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ABSTRACT Blockchain technology in recent years has become potentially pervasive in the cryptocurrency
market, thus providing tamper-proof security to decentralized transaction management systems. Structurally,
the design foundation is an ideal advancement of the distributed ledger technology that maintains a set
of global states across nodes. As technology expands with a higher trend towards mobile computing, the
development of new applications demands understanding the current progression, especially concerning
performance, data management, and storage prospects. Here, we report the principle design structure of the
blockchain technology combined with the state of the arts, thus characterizing their original topological
contexts. We depart from the fundamental concepts of the technology and analyze performance of the
Ethereum blockchain on two devices having different computing power. Our presentation is tailored to
provide a systematic review of the technology, thus facilitating their possible adoption into the new
application domains like the Internet of Things (IoT). Further, we developed Debug-Bench, the first VSCode
(Visual Studio Code) extension that enables benchmarking and profiling of the blockchain applications.
Finally, we demonstrate several critical challenges concerning the design space of the current blockchain
platforms for their implementation over resource-constrained devices.

INDEX TERMS Blockchain, blockchain data management, distributed processing, blockchain for IoT,
resource-constrained devices, blockchain debugging.

I. INTRODUCTION
This is particularly true that blockchain technology has
gained much popularity these days. Conceptually, it is a
digital implementation of the distributed ledger technology
well supported by smart contracts [1]. Nodes keep replicas of
the transaction records in the form of a ledger. Transactions
in a blockchain are held and processed in an ordered manner
well packed into blocks. These blocks are cryptographically
chained together, thus forming a blockchain. Overall, the
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fundamental idea behind the technology is to systematically
identify and remove malicious nodes involved in the data
tampering and other illegalities in settings where participants
do not fully trust each other. Transactions are recorded in the
same topological sequence as they appear in the block, thus
guaranteeing the immutability of the distributed ledger. Fig. 1
explains the transaction life cycle of a typical blockchain
application.

Blockchains in their original design [2] were permis-
sionless (Public) by birth, allowing anyone to join and
perform transactions within the network such as Bitcoin [2]
and Ethereum [3], [4]. With the state replication model
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FIGURE 1. Blockchain: Transaction life-cycle.

introduced by Bitcoin, researchers made blockchain’s per-
missioned (Private) and federated implementation possible;
examples of these kinds include Hyperledger Fabric [5]
and Quorum [6] blockchains. The key success behind all
these types is to achieve consensus such as Proof-of-Work
(PoW) [2] and make the whole process Byzantine fault-
tolerant (BFT). Moreover, for the agreement to a specific
ledger update, the consensus mechanism ensures agreement
by all or a few (trusted in some cases) parties within the
network.

Although blockchains are promising in terms of security,
there are still concerns [7] about their implementation and
performance for resource-constrained devices. Mining in
the blockchain [2] is mainly responsible for these concerns
as the miner nodes have to solve a hashing problem (aka
finding signature) of varying difficulty to verify the block.
Computationally, the mining process requires hardware with
mighty hashing power to solve the complex combinations of a
blockchain cryptographic puzzle. This requirement otherwise
results in delays and latency issues. A typical block in Bitcoin
takes approximately 10 minutes to complete [8]. Another
concern is the lack of rich language support needed for
the detailed access and representation of the transactional
records. This feature is partially or even fully absent because
of the key-value type of data model [9] (see Fig. 2) in major
blockchains.

Recent advancements of blockchains towards securing
distributed applications are also impacting the Internet of
Things (IoT). However, due to smart devices’ energy-
performance trade-offs and resource-constrained nature,
embedding blockchain into IoT is still challenging. Existing
smart applications are storing tons of private data over clouds.
Hackers easily breach this private data by getting into the
massive traffic of IoT networks. Recently, researchers found
blockchain as an opportunity to secure this private data of

IoT [10]. However, structural approaches of most blockchain
applications are less optimized to support low-power smart
devices. Therefore, it is needed for blockchain applications
to optimize current approaches to maximize their perfor-
mance for IoT. Authors in recent research [11] offloaded
blockchain data of smart devices with the help of edge
computing.

The ongoing trend of securing distributed applications with
blockchains requires a deep understanding of the technology
itself. While designing new applications, developers only
assess security, performance, and other technicalities on
their target devices, while they partially or even fully
ignore assessing computing feasibility on different devices.
Several benchmarking and testing tools are available for the
feasibility testing and performance evaluation of traditional
applications. Blockbench [12] is one of the best tools used
for performance evaluation, explicitly targeting the data
processing of blockchain applications. Generally, such tools
require application-specific configurations while setting up
the testing environment with different IDE’s (Integrated
Development Environments), which is quite a complex task.
While setting up our testing environment with Blockbench on
Visual Studio Code (VS Code), we developed an extension
Debug-Bench that facilitates deploying such configurations
in a few easy steps. Details about Debug-Bench are available
in the section VII.

Knowing blockchain technology, whether to modify an
individual component or to build a new application as a
whole, we stress one must gain a plethora of knowledge about
technology in the following respects:

• What is blockchain technology, the key features, types,
and contextual implementation?

• Is the technology mature enough? What blockchains are
most popular to date, and what key characteristics make
them different from each other.
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FIGURE 2. Key-value data model on the individual Node.

TABLE 1. Featuristic comparison of blockchain types.

