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ABSTRACT A smart contract is a computer programwhich is automatically executed with some conditional
statements such as ‘‘if/then’’. Since smart contracts can include some vulnerable program codes, smart
contract exploit was recently highlighted as one of the severe threats to Ethereum blockchain. As one
of the efficient and effective smart contract vulnerability detection methods, deep learning methods have
been studied due to the fast detection speed and the high detection accuracy. Recently, the deep learning
methods using convolutional neural network(CNN) have actively studied to classify images transformed
from smart contracts into vulnerable or invulnerable. However, while simply transforming a smart contract
into an image and analyzing, semantics and context of the smart contract are ignored to cause false detection
alarms. To detect vulnerable smart contracts whilemaintaining their semantics and context, we propose a new
code-targeted CNN architecture, called CodeNet. To improve the performance of CodeNet, we also design
a data pre-processing procedure, where a smart contract is transformed into an image while maintaining
locality. From the experimental results under various types of vulnerabilities, the proposed CodeNet-based
vulnerability detection method shows the good-enough detection performance and detection time compared
to well-known state-of-the-art vulnerability detection tools.

INDEX TERMS Blockchain, convolutional neural network, deep learning, Ethereum, smart contract,
vulnerability detection.

I. INTRODUCTION
The Ethereum platform [2], or simply called Ethereum, is a
platform powered by blockchain technology. The Ethereum
platform works using three key elements of blockchain tech-
nology, i.e, distributed ledger technology with immutable
records, consensus algorithm and smart contract. While dis-
tributed ledger technology and consensus algorithm make
the Ethereum platform secure, smart contracts make the
Ethereum platform execute the actions to govern associated
assets. Many decentralized finance(DeFi) and other appli-
cations such as logistics, insurance, medicine, energy, Non-
Fungible Token(NFT), and so on, use smart contracts.

The associate editor coordinating the review of this manuscript and
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A smart contract is a computer program, which
automatically executes the actions when predetermined con-
ditions following ‘‘if. . . then. . . ’’ statements in a smart con-
tract are met. Typically, the Ethereum smart contract is
written in a Turing-complete programming language, called
Solidity [20]. Since Solidity uses strongly-typed variable
declaration and has some conditional statements, new smart
contract vulnerabilities such as unchecked low level(LL) calls,
timestamp dependency, and so on are found and exploited by
malicious users. For example, the decentralized autonomous
organizations(DAO)’s smart contract vulnerability due to
reentrancy vulnerability caused a loss of over 150 million
dollars [5] in 2016.

With automated execution and public visibility, smart con-
tract can provide strong reliability without an authorized
third party. Since smart contracts are distributed within the
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FIGURE 1. Overall operational comparison for smart contract vulnerability detection using CNN architectures.

blockchain network and are publicly visible to everyone,
unintended bugs and vulnerabilities are also visible to every-
one. Smart contract vulnerability exploits are serious because
vulnerabilities in the deployed smart contracts cannot be
corrected due to the immutable nature of the distributed
ledger. Due to these characteristics, an attacker can easily
exploit smart contract bytecodes after identifying whether the
vulnerability is present or not. If a smart contract vulnerability
is identified, the attacker can exploit the smart contract to leak
digital assets.

To prevent the vulnerability exploits, smart contract
developer should check potentially vulnerable codes before
deploying smart contracts according to secure coding guide-
lines, called security patterns. Security patterns of smart con-
tract can provide a reliable contract execution to mitigate
losses of digital assets [31]. Note that defining security pat-
terns requires deep knowledge about smart contract execution
because developers need to consume the significant efforts
while identifying vulnerable codes. To resolve such a prob-
lem, automated vulnerability detection tools are developed
to detect vulnerabilities on smart contracts before deploying
smart contracts on the blockchain network.

Automated vulnerability detection tools based on sym-
bolic execution and non-symbolic execution have typically
been used due to its high detection accuracy for known
vulnerabilities. However, symbolic execution tools such as
Oyente [17], Osiris [28], Mythril [6], and Securify [29] are
time-consuming at simulating symbolic paths and are not
suitable for batch vulnerability detection because it is difficult
to explore all executable paths in a contract. Non-symbolic
execution tools such as Slither [8] and Smartcheck [27] are
also time-consuming at simulating symbolic paths and cause
false negatives because they highly depend on the predefined
detection rules.

