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ABSTRACT When a parallel robot used in a scene that requires force control, rapid attitude adjustment,
or precise positioning, we need to know the dynamic characteristics of the moving platform and the motion
branch, so it is necessary to do the dynamic analysis of the parallel robot. In this study, for the six-degree-
of-freedom parallel mechanism, the Newton-Eulerian method is used to model the dynamics, and then the
inverse dynamics simulation is performed through the ADAMS simulation software to verify the correctness
of the established dynamic equations. Finally, the Euler integration method is used to solve the dynamic
equations numerically. When establishing dynamic equations, it is more convenient to use spiral coordinates
to express the angular motion of the motion platform of the parallel mechanism. However, it is difficult to
solve the equation numerically. When solving the equations in this study, Euler angles are used to express
angular motion. The Euler angle is used as an iterative variable representing the angular motion in the solving
process. Then the Euler angle is converted into a rotation matrix, and the parameters of the spiral coordinates
are obtained through the rotation matrix, and the dynamic equation is finally solved. The simulation and
calculation results show that the established dynamic equation is correct, and the solution to the dynamic
equation is also correct.

INDEX TERMS Newton-Euler method, dynamic equations, Euler integration method, solution of the

dynamic equation.

I. INTRODUCTION

Owing to the large load and high motion accuracy of parallel
mechanisms, the application scenarios of parallel robots, such
as satellite trackers [1], lifting mechanisms [2], and parallel
machine tools [3], are becoming more and more extensive.
However, it is crucial to accurately control the parallel robot
during the application, analyze the dynamic characteristics of
the manipulator, and model its dynamics. Many scholars have
researched the dynamic modeling methods of parallel robots.
The more classic methods include the Newton-Euler method,
Lagrangian method, and virtual work principle [4].

The Newton-Euler method solves dynamics problems by
establishing the force balance equation of each joint of the
mechanism. In reference [5], the Newton-Euler method is
used to analyze the dynamics of Hexarot parallel mecha-
nisms and simulates them through ADAMS to verify the
result. Reference [6] established the kinetic equation of the
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3-PRRU parallel manipulator by the Newton-Euler method.
Reference [7] proposed a dynamic modeling method for
rigid-flexible mechanisms, in which the dynamic model of
the Stewart platform was established using the Newton-
Euler equation. In [8], the Newton-Euler method is used
to model the dynamics of a six-degree-of-freedom parallel
robot. The Lagrangian method is an energy-based dynamic
method that eliminates all unwanted reaction forces. There-
fore, this method is adopted by many people. In [9], pages
176-194 detail how to obtain the kinetic equations by the
Lagrangian method. Reference [10] proposed a three-degree-
of-freedom rope-driven parallel mechanism, established the
dynamic equation of the mechanism by using the Lagrangian
method and verified the correctness of the dynamic equation
by combining Matlab numerical calculation and ADAMS
simulation. Reference [11] analyzed the four degrees-of-
freedom parallel manipulator’s kinematics and working space
and established a dynamics model through Lagrangian for-
mulation. Reference [12] used the Lagrangian method to
establish the dynamic equations of forging manipulators.
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Since the virtual work method does not need to calculate
the binding force and moment, its calculation speed is faster
than Newton’s Euler method. Reference [13] performed an
inverse kinetic analysis on the parallel platform applied to
the NanShan Radio Telescope using a virtual work approach.
Reference [14] analyzed the topological structure of the
3TIR parallel mechanism, modeled and analyzed the inverse
dynamics of the space mechanism based on the principle
of virtual work, and verified it by dynamic simulation with
ADAMS software. Reference [15] Puglisi built a dynamic
model for a 6 DOF hydraulic parallel robot based on the
virtual work principle and then built a controller based
on the model and performed a simulation. Reference [16]
used the analysis method of the virtual work principle to
model the dynamics of the 3-PUU parallel robot and com-
pared the results of Matlab programming with the results of
ADAMS dynamics simulation to verify the correctness of the
dynamics model.

In addition to these classical dynamics modeling meth-
ods, [17] proposed an elastic dynamic modeling method
for 6-RSS parallel robots. The method considers the elastic
deformation of the branch chain and the clearance of the kine-
matic pair. Reference [18] proposed a systematic and modular
dynamic modeling approach for parallel manipulators with
complex limbs.