• What type of data do blockchains produce? How do
they manage distributed storage? What challenges do
they face in data processing, especially for resource-
constrained devices?

• How to evaluate the performance of the blockchain
applications? Are there any evaluation frameworks so
far?

• Is there any tool to facilitate debug and profiling of
blockchain?

Answering the aforementioned questions and our contribu-
tions are listed below:

• We highlight the latest progress towards blockchain
technology, a comparative analysis of the state-of-the-art
blockchain platforms, mainly targeting data processing
and storage.

• We evaluate the performance of the Ethereum
blockchain for both high-power and resource-
constrained devices.

• We develop Debug-Bench, a VS code extension that
facilitates Blockbench [12] debugging and profiling the
blockchain applications.

• We explain why current approaches used for the
blockchains are less fit for resource-constrained devices
(especially IoT devices).

• In the end, we share lessons learned from our study and
list some research opportunities.

II. BLOCKCHAIN BASICS
This categorization of the blockchain platforms is based
on join permissions, protocol execution, and the distributed
ledger. See Table 1 for the parametric comparison of
blockchain types.

A. PRIVATE BLOCKCHAIN
Private blockchain, sometimes called permissioned
blockchain, requires permission or an authorized invitation to
join the network. The user intended to join must possess its
own identity over the network, or an existing user (transaction
initiator, inviter, or a referring participant) validates it.
Generally, an application-specific set of rules is defined
on the network to set up an access control mechanism.
Like the public blockchains, a consensus protocol is in place
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to guarantee stable operation, which is usually deterministic.
A consensus protocol is deterministic if its output remains
the same for each input, provided that the initial state and the
set of arguments are properly supplied. Private blockchains
may adopt a consensus protocol from the available distributed
consensus. Most private blockchain platforms commonly use
Raft [13], Practical Byzantine fault tolerance (PBFT) [14],
Zab [15], and Paxos [16]. For example, in Hyperledger
protocol, a typical commit is generally completed in five
stages. First, the client initiates a service request, the leader
processes the request and multicast results to other nodes in
the replica, replicas further execute results, and replies to the
client. For the request to be valid, the results from all nodes
must be the same.

Permission to join a private blockchain under standard
settings is dependent on the access control mechanism.
The possible rules to enter the network are gated through
the existing members, an authority, or a predefined board
that allows the new entrants. Besides other features, private
blockchains also support smart contracts that can deal with
highly complex transaction logic. When deployed under
distributed settings, smart contracts ensure that unknown
parties do not fully trust each other. This process involves
some trusted parties acting as miners, which under private
settings are usually predefined. Transactions are validated
and executed by these miners based on the consensus
protocol. As a result, private blockchains are relatively faster,
well managed, trusted, legal, and secure than public and
federated blockchains. Hyperledger fabric [17] is the popular
blockchain among private blockchains.

B. PUBLIC BLOCKCHAIN
The operating structure of a public blockchain typically
records transactions and the history of the states. Each
participating node has its global state shared with each
node on the network. A public blockchain is permissionless
from the network settings, meaning everyone can join the
network; however, neither participant completely trusts the
other. Consequently, there is a higher chance that some
nodes may act in a Byzantine manner. Bitcoin [2] is the
first and most powerful public blockchain. A typical Bitcoin
transaction moves states (generally digital coins) from the
source address to the destination. Each participating node
interested in participating in the current round broadcasts
a batch of transactions to the network. Miners (nodes with
powerful computing hardware) verify the transaction to be
included in the next block. Mining includes a cryptographical
process to compute a secure hash. Miners who successfully
solve a Proof of Work (PoW) broadcast a new block to the
network. Proof of Work (PoW) is the consensus protocol
used initially by Bitcoin technology capable of tolerating
Byzantine failure.

C. FEDERATED OR CONSORTIUM BLOCKCHAIN
A group of organizations operates federated blockchains.
Nodes are only connected to a private network. No outsider

can join this private network without permission. As opposed
to the public blockchains, only pre-selected miners in the
consensus can carry out the mining process. Other rules in the
consensus protocol could be application-specific. The banks
and financial institutions mainly use consortium blockchains.

D. DISTRIBUTED LEDGER
A traditional ledger systematically records an ordered list
of transactions in the form of states. While in blockchains,
a distributed ledger is an append-only data structure updated
independently by each participating node. Similarly, the
transaction recording, aggregation into blocks, and chaining
are also processed independently. The distributed nature
of a blockchain ledger is application-dependent; however,
in Bitcoin, it is public and shared to all participants on the
network, thus maintaining a computationally expensive con-
sensus protocol only to handle the access control mechanism.
Transactions recorded on the ledger are immutable, making
participants confident that the records are unmodifiable.
Generally, a system having distributed ledger support is first
to implement a data model on the top layer of the application,
such as a user-account model, a table, or a key-value model.
Secondly, the ledger ownership may vary from entirely open
to the public to private, strictly controlled by a single entity.
Thirdly, one or more ledgers might connect in a peer-to-peer
fashion.