Compared to other static analysis methods, deep learn-
ing methods show good vulnerabilities detection accuracy

without explicit definition of the detection rules from training
datasets [30]. Also, deep learning methods provide constant
execution time by calculating the product of learned weight
values and input values from the smart contract. Especially,
convolutional neural network(CNN)-based detection meth-
ods have generally shown good accuracy when classifying
malware and vulnerable software codes [13], [21]. How-
ever, since CNN-based deep learning models [22], [26] are
designed to classify not software codes but images, they can-
not correctly analyze semantics and context of smart contracts
to cause many false positives and false negatives.

As shown in Fig. 1a, vulnerability detection methods
using general CNN architectures such as Inception [26] and
VGGNet [22] simply classify smart contract vulnerabilities
using 2-D normal convolution with stride. Here, stride are
required to downsample features in feature maps while shift-
ing the input matrix in a convolutional neural network. When
downsampling features in feature maps, stride operations
can destroy semantics and context of the original smart con-
tract. For example, let us assume that an instruction in a
smart contract consists of a sequence of six bytecodes, i.e.,
push(0 × 63) with operands 0xaabbccdd and pop(0 × 50)
with no operand. To analyze the instruction using CNN, the
sequence of bytecodes is transformed into a sequence of six
pixels on a smart contract image. If a stride of size 3 is
applied into the sequence of pixels, six pixels are reduced into
only two pixels. Such downsampling means that a group of
bytecodes, 0xaabb and push(0 × 63), and another group of
bytecodes, 0xccdd and pop(0 × 50), are mapped into each
pixel. As a result, the execution result of the instruction is
different from the original one.

In this paper, to ensure the good-enough performance of
CNN-based vulnerability detection method, we propose a
new code-targeted CNN architecture, called CodeNet. Dif-
ferent from the well-known CNN architectures using stride,
CodeNet is designed to detect vulnerable smart contracts
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without stride while maintaining semantics and context of
smart contracts as shown in Fig. 1b. To detect smart con-
tract vulnerabilities using CNN effectively, CodeNet operates
following a data pre-processing procedure, which makes an
input image for CodeNet to be generated while maintaining
the semantics and context of the original smart contract.

Main contributions of this paper can be summarized as
follows: (1) We propose a new CNN architecture to classify
vulnerable smart contracts while maintaining semantics and
context of the smart contract. Different from other CNN
architectures using stride, we design a new CNN archi-
tecture without stride; (2) We propose an effective data
pre-processing method which maintains locality of the smart
contract for CodeNet. While converting smart contracts into
input images for CNN, we maintain semantics and context of
a smart contract; (3) From experimental evaluation results,
we show that the proposed CodeNet-based vulnerability
detection method provides the good-enough performance
compared to six state-of-the-art vulnerability detection tools.

The rest of the paper is organized as follows. In section II,
we overview well-known smart contract vulnerabilities and
describe the related works. We show the operation of the pro-
posed CodeNet-based vulnerability detection method, which
consists of a data pre-processing step and a vulnerability
detection step, in section III. In section IV, we show the
evaluation results of the proposed CodeNet-based vulnera-
bility detection method under various experiments. Finally,
we conclude this paper in section V.

II. BACKGROUND & RELATED WORK
To understand smart contract vulnerabilities, we overview the
characteristics of well-known smart contract vulnerabilities.
Discussion on smart contract vulnerabilities is confined to the
Ethereum smart contracts programmed using Solidity. Also,
to understand how to detect smart contract vulnerabilities,
we overview state-of-the-art automated vulnerability detec-
tion tools. Since most of automated vulnerability detection
tools analyze smart contract vulnerabilities using the static
analysis method, discussion mainly focuses on symbolic exe-
cution and non-symbolic execution methods.

A. SMART CONTRACT VULNERABILITY
Reentrancy vulnerability is a vulnerability caused by the
fallback function of the smart contract. The fallback function
is called when a smart contract(Alice) receives ether from
another contract(Bob) using call.value function. If Bob
receives ether from Alice and Bob writes send function in
fallback function, reentrancy vulnerability can exist. Actu-
ally, reentrancy vulnerability was found and exploited in a
DAO smart contract to cause the loss of millions of dollars in
June 2016 [5].