It is relatively easy to establish dynamic equations and
calculate and simulate the inverse dynamics of the mech-
anism. However, it is more troublesome to do the forward
dynamic analysis of the mechanism, that is, to solve the
coupled second-order differential equations. Reference [19]
using the decoupled natural orthogonal complement method
and virtual spring method to analyze the forward dynamics
of the parallel mechanism. In [20], the virtual work method is
used to establish the dynamics equation of the 4RSS+PS par-
allel manipulator, and the inverse and forward dynamics are
analyzed. In [21], forward dynamic analysis was performed
on a 3-PRS parallel manipulator, and the influence of friction
was considered.

In the above articles, only the method of establishing
the dynamics model is introduced in the research on the
dynamics of the six-degree-of-freedom parallel robot. The
establishment of the dynamic equation is not verified, nor is
the analysis of the forward dynamics. The kinetic equations
are not validated, detrimental to precise experimental control
later. Because when the experimental results are not ideal,
we cannot determine whether the theoretical modeling is
wrong or the experimental method is wrong. In addition,
in terms of dynamics solution, forward dynamics analysis
is crucial for the simulation of robots. In this study, the
Newton-Eulerian method is used to model the dynamics of
such parallel mechanisms. In order to facilitate the modeling,
the angular motion of the moving platform is represented
by spiral coordinates. Then the inverse dynamics simulation
is performed through Adams simulation software, and the
simulation results are compared with the calculation results
of Matlab programming to verify the established dynamic
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equations. The numerical solution of kinetic equations adopts
the Euler iteration method, which is easy to understand and
program. Euler angles represent angular motion when solving
equations, convenient for iteration. Finally, through a numer-
ical example, the calculation results are compared with the
inverse dynamics inputs to verify the solution of the dynamic
equation.

Il. MODEL ANALYSIS

A. KINEMATIC ANALYSIS

The six-degree-of-freedom parallel mechanism based on
Stewart is shown in Fig.1.

FIGURE 1. Six degrees of freedom parallel mechanism.

It includes a moving platform (upper platform), a static
platform (lower platform), and six branch chains with the
same structure. The Hooke hinge connects the static platform
and the branch chain, and the moving platform and the branch
chain are connected by the equivalent structure of the ball pair
(the Hooke hinge plus a rotating pair).

The position and posture of the moving platform are
changed by the expansion and contraction of the six branch
chains. The coordinate system {A} of the lower platform is
established on the center of the circumcircle of the lower
platform, and the coordinate system {B} of the upper plat-
form is established on the center of the circle of the upper
platform. The initial postures of {A} and {B} are the same.
The coordinates of the hinge point A; of the lower platform
on the static platform are represented by the vector a;. The
coordinates of the hinge point B; of the upper platform on the
moving platform are represented by the vector b;.

According to this structure, the closed-loop kinematic
equation of each branch can be obtained

1Asi +8a; = AP + ARpPb; (1)

where [; is the length of the i-th branch chain, 4s; is the unit
vector along the i-th branch chain in the coordinate system
{A},i = 1,2,...,6. P is the position vector of the center
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point of the upper platform, and AR is the pose description
for coordinate system {B} in the coordinate system {A}, Zb;
represents the representation of the vector b; in the coordinate
system {B}.

Equation (1) can be written as

IAs; = AP + AR — g )

Multiplying both sides of the above equation by itself at the
same time, the formula for calculating the length of each
branch can be computed:

T
12 = [AP +4RgPb; — Aai] [AP +ARgPb; — Aai] A3)

Differentiate both sides of equation (1) concerning the time
at the same time

Ay, + 40 x Ab; = IAs; + 1 (Aa)i X ’X\Si> 4

where Avp is the velocity of the center point of the moving
platform, 4w is the angular velocity of the moving platform
in the static coordinate system {A}, I; is the length change
rate of the i-th branch chain, and Aw; is the angular velocity
of the i-th branch chain, the x symbol represents the cross
product of two vectors.

The A in the upper left corner of equation (4) is omitted
at simultaneously, and each vector is represented in the static
coordinate system by default. Then, (4) can be written as

Vp +w X b; = iig‘,' +I; (a),- X 3‘,) 5)

Define the intermediate variable v, as the velocity at
point B;:

Vp; =Vp + o X b; (6)

B. DYNAMIC ANALYSIS
The parallel mechanism is decomposed into an upper plat-
form (moving platform), a lower platform (static platform),
and six identical branch chains. Each branch chain is further
divided into two parts: cylinder and piston.

