

(b(ym))
∣∣∣∣∣∣p
2
,

(8)

where xm ∼ µ and ym ∼ ν as in (4).

B. VISUAL TRACKING
Our objective is to find the best index c∗, in which the corre-
sponding appearance distributionµ(c) described by candidate
configuration O(c)

t can minimize the distance as (9).

c∗ = argmin
c

Wproj
p

(
µ(c), ν

)
for c = 1, · · · ,C, (9)

where the best target configuration at time t is Ôt = O(c∗)
t .

Algorithm 2 shows the entire pipeline of the proposed visual
tracker based on the projected Wasserstein distance.

V. ORTHOGONAL COUPLED WASSERSTEIN-BASED
TRACKING
A. ORTHOGONAL COUPLED WASSERSTEIN DISTANCE
Using the projected Wasserstein distance, we can reduce the
discrepancy between the sliced Wasserstein distance and the
true Wasserstein distance. However, the projection direction
of s in projs is crucial for the success of the projected Wasser-
stein distance, as mentioned in [41]. In this context, we use
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TABLE 1. Quantitative comparison of the proposed methods. The best
results are written in boldface.

TABLE 2. Analysis of the proposed OCWT according to different values of
N (Monte Carlo samples) in (3). The best results are written in boldface.

orthogonal directions, because orthogonal directions of pro-
jection vectors guarantee the improvement of estimator vari-
ance for the projectedWasserstein distance, as proven in [13].
To sample mutually orthogonal vectors sort1 , · · · , sortN ∈ S

d−1

(i.e., ≺ sorti , sortj �= 0 for i 6= j), we employ orthogonal
Monte Carlo (OMC) techniques in [42]. Using the OMC,
mutually orthogonal vectors can be efficiently obtained form
the unit sphere Sd−1 in Rd .
LetG be a d-dimensional Givens rotation [43]. Then,G is

an an orthogonal matrix in Sd−1, which is parameterized with
two indices i, j ∈ {1, · · · d} and an angle θ ∈ [0, 2π ), as (10).

G[i, j, θ]k,l =



cos(θ ) if k = l ∈ {i, j}
− sin(θ) if k = i, l = j
sin(θ ) if k = j, l = i
1 if k = l /∈ {i, j}
0 otherwise,

(10)

where all coordinates of Rd are fixed except i and j, and the
two-dimensional subspace is spanned using the rotation of θ .
Using G[i, j, θ], we can sample orthogonal vectors via Kac’s
random walk on the Markov chain Kt |

∞

t=1.

K1:T =

T∏
t=1

G[it , jt , θt ]. (11)

In (11), the sequence of Kt × sortn is a Markov chain on
Sd−1 [44]. Then, the orthogonal coupledWasserstein distance
Wort

p is defined as follows.

Wort
p (µ, ν) = Es∈Sd−1Wp

(
proj#sort (µ), proj

#
sort (ν)

)
. (12)

In (12), E is implemented via a Monte Carlo simulation with
N samples (i.e., sort1 , · · · , sortN ∈ S

d−1) as (13).

W̃ort
p (µ, ν) =

1
N

N∑
n=1

Wp

(
proj#sortn (µ), proj#sortn (ν)

)
. (13)

B. VISUAL TRACKING
Our objective is to find the best index c∗, in which the corre-
sponding appearance distributionµ(c) described by candidate
configuration O(c)

t can minimize the distance as (14):

c∗ = argmin
c

W̃ort
p

(
µ(c), ν

)
for c = 1, · · · ,C, (14)

TABLE 3. Analysis of the proposed OCWT according to different values of
C (candidate configurations) in (5). The best results are written in
boldface.

TABLE 4. Analysis of the proposed OCWT according to different values of
M (moment statistics) in (4). The best results are written in boldface.

where the best target configuration at time t is Ôt = O(c∗)
t .

Algorithm 3 shows the entire pipeline of our visual tracker
based on the orthogonal coupled Wasserstein distance.

VI. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) OTB DATASET
To demonstrate the effectiveness of the proposed methods,
we compared three proposed visual trackers (i.e., SWT,
PWT, and OSWT) with 9 recent deep learning-based visual
trackers (i.e., ECO-HC [45], TADT [46], SiamRPN++ [21],
SINT-op [47], C-COT [48], DAT [49], ECO [45],
SiamDW [23], and SINT [47]) using the OTB dataset [50].
This dataset includes various attributes for visual track-
ing environments, including out-of-view, out-of-plane rota-
tion, deformations, motion blur, scale variation, illumination
change, fast motion, background clutter, in-plane rotation,
low resolution, and occlusions. To evaluate the visual tracking
methods, precision and success plots, and the area under the
curve (AUC) were used, in which the precision plot computed
the ratio of frames such that the discrepancy between the
estimated and ground-truth configurations of the targets is
less than a specific threshold. The success plot computed the
percentage of frames such that the intersection of the union
between the estimated and ground-truth bounding boxes is
greater than a specific threshold. AUC was used to compute
the area under the success plot.