Unchecked Low Level Calls vulnerability can exist when
using low level functions such as send, call, callcode
and delegetecall. Since such low level functions do not
revert previous executions when the function execution fails,

such a vulnerability exploit may cause an unexpected side
effect that ether decreased but is not sent.

Timestamp Dependency vulnerability is related to the
block.timestamp variable. The block.timestamp
variable is a global variable that contains timestamp of the
current block as seconds since the Unix epoch. This times-
tamp value is generally used for random value generation in
blockchain. Since blockchain is a public ledger which every-
one can use, the random value should be determined by the
time when everyone can accept. The only value that satisfies
the condition is block.timestamp. It is determined when
a block is mined. However, since a miner can determine the
time when a block is mined, the miner can control the random
value.

Tx.origin vulnerability is closely related to the social engi-
neering attack. In the smart contract, tx.origin contains
the address of transaction creator and is used to confirm
that the function caller is a valid user for some important
functions. Since tx.origin only contains transaction cre-
ator’s information even if an important function is called
by another smart contract, the important function cannot
recognize whether being called in unintended way. Thus,
an adversary can phish a victim to call important functions
using malicious smart contract codes.

B. SYMBOLIC EXECUTION
Even though the performance is limited because of high false
negative rate [7], much time consumption while exploring all
possible program paths, and much emulation time for sym-
bolic paths, symbolic execution methods have widely imple-
mented in well-known smart contract vulnerability detection
tools.

Oyente Luu, et al. [17] proposed a smart contract vulner-
ability detection method, called Oyente, which is based on
control flow graph(CFG) construction and symbolic execu-
tion. Oyente used two inputs including bytecode of a contract
and the current Ethereum global state. After constructing con-
trol flow graph using the bytecode and CFGBuilder, Oyente
runs symbolic executionwith Explorer. Finally, CoreAnalysis
components identify the output value. However, high false
positive rates due to low code coverage limited the perfor-
mance of Oyente.

Osiris Christof Ferreira Torres et al. [28] proposed Osiris,
which is a framework on the top of Oyente’s symbolic exe-
cution engine. They combined symbolic execution with taint
analysis. They constructed a CFG and forwarded every exe-
cuted instruction to the taint analysis component. The taint
analysis component verified that the executed instruction was
a part in the list of defined sources. Being compared to
Oyente, Osiris showed outstanding performance for the inte-
ger bugs vulnerability. However, the performance of Oyente
is still limited by high false positive rate due to low code
coverage.

Maian Nikoli et al. [19] proposed a dynamic analysis
method, called Maian, which extended Oyente. To detect
smart contract vulnerabilities, Maian created blockchain
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transactions in the private blockchain and used them as inputs
for symbolic execution analysis. Maian used systematic tech-
niques to find two violation properties of traces, i.e., safety
properties and liveness properties. Maian asserts that there
exists a trace from a specified blockchain state, which causes
the contract to violate certain conditions for safety properties,
and that some actions cannot be taken in any execution start-
ing from a specified blockchain state in liveness properties.
However, high false positive rates due to low code coverage
limited the performance of Maian.

Mythril [6] To find the symbolic execution paths and
improve code coverage that cause the smart contract
vulnerabilities, there have been several studies. Mythril,
developed by ConsenSys, used symbolic execution using
LASER-Ethereum and taint analysis to detect vulnerabilities.
They modeled smart contract execution as a space of states
and used path formulas in propositional logic. They produced
statements using the logic and identified those statements in
the context of the model.

Securify Tsankov et al. [29] proposed Securify, which is
the abstract interpreter applied to smart contract vulnerability
detection, to provide soundness guarantees over all possi-
ble executions. They symbolically analyzed smart contract
dependency graph and extracted semantic information from
the contract. Next, they checked vulnerable patterns that sat-
isfied conditions. Securify showed lower false negative rate
than Oyente and Mythril.

Manticore Mossberg et al. [18] proposed a detection
method using dynamic symbolic execution. Using emula-
tion, they support both traditional computing environments
(x86/64, ARM) and exotic ones, such as the Ethereum plat-
form. They emulated environment for smart contract execu-
tion to support an arbitrary number of interacting contracts.
From the experimental results using symbolic emulation,
they show that the proposed dynamic symbolic execution
method [18] can remove false positives in the symbolic path
and improve the code coverage.