Their force diagrams are shown in Fig. 2 and Fig. 3 (exter-
nal disturbance forces and moments on the moving platform

are not considered).

mg

Foi

FIGURE 2. Force analysis diagram of the moving platform.
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FIGURE 3. Branch chain force analysis diagram.
The Newton-Eulerian equations of the moving platform:
i=6
Z Foy = Zi=1fbi + mg = may, @)
i=6
P — ; Ay A
D e =) bixfu="ho+tox Lo 8
where:
A Ap By ApT
I, ="Rp”1,"Ry
Convert the Newton-Eulerian equations of the moving plat-
form into closed-form kinetic equations:

Mp) + Cpx +Gp =Fp )

in which Mp denotes the upper platform mass matrix, Cp
denotes the Coriolis and centrifugal matrix, Gp denotes the
gravity vector, Fp denotes the force matrix, and

<[3] 42} -]

[ mE 0
Mp = mr3x3 13><3j| ’
L O3X3 IP 6x6
Cp — [ 033 03x3 }
P = A
_03><3 w X IP 6x6

[ —mg > o
GP= } , FP=
L 031 Jg1 |:Zbixfb,-:|6xl

in which xp, vp, ap represent linear motion of the moving
platform, and 0, w, @ represent its angular motion. And E33
denotes 3 x 3 identity matrix, 033 denotes 3 x 3 zero matrix,
and 03« denotes 3 x 1 zero vector.

The kinetic equation of the branched-chain:

The Newton-Eulerian equation of the cylinder part:

ZFext = mj1ail = fai — fei +ming (10
ZCilnext = Alcild)i + w; X AIcil - Wi
= cil (=5 X fai) +dit (3 x —fei) =M (11)

where:
diy =1l —cip — 2ci2

A Ap. Aip  ApT
Ieit = "Rp,"Leit" Ry,
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where ) F,y is the sum of the external forces acting on
the upper half of each branch, and ) Uy, is the external
moment applied to the center of mass of the upper half of the
branch.

The Newton-Eulerian equation of the piston part:

ZFm = mpap = fei — foi + Mg (12)
D Prgy = eni + o x iz - i
= ci (=8 X fei) + cio (§ x —fpi) —Mei  (13)
where:
AlLip = AR ciZAR;I;i

It can be seen from [22] that after simplification, the kinetic
equation of the branch i can be written in the following form:

Mixi + Cixi + Gi = F; (14)
where:
. AAT 1 ~2 ~2
M; = mpsisi” — ﬁlxxisix — MceS;y
1
C — 2 AT o2 MpCi2 T2
= —ﬁmcos, XiSiy — lTSlxl Six
1 l
~2 AAT
G; = (mgesix — mp5;S; )8
Fi = —foi + Tibi

in which 7; is the driving force of each branch.

To derive the closed-form dynamics of the entire platform,
the intermediate generalized coordinate x; (the position of
point B;) needs to be mapped to the main generalized coor-
dinate x. Using such a transformation, and the internal force
Jpi can be eliminated. The intermediate generalized coordi-
nates and the principal generalized coordinates are linked by
defining the intermediate Jacobian matrix J;.

Then, (6) can be written in the following form:

xi = Jix (15)
where:
Ji=[Esxs  —bix] (16)
Equation (15) takes the time derivative:
¥ =i +Jix a7
Equation (16) takes the time derivative:

Ji = [03><3 - ((wxbi)x E+ biXE)]
= [03><3 —a)xbix +hi><w><]

Bring (15) and (17) into (14), and then multiply JiT on both
sides of (14) to get

(47 M) 5+ (97 Midi+3T Cuty) 3 +97 Gi=ITFi - (18)
The above formula can be written in the following form
Miix + Ciix + Gii = Fij (19)
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where:
My = Ji" MJ;
Ci = Ji' MiJi + Ji" CiJ;i
Gi = Ji'G;

I A
Fy=J"F; = [ ;X3] (i + %)
X

_ | e | s
N |:bi bez:| +Tl[bi X§i:|

Finally, the closed dynamic equation of the entire parallel
mechanism is

MO X+CX.0Xx+G(X)=F (20)
where:
i=6
MO =My+ ) Mi (21a)
. i=6
CO=C+),  Ci (21b)
i=6
GxX)=Gp+),_ G
F=JTt
|||V . 5| %
SRS HESH
=[x Z]
0 = theta [ sX sy sz]
=[x 3 g
w = omega - [ sx sy 57
=[x vy i
w = omegad - [sx sy sz] 21¢)

in which tfeta denotes the rotation angle of the angular
motion of the moving platform, omega denotes its angu-
lar velocity, omegad denotes its angular acceleration, and
[sx sy sz] denotes the rotation axis of its angular motion.