E. DECENTRALIZED CONSENSUS
Transactions recorded to the ledger collectively represent
states globally in the original topological context. Before
adding a state to the blockchain ledger, all parties on
the network must agree upon its identity. Otherwise, it is
computationally difficult to identify who owns what without
trusting anyone. To ensure a transaction to be valid, multiple
parties must come to a consensus. Using a consensus
mechanism is to verify that the updates being made to the
ledger are valid, i.e., the network is under consensus. This
is particularly important to ensure that the upcoming block
being added to the chain is the most recent transaction on
the network, thus lowering the risk of derailing and double-
spending [18] in some cases. Note that this mechanism
may be partially absent or even completely unavailable in
various real-world applications. However, Bitcoin has no
central authority; multiple parties come to a consensus and
validate the transaction. While in this context, there is a
higher probability that some nodes may act in Byzantine.
Therefore, the consensus protocol must tolerate Byzantine
failure. Generally, consensus protocols are classified into
three bounds (Table 2). One is purely computation based in
which a single randomly selected node decides the upcoming
operation; Bitcoin’s proof-of-work (PoW) [2] is the major
example. Another is communication bound, where nodes
are equally voted and go through procedural grounds to
approach the consensus, such as PBFT [14]. Third comes in
between these two bounds, hybrid protocols, that are aimed
to address the inefficiency of either of these two bounds and
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TABLE 2. Blockchain consensus protocols.

help improve the performance in addition. Prime examples of
hybrid protocols are Proof-of-Authority (PoA) [19], Proof-
of-Elapsed-Time (PoET) [20], and Ripple consensus [21].

F. SMART CONTRACTS
A computer code that monitors the execution and enforces
an agreement in digital form between two or more parties

is known as a smart contract. It triggers agreement to be
executed automatically upon matching a set of predefined
rules. This code enforces, facilitates, and verifies that the
settlement of an automated transaction connects securely.
Computationally, it is a typical form of decentralized
automation similar to the stored procedures invokes upon
a transaction initialized. Current blockchains with built-in
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smart contracts are centered around heterogeneous trans-
action logics. Generally, scripts defining the transaction
logics are application-specific and user-modifiable. However,
these logics are compounded by the inputs, outputs, and
states for cryptocurrencies. Initially, the process starts with
verifying the information by checking their signatures; then,
it validates the difference of the output addresses by matching
with those of the inputs and finally updates states to the
ledger. Current implementation approaches of some leading
blockchain platforms can be distinguished based on the
programming languages. Ethereum scripting functionality
implements token standards that are written in Solidity or
Vyper languages. ERC-20 was the first release of the token
standards but was reportedwith some serious bugs [47]. ERC-
223 and ERC-777 [48] are the next optimallymore secure and
efficient releases, thus resolving ERC-20 bugs.

A typical ERC-20 transaction adopts two ways to execute
a token:

• transfer(): Send tokens to someone’s address.
• approve() + transferFrom(): Deposit tokens
to a smart contract.
Bugs resolved in ERC-223 and ERC-777 token stan-
dards are detailed below:

• ERC223: It resolves the ERC20 bug by creating the
transfer() function that is security-focused.

• ERC777: Solves transaction handling problem in
ERC20 that is focused on mainstream adoption.

NEM [35] is focused explicitly on providing availability
and security to cryptocurrencies. It is promising in faster
execution, more available updates, better security, and lighter
code. Hyperledger fabric [49] smart contract known as
Chaincode, on the other hand, has been built with greater
flexibility. The code is written in the Go language, supporting
user-defined rules in the same language. The below snippet is
a simple example of a Chaincode.

• PutState: A new asset is created, or updates are made
to the already created ones.

• GetState: Pull an asset.
• GetHistoryForKey: Pull archived changes.
• DelState: Delete an asset.
Stellar smart contracts (SSC) [50] are compounded trans-

actions that are linked and executed with several different
constraints. They are implemented as agreements between
multiple parties and are comparatively faster but not Turing
complete [51].

G. CRYPTOGRAPHY IN CRYPTO-CURRENCY
Cryptography is one of the critical components of a crypto-
currency application. Transactions on such applications
essentially demand that the information must be encrypted
before transmitting to the network. Bitcoin uses public-key
cryptography [52] to manage secure data transfer and access.
Logically, this encryption addresses two typical problems,
one to secure user identity and the other to validate ongoing
transactions. Every Bitcoin transaction is assigned with a
digital signature that helps keep its identity in the chain.

This signature can only be generatedwith a valid key pair, i.e.,
private and public keys (ECDSA [53] based on Secp256k1
Elliptic Curve in Bitcoin by default). Just think about a typical
paper cheque in the bank; a public key is similar to the account
number, a private key is identical to the secret PIN, and
the transaction address is the same as the cheque number.
Therefore, in the Bitcoin ecosystem, a user with these keys
has full access to the corresponding account. See Table 3 for a
detailed overview of the security settings in major blockchain
platforms.

H. HASHING
Taking some data as input, performing computation using
some cryptographic algorithm, and producing a fixed-size
output is called hashing. The output is always a fixed-size
cryptographic hash, no matter how large or small the input
data is. Hashes in blockchain help represent the current
state in the global chain. Computationally, it starts from the
first block so-called Genesis, then the hash of the previ-
ous block serves as input in generating the hash of the next
block, linking blocks all the way back to Genesis. Bitcoin
uses the Secure Hash Algorithm (SHA) and the RACE
Integrity Primitives Evaluation Message Digest (RIPEMD)
algorithm [54] for hashing, specifically RIPEMD-160 and
SHA-256. Since each block in a blockchain contains
thousands of transactions; therefore, it is not feasible to store
all of the meta in a block. Bitcoin uses the hash of the Merkle
Tree to cut down data size and the time required to find out
whether a particular transaction belongs to the current block
or not.