2) LaSOT DATASET
We also compared our visual trackers with visual track-
ers (e.g., StructSiam [51], DASiam [26], GlobalTrack [52],
SiamRPN++ [21], ATOM [53], ECO [45], CFNet [22], and
SPLT [54]) including state-of-the-art correlation filter-based
trackers (e.g., GFSDCF [55], ASRCF [56], STRCF [57],
and BACF [58]) using the LaSOT dataset [59]. This dataset
contains 1, 400 test sequences, in which the average length
is greater than 2, 512 frames. To evaluate the visual tracking
methods, precision, normalized precision, and area under the
curve were used.

3) VOT DATASET
In addition, we compared visual trackers (e.g., CFCF [60],
LSART [61], CFWCR [62], and ECO [45]) using the
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FIGURE 2. Quantitative comparison with non-deep-learning visual trackers using the OTB dataset.

FIGURE 3. Quantitative comparison with deep-learning visual trackers using the OTB dataset.

TABLE 5. Analysis of the proposed OCWT according to different values of
T (frames) in (11). The best results are written in boldface.

VOT2017 dataset, which contains 60 videos with diverse
attributes. To evaluate the visual trackers, accuracy and
robustness metrics were used.

4) HYPERPARAMETERS
For the experiments, we used N = 100 Monte Carlo samples
in (3), M = 4 moment statistics (i.e., mean, variance, skew-
ness, and kurtosis) in (4), C = 10 candidate configurations in
(5), 6 = {0.1, 0.1, 0.001} in (5), and T = 90 frames in (11).

B. ANALYSIS OF THE PROPOSED METHOD
To examine the effectiveness of each proposed technique in
Table 1, we compared the proposed SWT with its extensions,
PWT and OCWT. As shown in the table, describing multiple
appearances of the target using Wasserstein distributions

is helpful for accurate visual tracking, where our simple
SWT-based visual tracker outperforms state-of-the-art visual
trackers including GlobalTrack in terms of normalized preci-
sion (as shown in Table 6).

We also examined the robustness of the proposed method
against hyperparameter settings. Table 2 shows that the pro-
posed OCWT is not sensitive to different settings for the
number ofMonte Carlo samples. Although the OCWT exhib-
ited more accurate results with more samples at the cost of
computational time, it still shows accurate visual tracking
performance even with 50 samples. Table 3 includes the
visual tracking results of the proposed OCWT according to
the different number of candidate configurations (C in (5)).
If we consider a large number of candidate regions for the
target, we have more chances of getting trapped in local
minima; thus, visual tracking accuracy decreased when we
used 20 candidate regions. In contrast, if we consider a very
small number of candidate regions for the target, the visual
tracking accuracy can decrease because search areas are not
sufficient to find the target. However, in any case, our tracker
is not sensitive to the number of candidate configurations.
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FIGURE 4. Qualitative evaluation using the OTB dataset. The yellow and red boxes denote the tracking results of ground truths and the proposed
visual tracker, respectively.

Table 4 lists the visual tracking results of the proposed
OCWT according to the different numbers of moment statis-
tics (M in (4)). As shown in the table, using a single moment
statistic to describe the target appearance was not sufficient to
accurately track the target. If we use more than four moment
statistics, the visual tracking performance converges, where
our visual tracker can successfully track the target. Table 5
shows that the proposed OCWT is not sensitive to different
settings with respect to the number of frames (T in (11)).
Although we could obtain more accurate orthogonal vectors
with a large number of frames, the performance improvement
was not significant. Even though the orthogonal vectors are
not accurate, using them is crucial for robust visual tracking.
It should be noted that the proposed OCWT with orthogonal
vectors considerably outperforms the PWT without orthogo-
nal vectors.

C. COMPARISONS ON THE OTB DATASET
Our method was quantitatively compared with non-deep-
learning visual trackers. As shown in Figure 2, the proposed

method considerably surpassed existing non-deep-learning
visual trackers in all evaluation metrics (i.e., precision plot,
success plot, and AUC). While the second-best methods are
Struck and SCM for the precision and success plots, respec-
tively, the proposed method outperformed these methods by a
largemargin. Empirically, we argue that accurate visual track-
ing results of our method are induced by precisely measuring
the discrepancy between two distributions of estimated and
ground-truth appearances via advanced Wasserstein-based
techniques. Our method was also compared with recent
deep-learning visual trackers, as shown in Figure 3. The
method exhibited state-of-the-art performance in all evalu-
ation metrics, although our method also adopted no com-
plex deep neural network architecture. In contrast, SiamDW
showed the second-best performance in terms of the precision
plot, even though it employed a deeper and wider neural
network architecture for visual tracking. Thus, this quantita-
tive comparison verified the effectiveness of our Wasserstein
distributional tracking, in which the discrepancy between
the two appearance distributions is efficiently minimized.
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TABLE 6. Quantitative comparison using the LaSOT dataset. The best results are written in boldface.