When doing inverse dynamics analysis, the driving force
T of the branch chain is obtained according to the motion
trajectory of the moving platform.

Equation (20) can be rewritten as

t=J"TIMG)§+C0x 0%+ GOl (22)

Ill. VALIDATION OF DYNAMIC EQUATIONS

Before solving the dynamic equation, the correctness of
the established dynamic equation should be verified. The
Adams virtual prototype model is verified by comparing the
inverse kinematics simulation of ADAMS with the inverse
kinematics calculation results of Matlab. By comparing the
inverse dynamics simulation of the ADAMS model with the
inverse dynamics calculation results of Matlab, the estab-
lished dynamics model is verified.

A. KINEMATICS SIMULATION
A model of a six-degree-of-freedom parallel platform was
established in SolidWorks, imported into Adams [23], and the
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FIGURE 4. Adams simulation model.

required constraints were added. The final virtual prototype
model is shown in Fig. 4.

Applying a General Point Motion at the center of mass of
the upper platform of the model can realize the motion of
6 degrees of freedom in space, as shown in Fig. 5. Select a
point on the ground or the static platform for the Reference
Point, set the Type to displacement and the motion equa-
tion. The motion added to the center of mass of the upper
platform is a sinusoidal motion with an amplitude of Smm
and a frequency of 1Hz along the Z direction. The function
expression is:

z=Asin(wt + @) = 5%sin 2 x pi x 1) (23)

Set the simulation End time to a motion cycle of 1s, and set the
simulation Steps to 100 steps. Select the upper hinge center
point to the lower hinge center point to establish a point-
to-point measurement. Because it is a sinusoidal application

Name { upper_platform

Moving Point| MARKER 773

Reference F'mnll MARKER_774

TiaZ [ displtime) =

:I l 5*sin(2*pi*time)

Rot X |disp{ume) -

1[0

Rot Y’ |d|sp{time) =

=llo

RotZ |dispitime)=

= Pl

=llo

OK

DoF  Type fitime) Disp.IC  Velo. IC
Tra X |d|spﬂime) = j | 0
TraY |disp(rame) = j I 0

A A S A |

| Apply ‘ Cancel |

FIGURE 5. Apply point motion at the center of mass of the moving.
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FIGURE 6. Length curves of 6 branch chains for kinematic simulation.

along the z-axis, as shown in Fig. 6, the length of the six
chains changes the same over time.

In order to verify the correctness of the simulation model,
the structural parameters and kinematic functions of the sim-
ulation model are brought into the theoretical model of the
inverse kinematics solution, and the chain length change
curve is obtained as shown in Fig. 7.
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FIGURE 7. Variation curve of branch chain length calculated by Matlab.

The error curve is obtained by comparing the different
results of the branch length variations obtained by Matlab
programming with the simulation results, as shown in Fig. 8.
It can be seen that the chain length error is in the magnitude
oof 10~ 'mm, indicating that the virtual prototype model is
correct.

-0.3595

-0.3605 / \

error/mm

-0.361 \ r

\
-0.3615 \\ﬂf/_/

-0.362

0 0.2 0.4 06 0.8 1

time/s

FIGURE 8. Error curve for chain length variation.

33699



IEEE Access

X. Jing, C. Li: Dynamic Modeling and Solution of 6-DOF Parallel Mechanism

B. DYNAMIC SIMULATION

The length variation curves of the six branch chains obtained
by the simulation in the previous section are added as spline
functions in sequence. In the Post-Processor module, select
the curve and select the Create Spline button to get six spline
functions: SPLINE_1~SPLINE_6. Then set the point drive
added on the moving platform to Deactivate, and add the
moving drive MOTION_1~MOTION_6 on the moving pair
of each branch chain. Set the drive function of each drive
as AKISPL(time, 0, SPLINE_1, 0), ..., AKISPL(time, 0,
SPLINE_6, 0), as shown in Fig. 9.

W Joint Motion bt
Name [ momon
Joint I powers
Joint Type |trans|atiana}
Direction |Translatinnal j

Define Using

| Function

k2|

3.1 ‘ ‘
——branch1 -
—branch2 /:' \

3.05 ¢ branch3 \]
——branch4 )
% ~ branch5
© 3 branch6
o
[ \.
AN
2950 =

2.9 : : : :

0 0.2 0.4 0.6 0.8 1
time/s

FIGURE 10. Driving force simulation results of each branch chain in

Adams.