I. MINING
Mining is the key feature of blockchain introduced by Bitcoin
blockchain. Logically, Mining is not only the process by
which a new coin is generated but also serves to secure
applications from attacks like frauds and double-spending.
This is how Bitcoin has outsourced processing power in
exchange for the reward for performing validation that
whether a particular transaction in the chain is valid or
not. Recall the subsequent sections where we discussed
cryptography that the second and most critical use of hashing
in Bitcoin is transaction validation (so-called Mining).
To do so, Bitcoin broadcasts each block to the network where
Miners perform Mining by solving a cryptographic puzzle
in exchange for a small fee. This puzzle is cryptographically
hashed with a higher level of difficulty that requires a high
processing power node (computing machine) to get it solved.

J. BYZANTINE VS NON-BYZANTINE
Byzantine problem states that the two nodes on a distributed
network are acting maliciously. The Mining process at its
core entirely relies on the Miners (validating nodes) in the
global network. Any of these nodes may act Byzantine
and mislead others against the protocol. Bitcoin being
the first to face, has successfully addressed this problem
by implementing a consensus protocol (PoW). Several
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TABLE 3. Security settings of major blockchain platforms.

consensus protocols have been introduced to date (see
Table 2), which is sufficiently resolved. PBFT has solved
the Byzantine problem for cryptocurrencies and across
other major blockchain-based implementations. PoW, PoS,
PoET are other popular consensus protocols to date. Many
blockchain applications tolerate Byzantine failure either by
implementing a fault-tolerant consensus protocol or re-
adjusting communication parameters in public or private
settings. Likewise, some blockchain platforms have entirely
separated their consensus layer and handed it over to a single
trusted third party. However, this strategy is totally a one-
point failure and has a comparatively higher implementation
cost. Such blockchain platforms are said to be of the Non-
Byzantine type. Multichain [55] and Parity rely on more than
one trusted third party. Openchain [56] relies on a single
trusted third party called Validator. Overall, the Non-
Byzantine approach is also practically efficient for some
platforms like R3 Corda is using a set of trusted third
parties known as Notaries. Similarly, Hyperledger (v1.0)
switched its consensus components to Kafka [57], formerly
Hyperledger Kafka.

K. ON-CHAIN VS OFF-CHAIN
Chaining transactions into a block, executing consensus
protocols, performing validation, and storing detailed infor-
mation on the chain is time-consuming and computationally
expensive. The concept of On-Chain refers to that everything

is being processed on the same blockchain. Being selective
towards overall scalability under the on-chain paradigm,
Bitcoin is limited to 7 transactions per second [58], while
Ethereum supports up to approximately 15 transactions
per second (TPS) [59]. Further, confidentiality and privacy
under on-chain settings are also not guaranteed. Here comes
the concept of off-chaining, where some features from the
underlying technology are partially compromised or even
entirely not manifested, which is logically the same as
locking a process down at a specific point and off-loading
its computation along with the data to somewhere else.
Sidechains [60] are also centered on this concept. The
off-loading process may involve one or more trusted interme-
diary(ies) for various purposes, i.e., validating transactions,
storing data, multiparty verifications, privacy, confidentiality,
and even switching to other crypto-currency platforms. Off-
chaining is beneficial to some applications such as financial
institutions and banks, where theywant to incorporatemanual
settings between the process. Several applications on top of a
specific blockchain platform are introduced, which partially
manifest their fundamental layers underlying the technology.

L. SQL VS NoSQL
SQL databases are mainly used where it is required to store
highly structured (relational) data with predefined schemas.
On the other hand, NoSQL is used for the unstructured
(non-relational) data with usually a dynamic kind of schema.
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TABLE 4. Data model of major blockchain platforms. Terms and abbreviations used in table are: KV:Key Value, FB:File Based, AB:Account Based, BB:Block
Based, DL:Distributed Ledger.

According to the CAP theorem [61], strictly structured SQL
databases cannot be truly distributed where one has to choose
a feature between availability and consistency. However,
NoSQL databases overcome this problem by replacing the
term consistency with eventual consistency [62]. NoSQL
databases with eventual consistency have become success-
fully efficient in storing decentralized data of the blockchain
applications. There are several mature realizations with
such implementation, i.e., BigchainDB, MongoDB [63],
RethinkDB [64] and so on. This is particularly true that the
NoSQL databases are scalable, fault-tolerant and fast but have
serious limitations (in some cases) in their ability to tolerate
Byzantine failures. BigchainDB being the major adopter of
the NoSQL paradigm suffers from the same limitation. Nodes
at such a platform completely trust each other, meaning that
a single malicious node can destroy the entire database.