EOSAFE He et al. [12] presented EOSAFE for EOSIO,
one of the representative Delegated Proof-of-Stake (DPoS)
blockchain platforms. As the first static analysis framework
to automatically detect vulnerabilities in EOSIO smart con-
tracts, They used a practical symbolic execution engine for
WebAssembly(Wasm) bytecode and a customized library
emulator, and heuristic-driven detectors to identify four vul-
nerabilities in EOSIO smart contracts.

RA Chinen et al. [3] presented a reentrancy vulnerabil-
ity analysis tool, called RA (Re-entrancy Analyzer). After
combining symbolic execution and equivalence checking
methods, they showed that reentrancy vulnerabilities were
well verified without prior knowledge of attack patterns and
spending Ether.

C. NON-SYMBOLIC EXECUTION
Slither Feist et al. [8] proposed a static analysis framework,
called Slither, to provide rich information about smart con-
tracts. They generated an inheritance graph and CFG from the

abstract syntax tree(AST) generated from the smart contract
source code. Slither converts the entire smart contract source
code into an internal representation language, called SlithIR.
Next, Slither detects smart contract vulnerabilities while
comparing source codes with a set of predefined detection
rules. However, since static detection tools without symbolic
execution are highly dependent on the predefined detection
rules, the performance of Slither is limited by false negatives.

Ethainter Brent et al. [1] proposed security analyzer,
called Ethainter, for detecting composite information flow
violations in Ethereum smart contracts. For the targeted com-
posite vulnerabilities that escalate a weakness through multi-
ple transactions, Ethainter show the low false positive rate.

MadMax Grech et al. [10] proposed MadMax, for find-
ing so-called gas-focused vulnerabilities in Ethereum smart
contracts. They used a static program analysis technique
that automatically detects gas-focused vulnerabilities using
a smart contract decompiler and semantic queries in data-
log. They effectively identified a permanent denial-of-service
attack on the contract which are hard for programmers to find.

VERISMART So et al. [25] presented VERISMART,
which ensures arithmetic safety of Ethereum smart contracts.
To detect arithmetic bugs, they implemented CEGIS-style
algorithm in a tool that leverages transaction invariants auto-
matically during the verification process. Using real-world
smart contracts, the authors showed that VERISMART is
effective at detecting arithmetic bugs.

Reguard Liu et al. [16] designed Reguard which converts
the smart contract source code into an intermediate form to
automatically detect reentrancy bugs in the Ethereum smart
contracts. ReGuard transforms the converted intermediate
representation(IR)s into C++ codes and uses them as inputs
of fuzzing engine. While analyzing runtime traces generated
by fuzzing engine, Reguard causes false negatives depending
on the performance of fuzzing engine [7].

Contractfuzzer Jiang et al. [14] proposed a novel fuzzer,
called Contractfuzzer, to test smart contract vulnerabilities.
Contractfuzzer analyzes the smart contract vulnerability by
using both the online module and the offline module. In the
offline module, Contractfuzzer collects application binary
interface(ABI) for the smart contract and binary code in
Etherscan. The collected contracts are distributed to the pri-
vate network built in advance and used for fuzzing. In online
module, Contractfuzzer analyzes the collected contract ABI
and binary code, and generates fuzzing input. By using the
fuzzing input, Contractfuzzer gets execution log files which
contain call stack conditions. The execution log files are
used for vulnerabilities detection. Such a dynamic analysis
detection method shows low false positive rates because
vulnerabilities are found from execution results. However,
the performance of Contractfuzzer is highly dependent on
the performance of fuzzer and is limited due to much time
consumption while emulating inputs [7].

Contractward Wang et al. [30] proposed a machine
learning-based smart contract vulnerability detectionmethod,
called ContractWard. In order to reduce the dimensionality
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FIGURE 2. Overall operation of the proposed data-preprocessing step.

of the features, the authors classified functionally simi-
lar opcodes into one category. For example, e.g., PUSH1,
PUSH32 and so on, are classified into a PUSH opcode.
By using features with the reduced dimension, the authors
evaluated the detection performance of various machine
learning-based classification algorithms such as eXtreme
Gradient Boosting(XGBoost), Adaptive Boosting(AdaBoost)
and so on. Since being designed using a CNN model,
the proposed CodeNet-based vulnerability detection method
is similar to Wang et al.’s work. However, the proposed
CodeNet-based vulnerability detection method is different
from Contractward since we propose a new CNN architecture
to improve the performance of a CNN-based smart contract
vulnerability detection method.