Function (time) |AKISF’L( time , 0, SPLINE_1, 0) J

Type | Displacement j
Displacement I |
ty IC |

oK | _apply |

Cancel

FIGURE 9. Set the driver function.

Add a force measurement to each drive, set the simulation
time to 1s, step size to 100, run the simulation, and get the
driving force required for the moving platform to generate
the corresponding motion, as shown in Fig. 10. It can be seen
from the Fig.10 that the driving force fluctuates slightly at
0.5s and 1s, and the position of the moving platform at these
two times is the same as the starting position. The reason for
the fluctuation is that during assembly, the starting position
of the moving platform does not coincide with the lower
platform in the x and y directions. The displacement function
(23) of the upper platform, the first-order derivative (velocity
function) and the second-order derivative (acceleration func-
tion) of the displacement function are brought into the inverse
dynamic expression (22). The driving force results calculated
by programming in Matlab are shown in Fig. 11. Comparing
the two driving forces, the error curve of the driving force can
be obtained, as shown in Fig. 12.

It can be seen from the driving force error curve that the
simulation results are the same as the theoretical calculation
results, and the driving force error is in the magnitude of
10~2N. Therefore, it can be proved that the dynamic model
established according to the parallel mechanism in this paper
is correct.
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FIGURE 11. The driving force of each branch calculated by Matlab.
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FIGURE 12. Driving force error curve of each branch.

IV. SOLVE DYNAMIC EQUATION

Solving the dynamic equation is to do the forward dynamic
analysis of the parallel mechanism, knowing the driving force
of each branch chain, and solving the displacement, velocity,
and acceleration of the moving platform.

A. METHOD
Equation (20) can be written in the following form:

X=MQOT'IF=CG6X) % =Gl (24)
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When time t =0

x©@®=x x(@0=0
Substitute x (0) and yx (0) into (24) to obtain ¥ (0), and
then use the obtained ) (0) for the following calculation of
x and x.

The iterative process is as follows:

Xt + A = x () + X (1) At (25)
1
x (t+ A1) =X(t)+X(f)At+§5('(t)At2 (26)

Since helical coordinates represent the angular motion of the
motion platform during dynamic modeling, its components
in the X, y, and z directions are not independent. They are
composed of two variables, so it is not suitable for iteration.
Therefore, in forwarding dynamics analysis, the Euler angles
are used to describe the angular motion of the moving plat-
form and as the iterative variables.The calculation process is
shown in Fig. 13.

)
|u. } &, B, % & B, %

R
! \
sx,sy:tsaz,"he omega | omegad I“

v

i =M(X)'[F-C(X,X)X —G(X)]

FIGURE 13. Dynamic equation solving flow chart.

6, w, w can be written as

0=[a B v]
w=[a B y]
wo=[a B 7]

Then, (25) can be written as

X+ At =x@)+ X @) At
v+ At) =y (1) + ¥ (t) At
z(t+ Aty =2z()+Z(t) At
a(t+At)=a(t)+a@) At
B+ A =B+ B @) A
y(E+An)=y @) +y @) At
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x(t 4+ At) =x (1) +x (1) At+%5é(t) A2
y(t+At):y(t)+j/(t)At+%j3(t)At2
Z(t+At):z(t)+2(t)At+%2(t)At2
(x(t+At)=oe(t)+d(t)At+%&(I)Atz

ﬁ(t+m)=,3(t)+,3'(t)m+%,§(r)m2

1
y(r+Ar)=y(r)+y‘(r>m+§w>m2

The programming process in Matlab is as follows:

1. the known a, b, ¢ in the initial state of the moving

platform.

2. Calculate the rotation matrix R by Euler angles.

3. Calculate the first derivative omega of tfeta and the
helical coordinate parameters sx, sy, sz, t4eta by the
rotation matrix R.

Calculate &, £, ¥ by (21).

Calculate the second derivative omegad of ¢t eta.
Solve for ¢, ,3', y by (24).

Calculate the new values of x and x by (25) and (26).
Go to step 2.

® Nk

B. AN EXAMPLE

First, given the desired trajectory, the driving force required
by the desired trajectory is calculated through inverse dynam-
ics. This driving force is then brought into the dynamic equa-
tion, and the trajectory of the moving platform is calculated
by the Euler integration method. Compare the calculated
trajectory with the given trajectory to verify the correctness
of the solution method.