III. BLOCKCHAIN DATA MANAGEMENT AND ANALYTICS
Current blockchain approaches dealing with high-
dimensional security problems have proven themselves
promising. However, they have serious limitations in their
ability to scale with the ever-growing data, thus resulting
in a problem called the storage bloating problem [65]. One
entire blockchain in the original Bitcoin takes 66 GB, and
this number is increasing by 0.1 GB per day [65]. The
estimated size will be 40 TB in 20 years. One choice is
to adopt a simple key-value store that is highly scalable in
providing mild storage but fails to support rich queries and
lacks ACID properties. Another choice is relational storage
that supports SQL and ACID properties with structured
data storage. In between are the applications that make
other tradeoffs between the data model, semantics and

performance. Table 4 provides detailed insights into the
data models of major blockchain platforms. One challenge
in securing blockchain applications requires the ledger to
be tamper-proof. Therefore, nodes must broadcast the most
recent ledger copy to the network each time a transaction is
committed. This consequently increases network traffic that
further may introduce latency and communication overheads.
Such a model demonstrates the crucial importance of its
implementation over resource-constrained devices like IoT.
Today’s blockchain platforms reside on the top layer of
the key-value store (see Fig. 2). They are promising in
security but generally less efficient in supporting analytical
and rich query processing. Being selective towards the
alternatives, a recent attempt has been made by Sheng [66].
They designed ForkBase, an efficient storage engine to
support blockchains and forkable applications. However, they
have not evaluated its performance on resource-constrained
devices (e.g., devices equipped with low-power processors
like ARM).

Another challenge in scaling blockchains is to minimize
communications and limit data transfer. One solution is to
design a well-structured database that could support flexible
data types. Such a design may offer partial support to the
analytical queries. Applications like ForkBase may not best
serve this purpose. Another solution is to employ some
classification techniques on the raw data to extract and
transfer only useful information. However, this approach has
other limitations from the implementation prospect where
network settings are public. It is essential to transfer complete
information to perform block mining in such applications.
This makes the implementation resource intensive, especially
for the devices equipped with low-power processors.
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IV. PERFORMANCE BENCHMARKS
We evaluate Ethereum (Geth v1.8.27-stable) blockchain to
quantitatively analyze design and performance gaps as a
data processing platform. This practical demonstration is
to help understand what we have theoretically explained
in previous sections and identify real-time performance
gaps in Ethereum blockchain for high-power and resource-
constrained devices. This is of particular importance to
mention here that to the best of our knowledge, none
of the current blockchains are practically implemented on
resource-constrained devices, e.g., devices equipped with
ARM processors. We chose Ethereum for our testing because
of its universality and the specialty to support all types of
implementations, e.g., public and private (in some cases
where privacy is added on top layers of the framework,
for example, Hydrachain [67] and Quorum [6]). Ethereum
supports both contract and non-contract types of user-defined
accounts that are directly read into states. These states are
partially stored in cache memory and fully stored on disk-
based storage (a key-value store). On the other hand, other
major blockchains have limits in these respects. Therefore,
being a universal platform, we think Ethereum can provide
better insights into design and performance derivatives.
We use BLOCKBENCH [12], a benchmarking framework
that contains all necessary data processing workloads to
analyze lower layers of the blockchain applications. We use
microbenchmarks to determine the consensus layer’s overall
performance, which further involves operations by the data
model layer and the execution layer, respectively. We use
Analytics and IOHeavy workloads in our testing where
the former is similar to the OLAP (Online Analytical
Processing) workload while the latter evaluates the Input-
output (IO) performance by sending random reads and writes
to the local states in bulk. All experiments are performed on
two machines, first on the Linux-based server with 2 GHz
24 core Intel CPU and 190G memory, and second on the
Linux-based server with 2.6 GHz 8 core ARM CPU and 16G
memory. Each geth (Go-Ethereum) execution was initialized
to use a maximum of 4 peer nodes in the commodity cluster.

A. CPUHeavy WORKLOADS
In order to evaluate the execution layer, we initialized
CPUHeavy smart contract to sort an integer array of 1 million
numbers. We used four miner nodes and invoked smart
contracts for each miner node one by one. We mea-
sured CPU workloads (core, crypto, consensus, runtime,
runtime.memmove) and latency by repeating each Run
three times under the same configurations. A results-based
comparison for both Intel and ARM servers with the varying
number of miners is shown in Fig. 3, Fig. 4, and Fig. 5.
We noticed varying workloads and the execution time for
each Runwhile keeping execution-related configurations the
same. For example, in Fig. 3, the CPU usage on the Intel
server compared to ARM in the core module is higher for
one and two miner nodes, while it is lower for 3 and 4 miner

nodes, respectively. On the other hand, in the third execution
Fig. 5, the Intel server has higher and fluctuating margins,
while the ARM has lower and consistent clock time. There
is also a significant margin in all modules among the three
executions having the same configuration and input sizes.
Likewise, the latency for 3 and 4 miner nodes on the Intel
server in all three Runs is higher than the ARM. Overall,
the results have shown a similar trend for all modules except
latency in all three Runs under CPUHeavy workloads with
varying miner nodes, see Fig. 3, Fig. 4, and Fig. 5. Upon
further inspecting results in plots for each Runwith a varying
number of miner nodes, we observed a decline in CPU
usage for the core module on the ARM server and a notably
significant raise in the latency on Intel. This indicates that
Ethereum incurs module-specific overheads for both Intel
and ARM servers which we observed is associated with the
execution of high-level EVM byte code. Notably, a five times
higher latency on an Intel server with an input size of 4 miner
nodeswhile sorting 1million integer numbers is quite unusual
in all three Runs. However, It runs out of memory and
continuously hangs while sorting 10million or more numbers
while keeping other settings the same.