III. PROPOSED METHOD
In this section, we describe the overall operation of the
proposed CNN-based vulnerability method. We also explain
the detailed operation of the proposed CNN architecture,
called CodeNet, for effective and efficient smart contract
vulnerability detection. Overall operation of the proposed
CodeNet-based vulnerability detection method consists of
two steps as follows:

• Step 1. Data Pre-process: After the smart contract
source code is compiled into bytecodes, bytecodes are
transformed into a smart contract-based input image for
CNN architectures while keeping semantics and context
of a smart contract. (Lines 2 to 4 in Algorithm 1)

• Step 2. Vulnerability Detection: To detect vulner-
able smart contracts, the proposed CodeNet-based
vulnerability detection method analyzes the smart
contract-based input images. (Line 5 in Algorithm 1)

Algorithm 1 Proposed Method Algorithm
Input: CSol : Smart contract source code
Output: R : Detection result

1: procedure Proposed method(CSol)
2: COP = Compile(CSol)
3: CT = Transform(COP)
4: IC = Image_Mapping(CT )
5: R = Predict(IC )
6: return R
7: end procedure

In the data pre-processing step in lines 2-4, the smart
contract source code is transformed CSol into contract-based
image IC . After compiling the smart contract source code
CSol to bytecodes COP in line 2, the pre-processing module
transforms bytecodes COP into a fixed size of codes CT in
line 3. To generate an input image for CodeNet, the data
pre-processing module converts a fixed size of codes CT
into a contract-based image IC in line 4. In the vulnerabil-
ity detection step in line 5, CodeNet identifies whether the
contract-based image IC is vulnerable or not. Details of each
step are shown in the followings.

A. DATA PRE-PROCESS
In the data pre-processing step, the data pre-processing mod-
ule transforms the smart contract into the contract-based
image following of three functional procedures as shown
in Fig. 2: (1) Compiling the smart contract source code;
(2) Transforming bytecodes into a fixed size of code; and
(3) Mapping bytecodes to a contract-based image, which is
an input image for training CodeNet.

1) COMPILING SMART CONTRACT SOURCE CODE
To train CNN architectures using the smart contract source
code, we compile a high-level source code to bytecodes using
a compiler. Since we consider solidity-based smart contract
codes, solc compiler is used to compile the Ethereum smart
contract source code.

2) BYTECODE TRANSFORMATION
Since the convolution operation of CNN takes fixed size
convolution filter, CNN does not describe an opcode and an
operand. For example, let us consider bytecodes, which are a
part of smart contract, 0×60806240507852. In the Ethereum
operation, 0× 60 is PUSH1 opcode that takes a single argu-
ment as next bytecode. Next bytecode, 0× 80, is operand for
0× 60. That is, 0× 6080 indicate one instruction that pushes
0 × 80 to the stack. Bytecodes, 0 × 60806240507852, are
analyzed in the Ethereum virtual machine(EVM). EVM takes
instruction PUSH1(0 × 60) opcode with argument 0 × 80,
PUSH3(0 × 62) opcode with argument 0 × 405078, and
MSTORE(0× 52) opcode with no argument. However, if the
size of convolution filter is 1 × 3 with stride 3, 0 × 608062,
0 × 405078 and 0 × 520000 are analyzed with convolu-
tion filter. Even though 0 × 6080, 0 × 62405078 and 0 ×
52 should be binded, CNN simply analyzes bytecodes using
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fixed size 1×3 of convolution filter without considering code
semantics.

To perform the convolution operation with a fixed size con-
volution filter, the pre-processing module transforms byte-
codes into a fixed-size code. Note that bytecodes consist
of the Solidity opcodes and arguments for each instruc-
tion. To get the fixed-size codes from bytecodes, we adjust
the number of arguments of each instruction. Even though
most Solidity instruction does not take arguments directly
in bytecodes [32], PUSH opcode takes 1 to 32 number of
arguments. That is, it is possible to get the fixed-size codes
by adjusting the number of arguments for PUSH opcode in
bytecodes.