FIGURE 5. Success plot of visual trackers using the LaSOT dataset.

FIGURE 6. Normalized precision plot of visual trackers using the LaSOT dataset.

It is noteworthy that we present a novel appearance model
for visual tracking based on theWasserstein distribution; thus
the proposed technique can be plugged into existing visual
trackers to improve their visual tracking accuracy.

Figure 4 shows the qualitative visual tracking results of our
method for the OTB dataset. The test video sequences contain
fast motions (e.g., (a) Biker, (b) Bolt, and (c) Deer sequences),
nonrigid deformation (e.g., (d) Diving, (e) Ironman, and
(f) Jump sequences), background clutter (e.g., (g) Matrix,

(h) MotorRolling, and (i) Shaking sequences), occlusions
(e.g., (g) Matrix and (l) Soccer sequences), illumination
changes (e.g., (e) Ironman, (g) Matrix, (i) Shaking, and
(j) Singer2 sequences), and small objects (e.g., (f) Jump
and (k) Skiing sequences). Although these sequences are
very challenging, our method accurately tracked the tar-
gets. This accurate visual tracking performance steps from
the modeling of multiple appearances using the Wasserstein
distributions.
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FIGURE 7. Quantitative comparison of visual trackers using the VOT
dataset.

TABLE 7. Comparisons of speed in terms of frames per second (FPS). The
best results are written in boldface.

D. COMPARISONS ON THE LaSOT DATASET
Table 6 shows quantitative comparisons between the pro-
posed OCWT and recent state-of-the-art visual trackers
using the LaSOT dataset. As shown in the table, our
method produces accurate visual tracking results and out-
performs other visual trackers, where GlobalTrack shows
the second-best visual tracking performance. However,
GlobalTrack adopted a complex backbone network (ResNet)
to extract representative features, while the proposed method
used a small backbone network (VGG) to exhibit state-of-
the-art performance with small computational costs. These
experimental results demonstrate that the advantage of using
Wasserstein distributions for the target appearances makes
the proposed visual tracker robust to several variations in
the target appearances, which can be caused by illumination
changes, deformation, and background clutters.

E. COMPARISONS ON THE VOT DATASET
Figures 5 and 6 show the success and normalized precision
plots of visual trackers using the LaSOT dataset, respectively.
As shown in figures, the proposed visual tracker, OCWT,
is comparable with recent state-of-the-art visual trackers such
as DiMP and LTMU, while our method considerably outper-
forms state-of-the-art correlation filter-based trackers (e.g.,
GFSDCF [55], ASRCF [56], STRCF [57], and BACF [58]).

Figure 7 demonstrates the effectiveness of the proposed
method in the VOT dataset. The proposed visual tracker,
OCWT, is the state-of-the-art visual tracker in terms of accu-
racy, while its robustness is also competitive to othermethods.
LSART exhibits the best performance in terms of robustness,
but it inaccurately tracks target objects compared with the
proposed method.

F. COMPARISONS OF SPEED
Table 7 reports speed in terms of FPS. Correlation filter-based
visual trackers are fast, because mathematical operations are
computationally efficient. The proposed method can also

compute 79 frames per second, which is relatively faster
than other non-correlation filter-based visual trackers. This
indicates that the proposed orthogonal coupled Wasserstein
distribution is useful for improving visual tracking accuracy
with low computational costs.

VII. CONCLUSION
In this study, we propose a novel Wasserstein distri-
butional tracking method that can balance approxima-
tion with accuracy in terms of Monte Carlo estimation.
To achieve this goal, we present three different visual tracking
systems: sliced Wasserstein-based, projected Wasserstein-
based, and orthogonal coupled Wasserstein-based. Sliced
Wasserstein-based visual trackers can find accurate target
configurations using the optimal transport plan, which min-
imizes the discrepancy between appearance distributions
described by the estimated and ground truth configurations.
Because this plan involves a finite number of probabil-
ity distributions, the computation costs can be consider-
ably reduced. Projected Wasserstein-based and orthogonal
coupled Wasserstein-based visual trackers further enhance
the accuracy of visual trackers using bijective mapping func-
tions and orthogonalMonte Carlo, respectively. Experimental
results demonstrate that our approach can balance compu-
tational efficiency with accuracy and the proposed visual
trackers outperform other state-of-the-art visual trackers on
benchmark visual tracking datasets.
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