B. IOHeavy WORKLOADS
We evaluate the data model layer by deploying an IOHeavy
smart contract on Geth. All the executions are based on
some read and write operations performed into key-value
tuples since Ethereum uses LevelDB, a key-value store. Both
operations execute queries with 10000 key-values written
or scanned into the database. Fig. 6 shows results with
varying input sizes for Intel and ARM servers. We observed
a significant unusual increase in latency of both read and
write operations on ARM servers for all four runs. It incurs
a higher latency on the ARM server for each input size
(No. of miners) because it is associated with the process of
validation overheads in block mining. Similarly,We observed
a higher memory usage on the ARM server than on the Intel.
The core execution for the INTEL Read operation with one
miner node, as shown in Fig. 6a, takes almost 50% longer than
ARM. However, it is stable in another Run with two miner
nodes. While in Fig. 6d, We observed an opposite behavior of
the write operation on the run with two miner nodes where
ARM execution takes 60% longer than INTEL. Again, this
behavior is due to the execution of high-level EVM byte code
in the core part, similar to the results of CPUHeavyworkloads
explained in the previous section. Overall, we noticed better
results on the Intel server for IOHeavy workloads. Fig. 6
shows the detailed results.

C. ANALYTICS WORKLOADS
We deployed analytics workloads on the data model layer by
executing three types of analytical queries mentioned below:

q1 - total transaction value from block i to e
q2 - largest transaction value from block i to e
q3 - largest account balance from block i to e
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FIGURE 3. Performance comparison of Ethereum CPUHeavy sorting workloads with 4 miner nodes [1st Execution].

We initialized the geth account with 10,000 blocks, each
block packed with three transactions. Generating three trans-
actions per block is already defined in the BLOCKBENCH.
However, we executed the queries mentioned above one by
one, first with one miner node and then with twominer nodes.
We observed a notably high latency while executing q1 with
one miner node on the ARM server and fluctuating results in
CPU usage. Fig. 7a and Fig. 7b shows the results. However,
we observed a less significant difference in the results of
queries q2 and q3.

V. BLOCKCHAIN FOR IoT
Because blockchains are secure and flexible, their application
in many areas is looking for a major breakdown that could
somehow ease its adoption. A most recent trend of their
adoption has been observed towards IoT. IoT applications
produce and transfer tons of privacy-sensitive information

over the network each second, thus tempting targets of
various attacks. Deploying such applications into remote
areas requires devices to be lightweight. Such devices are
equipped with low energy and minimum storage. These con-
straints make conventional security methods computationally
expensive on low-power devices. Blockchain overcomes the
challenge mentioned above; however, the implementation
is not straightforward due to the complex computation
required for block mining. Recent attempts [68]–[71]
of implementing blockchain into IoT are largely organized
by making considerable changes in the design space.

While conceptualizing sensitive information of IoT mainly
in the smart home context, we observed some critical secu-
rity limitations. The underlying transaction information is
exposed to each node in the original blockchain design, where
a block is broadcasted to each node for verification, thus
rendering significant privacy concerns. Such a data structure
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FIGURE 4. Performance comparison of Ethereum CPUHeavy sorting workloads with 4 miner nodes [2nd Execution].

is only suitable for the applications where blockchain
settings are public, e.g., Bitcoin and Hyperledger. Authors
revealed that today’s IoT devices lack essential security
considerations that are demonstrated in [69], [72] and [73].
Once again, the challenge is to design an application-agnostic
architecture and should cope with both blockchain and IoT
settings.

A. WHY TRADITIONAL BLOCKCHAINS ARE LESS
SUITABLE FOR IoT
Conventional blockchain approaches on resource-constrained
devices are still insecure, especially when IoT devices are
mobile. While reviewing and analyzing the latest solutions in
the previous sections, we observed some vulnerabilities that
are still challenging in their implementation.

A simple vulnerability attack could compromise device
identification based on similar data patterns in IoT. Attackers
analyze user patterns in the sensed data to identify the
device, thus compromising user privacy. One solution is

mentioned here [70]; another is to analyze data records
locally and transfer only meaningful information to the
network. However, this solution requires the data model
to be well structured to handle the update requests
wisely.

Since blockchains are immutable, therefore, transactions
are permanently stored in the database, thus potentially
increasing the data size, which is not suitable because of
the limited storage capacity of the IoT devices. Additionally,
hackers may easily breach the over-flooded data.

Another significant limitation is the mining process (solv-
ing cryptographic puzzles) that requires much computation
at the local node. Once again, it is reasonably infeasible for
resource-constrained devices as they are equipped with low-
power processors (e.g., ARM).

Blockchain’s approach to processing the information on
the chain opens many challenges for the IoT. We found that
the major blockchain platforms use key-value stores to store
data records because of their lightweight implementation,
thus compromising rich query support. Traditional SQL
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FIGURE 5. Performance comparison of Ethereum CPUHeavy sorting workloads with 4 miner nodes [3rd Execution].

databases in this context are not feasible because of their
large size. On the other hand, IoT requires data models to
be efficient in terms of rich queries and analytics support.
One solution is to go for off-chain storage, which could
lead to user deanonymization, thus referring to blockchain
technicalities. However, study [68] shows that this limitation
can still be dealt with using other approaches.

Cloud applications generally accommodate different net-
works receiving and transferring hundreds of thousands of
records each second. This accommodation requires regular
support to take topological and structural insights into
account, which we usually found discriminating towards
blockchain settings. None of the current blockchain platforms
fully support heterogeneous networks due to the aforemen-
tioned security constraints to the best of our knowledge.