We determine the reasonable number of arguments to get
the fixed-size code from bytecodes after analyzing PUSH
opcode arguments in 29,022 number of smart contracts.
As shown in Fig. 3, we found 48,069,183 number of PUSH
opcodes in total and estimated their distributions for differ-
ent numbers of arguments. We observed that the ratio of
PUSH opcodes with one or two arguments was 78.8% of
the total. Thus, we determined the number of arguments
into two to get a fixed-size code from bytecodes. For PUSH
opcode with three or more arguments, we only used first two
arguments and removed other arguments. For other opcodes
without arguments or with only one argument, we added zero
padding.

FIGURE 3. PUSH instructions distribution in the 29,022 smart contract.

For example, let us consider bytecodes, 0×
60806240507852, which is a part of a smart contract. Since
0 × 60 is PUSH1 opcode that takes one argument as a
next bytecode, the next bytecode 0 × 80 is operand for
PUSH1(0 × 60). That is, 0 × 6080 indicates one instruction
that push 0 × 80 to the stack. However, since 0 × 60 takes
only one argument, one zero padding is added to 0 × 6080.
As a result, 0 × 6080 is transformed into 0 × 608000. The
bytecode 0 × 62 indicates PUSH3 opcode and takes three
arguments. That is, even though the next 0× 40, 0× 50, and
0×78 bytecodes are operands for 0×62, 0×78 in bytecodes
is ignored since the number of arguments while getting the
fixed-size code is two. Also, since 0 × 52 in bytecodes
indicates MSTORE opcode, which takes no argument, two
zero paddings are added following 0× 52 in bytecodes.

3) MAPPING BYTECODE TO CONTRACT-BASED IMAGE
To generate an input for CNN architectures, the proposed
pre-processing module converts the fixed-size code to an
RGB image. Since both the fixed-size code and the RGB
image are expressed into hexadecimal form, the fixed-size
code can be easily mapped to the RGB image. For example,
let us consider a sequence of bytecodes, 0× 608000604050.
A part of bytecodeswith the size 3 ismapped to anRGBpixel.
That is, one pixel with R: 0 × 60, G: 0 × 80, B: 0 × 00 and
another pixel with R: 0 × 60, G: 0 × 40, B: 0 × 50. Such a
mapping is important because after converting the fixed-size
code to an RGB image, CodeNet adjusts 2-D RGB image
to 1-D RGB image to preserve semantics and context of
bytecodes. For example, 100×100x3 RGB image is adjusted
to 1× 10000x3 because 2-D operation is not validated in the
opcode sequence.

B. VULNERABILITY DETECTION
Since semantics and context of the natural image are not
greatly influenced by independent pixels, the state-of-the-art
CNN architectures [11], [22], [26] showed the good perfor-
mance when considering the color locality of image pixels.
However, the performance of the state-of-the-art CNN archi-
tectures is limited because convolution with stride vanishes
semantics and context of a smart contract while analyzing
dependent pixels. Intuitively, stride make CNN architectures
consider higher-level features rather than pixel-by-pixel fea-
tures. Note that the higher-level feature is extracted, the more
pixel-level features are lost. As a result, semantics and context
of the smart contract are destroyed [13] because a pixel of
contract-based image represents instructions with opcodes
and operands. For example, let us assume that the size of input
is 1 × 8 and the size of stride is 1 × 2 as shown in Fig. 4a.
Here, Ai, Bi, and Ci are feature map values in different layers
and i indicates the position of a feature. A3 in the input layer is

FIGURE 4. Local information variance from feature mapping of CNN
architectures with strides and without strides.
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FIGURE 5. The proposed CodeNet model architecture.

mapped into B2 in the 2nd layer. B2 in the 2nd layer is mapped
into C1 in the 3rd layer. As a result, the vulnerability clas-
sification results of the CNN-based vulnerability detection
methods become inaccurate because the local information
including code sequences are lost. To solve the problem
mentioned above, we propose a newCNN architecture, called
CodeNet, for smart contract vulnerability detection while
maintaining semantics and context of a smart contract. The
proposed CodeNet model architecture is shown in Fig. 5.
In order to maintain semantics and context of the original

smart contract, CodeNet does not use stride. For example,
let us assume that the size of input is 1 × 8 as shown in
Fig. 4b. A3 in the input layer is mapped into B3 in the 2nd

layer. Next, B3 in the 2nd layer is mapped into C3 in the
3rd layer. Even though the stride operation does not change
the local information, feature map values change due to
convolution without stride but do not vanish. As a result,
the vulnerability classification result of the CodeNet-based
vulnerability detection method does not change because the
local information including code sequences does not change.
However, since a non-stride CNN architecture maintains all
features in each layer, the performance of non-stride CNN
architecture is limited due to large amount of computation
and lack of memory due to many parameters.