The calculation example in this paper is to plan a cubic
polynomial trajectory, which includes both rotation and trans-
lation, and the initial and final velocities are 0. That is, the
center of mass of the moving platform moves 30mm along
the z-axis within 1s, and at the same time rotates 10° around
the x-axis.

The trajectory expression is

2(t) = 382.5 + 90*t*> — 60*t3 (27)
isx:l,sy:O,sz:O

28
theta = pi/6*t> — pi/9*t} (28)

The above two equations are brought into (22), and the driv-
ing force 7 of each branch chain can be obtained through
inverse dynamics calculation. Taking 7 as the input of for-
warding dynamics analysis, the time-varying curve of the
motion trajectory of the moving platform is obtained. Com-
pare the results calculated by the forward dynamics with
the trajectory given by the reverse dynamics, as shown in
Fig. 14 and Fig. 15.

As shown in Fig. 14, the calculation result of the translation
direction is consistent with the given trajectory. From Fig. 15,
we can see that the error between the calculation result of
the rotation direction and the given trajectory increases in
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FIGURE 14. The given position and the calculated position of the moving
platform.
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FIGURE 15. The given attitude and the calculated attitude of the moving
platform.

error/rad

0 02 0.4

time/s

FIGURE 16. Error in rotation around the x-axis.

the period of 0.8s-1s. But from the error curve in Fig. 16,
we can see that this error is within an acceptable range. If we
want to reduce the error, we can set a smaller step size, but
the calculation time will increase accordingly. Therefore, this
paper selects a step with a shorter calculation time and the
calculation result is within the acceptable range.

From the error plots in the rotational and translational
directions, as shown in Fig. 17 and Fig. 18, we can see that

33702

error/mm

0 0.2 0.4 0.6 0.8 1
time/s

FIGURE 17. Error in translation along the z-axis.

the calculated error is acceptable. Therefore, the dynamics
solution method in this paper is correct.

V. CONCLUSION

This paper uses the Newton Euler method to establish the
dynamic model of the six-degree-of-freedom parallel mech-
anism, uses the ADAMS simulation software to do inverse
dynamic analysis, and compares it with the calculation results
of Matlab to verify the correctness of the dynamic model.
Then, the Euler integration method is used to analyze the
forward dynamics of the parallel mechanism. Euler angles
represent the attitude of the moving platform. During the
solution process, Euler angles are used as iterative variables.
Finally, the method is verified by numerical examples. The
work of this paper combines the convenience of establishing
dynamic equations with helical coordinates and the easy-to-
understand and easy-to-program properties of Euler integra-
tion in solving dynamic equations.

APPENDIX

TABLE 1. Geometric and inertial parameters of parallel mechanisms.

Symbol Quantity Value
m upper platform quality 0.815kg
g gravity 9806mm/s?
mi; cylinder mass 0.88kg
m;, piston mass 0.14kg
ci The distance between the 90mm

center of mass of the cylinder
and the point of force

Ciz The distance between the 111mm
center of mass of the piston
and the point of force
Lexi Moment of inertia of the 3786kg - mm?

branch chain around the x
axis

Coefficients in Equation (14)

2
2 2
1—2 (milcil + mpcip )

1

Mee =
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1 1 )
Meo = TMpCip — — (1xxi +1; mce)
l; l;
1
mge = — (ciymit + mip (Ii — ¢iy))

l;

Jacobian Matrix for Parallel Platforms

JT 51 5 S6
by X § by X 52 be X 5¢

Inertia matrix of the moving platform

4038 0 0
L=| 0 4038 0
0 0 8076

The position of the hinge point of the moving platform
B1 = [73.20508076, —73.20508076, —36.5];
B2 = [-73.0508076, —73.20508076, —36.5];
B3 =[—-100, —26.79491924, —36.5];

B4 =[—-26.79491924, 100, —36.5];

B5 =[26.79491924, 100, —36.5];

B6 = [100, —26.79491924, —36.5];

Static platform hinge point position

Al =[45, —167.94228634, 30.25];

A2 =[—45, —167.94228634, 30.25];

A3 =[—167.94228634, 45, 30.25];

A4 =[—122.94228634, 122.94228634, 30.25];
A5 =[122.94228634, 122.94228634, 30.25];

A6 =[167.94228634, 45, 30.25];
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