VI. DISCUSSION
In this section, we share our experiences learned during
this study. We first demonstrate the technological insights
that have been under focus in recent years. We discuss

the pros and cons of the design principles currently being
followed by most blockchain platforms. We then list some
research opportunities for future blockchains, specifically
from the data processing perspective and their integration into
resource-constrained devices like IoT.

A. DESIGN AND PERFORMANCE TRADE-OFFS
Since researchers discovered blockchains promising in terms
of security, many technology components are still demanding
major optimization. Even under the security context, serious
flaws were identified and fixed after the giant Bitcoin was
exposed to some major attacks [74], [75]. In this context,
we present performance statistics of some major blockchain
platforms in Table 5. We calculated system maturity scores
by assessing system components according to the KPMG
blockchain maturity model [76], which measures blockchain
risk areas against the CMMI maturity model [77]. A flexible
system design lets users develop applications according to
their specifications and standards.
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FIGURE 6. Performance comparison of Ethereum IOHeavy workloads.

FIGURE 7. Performance comparison of Ethereum analytics workloads.

After Bitcoin introduced its simple state replication
machine, the significant focus of the technology diverted
towards the development of private blockchains. Themodules
discovered under private settings [78] differ in their structural
and topological abstraction because of the public settings,
which typically remain unchanged (see Table 6). These
modules are largely responsible for the application-specific
dependencies, thus uncovering scalability concerns under
private settings. Being selective towards computational

requirements, today’s blockchains require highly specialized
hardware to perform the block verification (or mining in
some PoW blockchains). We see this requirement as a huge
barrier for the blockchains (not all types of consensus) in
their implementation on resource-constrained devices such
as devices with low-power processors. One extreme is the
applications with high-security requirements where current
blockchains perfectly fit themselves. Another extreme is the
applications demanding both security and high performance,
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FIGURE 8. Performance statistics of major blockchain platforms.

blockchains for such applications require specialized hard-
ware. However, applications like IoT less support spe-
cialized hardware because of various constraints described
here [68], [79], [80].

Major blockchains to date implicitly follow traditional
design principles that do not cope with the heterogeneous
types of integrations. However, a few of them [5], [21],
[35], [55], [81] allow partial customizations like user-defined
settings for block size, block time, and even building
a business-specific application on the top layer of the
framework. However, they are less flexible in supporting
modifications in the design invariants. Keeping structural
and design specifications fixed has benefits, especially in
public network settings. We also stress the importance
of the data processing and storage approaches, which are
currently limited to key-value stores [9], [82], [83], thus
compromising analytics and advanced querying support.
BigchainDB and ForkBase are some of the latest attempts in
this context. Table 5 and Fig. 8 show detailed insights into the
performance statistics of major blockchain platforms. Com-
putationally, we conclude that blockchain technology in both
private and public settings is still expensive for low-power
devices.

1) SCALABILITY
A quest to achieve scalability for public and private
blockchains continues. Even with the satisfactory improve-
ments in performance, especially for the private blockchains,
current approaches are less incapable of dealing with the
large-scale data workloads. Additionally, the block mining
and consensus mechanism consume tremendous amounts
of energy, thus making their implementation infeasible for
resource-constrained devices.

2) STORAGE AND DATABASES
Generally, today’s blockchain platforms reside on top of
the key-value stores like LevelDB and CouchDB. These
databases are lightweight but less capable of supporting
indexing and advanced queries. Further, such platforms
are less suitable for cross-application integration because
they produce a wide range of raw data. Therefore, new
approaches are needed to cope with multiple types of data
stores efficiently.

3) ACID BASED DATABASE TRANSACTIONS
Like the traditional databases where ACID properties help
resolve many problems in the relational databases and
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TABLE 5. Performance statistics of major blockchain platforms. Terms and abbreviations used in table are: Avg:Average, TP:Throughput, TPS:Transactions
per second, DF:Design Flexibility, UD:User-Defined, Cl:Cluster.

TABLE 6. Structural comparison of blockchain platforms. Terms and abbreviations used in table are: Gen:General, Apps:Applications,
Prog:Programmable, Srv:Services, DA:Digital Assess, Fin:Financial, Ch:Channel.

take full advantage of the SQL and advanced querying
capabilities, blockchain requires the same treatment. Sadly,
major blockchains only partially support ACID properties
for the database transactions. They partially practice simple
concurrency control or even not. The key concern here is
the scenario when multiple transactions want to access the
same data; however, the transaction getting endorsed first has
the right to access that particular record first while letting
others wait for their turn. We report two problems here,
first is the latency that all subsequent transactions wait for
their turn. The longer the queue higher the latency. Second,
transactions waiting in the queue are not sure whether that
particular record will be available on their turn or not,
thus turning their wait into waste. Hence, a significant
challenge is to design a concurrency control mechanism
that could handle decentralized transaction management by
guaranteeing ACID properties fully.

4) ANALYTICS-READY EXECUTION ENGINE
Blockchain-enabled applications are entirely transaction
repository platforms; therefore, one possible way would be to
run analytics directly on the raw data. Logically, we stress that
the analytics must be executed in parallel with the execution
engine immediately after the application layer. In this sense,
an input-reader like [84], Hadoop [85] or Flink [86] could
do the batch analytics needed. Edge analytics [87] would be
needed for blockchain-based IoT or smart home applications.
Analytics in blockchains is also important in where cross-
chain or off-chain data integration is needed.