In order to overcome large amount of computation and lack
of memory due to many parameters, CodeNet is designed
using depthwise separable(DS) convolutions and non-stride
convolutions as shown in Fig 5. The depthwise separable
convolutions technique [4] consists of two types of convolu-
tions, i.e., depthwise convolution and pointwise convolution.
Different from the original convolution where the number
of multiplication increases according to the number of input
channels, depthwise convolution uses a kernel which has the
same number of channels as the input. Thus, the dimension
of the output is always the same as the dimension of the
input. The pointwise convolution uses a 1 × 1 kernel which
projects the channels output by the depthwise convolution
onto a new channel space. As a result, by applying point-
wise convolution following depthwise convolution [4], i.e.,
the DS convolution, we get the output which has the same
dimension as that of the original convolution with stride.
From the empirical analysis results, we observed that even
though the number of parameters decreased more than 80%,
the accuracy of depthwise separable convolution was similar

FIGURE 6. Comparison between GAP and GMP.

to that of the original convolution. To detect smart contract
vulnerabilities while maintaining semantics and context of a
smart contract, we design CodeNet using depthwise separable
convolution [4] following the input layer.

Let us note that 1× n size of filter extracts features from n
number of instructions. For example, 1 × 1 and 1 × 2 sizes
of filters extracts features from 1 and 2 numbers of instruc-
tions respectively. In order to extract n number of features
from instruction sequences in a smart contract, different sizes
of filters in DS convolution layers should be used. Thus,
CodeNet is designed using 10 number of customized filters,
whose sizes are different respectively. To extract features
from different numbers of instruction sequences, 10 number
of output feature maps from every customized filters are
concatenated as a single feature map. As a result, instruction
sequences with different sizes can be analyzed as inputs for
vulnerability detection without information loss. Next, the
concatenated output is operated using a convolution with-
out stride, which transforms an image by applying a kernel
over each pixel and its local neighbors while maintaining
semantics and context of the smart contract image. Output
across 6 number of convolution layers is now fed into a global
max pooling(GMP) layer followed by a softmax layer for
classification. Different from global average pooling(GAP),
which takes the average of the feature map, GMP takes the
maximum of the feature map. Thus, we selected GMP not
to lose the original information in the zero-padded feature
map. For example, as shown in Fig. 6, the GAP results for
zero-padded feature map are 2.3, 5.6 and 15.6 while the
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GAP results for feature map without zero padding are 3.5,
13.5 and 23.5. That is, the GAP results for feature map with
zero padding lose feature values in the original feature map.
Different from the GAP results, the GMP results are the same
regardless of whether padding exists or not.

IV. EVALUATION RESULTS
A. EXPERIMENTAL ENVIRONMENTS
In this section, we show the experimental results for the
vulnerability detection accuracy of the proposed CodeNet.
We measured the detection accuracy and detection time of
the proposed CodeNet-based vulnerability detection method
for four types of vulnerabilities [7]. To show the vulnerability
detection effectiveness of CodeNet, we compared the detec-
tion performance of the proposed CodeNet-based vulnera-
bility detection method with state-of-the-art smart contract
vulnerability detection tools. To show the vulnerability detec-
tion effectiveness of the proposed CodeNet, we compared the
detection performance of CodeNet with state-of-the-art CNN
architectures [22], [26]. To show the vulnerability detec-
tion efficiency of the proposed CodeNet-based vulnerability
detection method, we compared the vulnerability detection
time of the proposed one with state-of-the-art smart contract
vulnerability detection tools.

We implemented the proposed CodeNet-based vulner-
ability detection method using TensorFlow-gpu version
2.2.0, Python version 3.6.9, and Keras version 2.4.2. For
the efficient experiments, we measured the performance
on the Ubuntu 18.04.1 LTS machine with kernel version
4.15.0-36-generic, AMD EPYC 7301 16-Core Processor,
Nvidia RTX 2080 Ti and 128GB memory.