5) CROSS-CHAIN DATA INTEGRATION SUPPORT
It is worth noting that today’s blockchain applications
work independently of the superseded systems, thus making
cross-chain sharing infeasible as different organizations use
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FIGURE 9. Debug-Bench: Instruction layer.

different ledgers. Not putting forth important properties like
safety and liveness across multiple ledgers increases the risk
of sidechain failures in blockchains. A perfect sidechain
construction for PoS and PoW based sidechains is provided
here [88], [89]. Further, an organization developing a new
blockchain application would require integrating with their
existing systems to get previous data records. A higher
probability of data overlapping and inconsistency may arise
in such cases and cases where multiple parties join a single
blockchain network without intermediaries.

VII. DEBUG-BENCH
Thanks to the BLOCKBENCH as the first successful
evaluation framework for blockchain applications. It ana-
lyzes blockchain applications by enabling workload-specific
simple APIs, thus providing detailed benchmarked anal-
ysis based on inputs with varying types of workloads.

The evaluation process with BLOCKBENCH starts with the
initialization of smart contracts over the application layer and
works in parallel with the contract execution process. The
layered structure is explained in Fig. 9.

In our experiments, we used BLOCKBENCH to evaluate
the performance of the Ethereum blockchain; results can
be seen in section III. We observed two complexities
while setting up BLOCKBENCH’s evaluation environment
with Go-Ethereum. First, we observed that a complex
configuration is needed to set up and run benchmarks
for different workloads. At the same time, the guidelines
provided in the original package are insufficient. Secondly,
BLOCKBENCH does not come with a default debugger
as well as no debugging instructions are provided with the
support.

We developed Debug-Bench to facilitate BLOCKBENCH
with an instruction-based debug support in a separate layer.
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Debug-Bench is a VS code (Visual Studio Code) extension
that resides on top of the BLOCKBENCH framework as
an independent layer, explained in Fig. 9. It communicates
with the lower layers to provide a user-friendly instructional
setup and debug support with Delve [90] (a debugger
for Go programs) and GDB (GNU Debugger) [91]. This
extension on the run-time connects to the BLOCKBENCH
and the debugger to pass on the user-defined inputs and
configurations. Additionally, Debug-Bench takes the Go
pprof package as the foundation and provides input
and configuration support to profile Go programs. This
helps gain better insights into the benchmarked results to
understand different modules and components of a program
or application.

In order to debug Go-Ethereum, Debug-Bench requires
installing Go and setting Gopath to the project directories
first. Install Delve and then make and build Geth with the
following commands.

$ make c l e a n
$ go b u i l d −o . / b u i l d / b i n / g e t h −g c f l a g s =

a l l =’−N −l ’ −v . / cmd / g e t h

This will build Geth and create a data file in the path. Now
we need to initiate the Genesis block by starting Ethereum
with the follwing command.

$ . / s t a r t _ e t h e r e um . sh

Once Genesis is initiated, we need to start Geth with
Delve debugger with all the necessary parameters and
configurations. A simple example of Geth start and node
attachment with delve debugger is given in the below
command.

$ d lv debug −−h e a d l e s s −−ap i−v e r s i o n =2
−− l i s t e n =:2345 −−l og −− −−d a t a d i r = /
home / u s e r / . e the reum / d a t a −−nod i s c o v e r
−−r p c a p i ="db , e th , ne t , web3 , p e r s on a l ,
web3 " −−v e r b o s i t y "5" −−pp r o f −−

pp r o f a d d r = " 1 2 7 . 0 . 0 . 1 " −−r p c −−r p c a dd r
" l o c a l h o s t " −−r p c p o r t "8545" −−

r p c co r sdoma in "∗" −−g a s p r i c e 0 −−

maxpeers 32 −−ne two rk i d 9119 −−un lock
" xxxxx " −−password <( echo −n " " ) −−

mine −−miner . t h r e a d s 1

Where --pprofaddr is the IP address of the location
where PPROF needs to be created. This file is used for
profiling the execution results with the GO profiling tool.
Furthermore, "xxxxx" is the address of the Ethereum
account because, in this example, we have connected a node
to the live Ethereum network in real-time.

We tested Debug-Bench with Ethereum blockchain for
both Delve and GDB debuggers. Our extension is easy to
use and works with minimal inputs. It facilitates the imple-
mentation of BLOCKBENCH with two types of debuggers.
However, we are working to include more debuggers and
evaluation frameworks in our future work.

VIII. CONCLUSION
This paper comprehensively reviews blockchain technology,
explicitly highlighting resource-constrained devices’ perfor-
mance, data management, and storage concerns.We analyzed
data processing and performance of the Ethereum blockchain
on two separate devices having different computing power.
Our representation is novel in providing a component-
wise deep understanding of the design principles, which
consequently aids in choosing the most suitable and efficient
approaches to enrich low-power devices with blockchain.
We measured the performance of the Ethereum blockchain
in terms of CPU usage, latency, and execution time for both
high-power and resource-constrained devices. We explained
why current blockchain solutions are less fit to be adopted in
resource-constrained devices, e.g., IoT devices and devices
equipped with low-power processors (e.g., ARM processors).
We developed Debug-Bench, the first VS Code extension that
facilitates BLOCKBENCH in adding basic configuration to
set up an evaluation environment for evaluating, debugging,
and profiling blockchain applications. In the end, we list some
possible research directions from our experience that could
assist in filling the performance gaps between current and
futuristic blockchain implementations.
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