As datasets for training the proposed CodeNet, we used
smartbugwild [23] dataset which consists of 47,518 real-world
contracts. To label vulnerable dataset, we used SolidiFI [9]
which is a bug evaluation tool using 155 code snippets col-
lected from SolidiFI github, Ethereum community, solid-
ity official document and etc. While labeling invulnerable
dataset, we ruled out contracts which contain potentially
vulnerable characteristics. Such potentially vulnerable char-
acteristics for four types of vulnerabilities are determined as
follows [7].

• Reentrancy. Contracts which contain call.value
function are potentially vulnerable to reentrancy vulner-
ability.

• Unchecked Low Level Calls. Contracts which contain
end, call, callcode and delegetecall func-
tion can cause unchecked low level calls vulnerability.

• Tx.origin. Contracts which contain tx.origin vari-
able potentially have Tx.origin vulnerability.

• Timestamp Dependency. Contracts which contain
block.timestamp and now variables potentially
have timestamp dependency vulnerability.

As a result, large sets of vulnerable data and invulnerable
data for each type of vulnerability are collected as shown in
Table 1. From each type of vulnerability dataset, we randomly

TABLE 1. Total number of data for four types of vulnerability.

selected about 70% of data into a train dataset, 20% data
into a validation dataset, and the remaining data into a test
dataset. To avoid false classification due to the invalid data,
we excluded data with compile errors, solidity version errors,
and so on.

Wemeasured performance of the proposed CodeNet-based
vulnerability detection method using two datasets, i.e.,
smartbugwild dataset and smartbugcurated [24]. Here,
Smartbugwild dataset consists of 13,443 smart contracts with
four types of vulnerabilities and Smartbugcurated consists of
79 smart contracts for three types of vulnerabilities except for
tx.origin vulnerability.
While measuring the detection accuracy, we compared the

proposed method with benchmark tools tested on Smart-
bugs [7]. Smartbugs is a publicly available framework
which provides nine benchmark tools to analyze a Solid-
ity smart contract vulnerability. Among nine benchmark
tools, we excluded three tools that showed 0% accuracy
for target vulnerabilities. Finally, six state-of-the art tools
named Mythril [6], Osiris [28], Oyente [17], Securify [29],
Slither [8], and Smartcheck [27] are compared with the
proposed CodeNet.

B. VULNERABILITY DETECTION EFFECTIVENESS
To compare the performance of the proposed CodeNet-based
vulnerability detection method with other state-of-the-art
tools, we measured the accuracy, precision, recall, and
f1-score for vulnerability detection. In Table 2, we show the
evaluation result of the proposed CodeNet-based vulnera-
bility detection method compared with state-of-the-art tools
for smartbugwild dataset. Since Osiris and Oyente do not
support unchecked low-level calls and tx.origin vulnerabil-
ities, detection results for these two vulnerabilities are not
available. Detection results of Securify and Mythril for the
timestamp dependency vulnerability are not available because
Securify andMythril do not detect the timestamp dependency
vulnerability.

Since six state-of-the-art tools use static rule to detect
vulnerable smart contracts, false positive rates of these
tools are low. Thus, precision values of six state-of-the-
art tools are relatively higher than the other performance
metrics. Compared to other vulnerabilities, most of detec-
tion tools showed the best detection performance for reen-
trancy vulnerability except Mythril. That is, Oyente, Slither,
Smartcheck and the proposed CodeNet-based vulnerability
detectionmethod showed the good performance in reentrancy
vulnerability detection. Next, while Smarcheck showed the
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TABLE 2. Vulnerability detection accuracy, precision, recall and f1-score results comparison to static analysis tools on smartbugwild.

FIGURE 7. Average performance comparison of six well-known tools and
the proposed CodeNet on smartbugwild dataset.

best performance for reentrancy and tx.origin vulnerabil-
ities, the proposed CodeNet-based vulnerability detection
method showed better performance than Oyente and Slither.
In unchecked low-level calls vulnerability detection, the pro-
posed CodeNet-based vulnerability detectionmethod showed
98.79% for accuracy, 98.26% for recall and 98.75% for
f1-score, which are the highest values. While Smartcheck
showed 100%of performance in tx.origin vulnerability detec-
tion, the proposed CodeNet-based vulnerability detection
method and slither showed the good-enough performance.
In timestamp dependency vulnerability detection, the pro-
posed CodeNet-based vulnerability detectionmethod showed
the best performance, i.e., 94.35% for accuracy, 98.66%
for recall and 94.35% for f1-score. Also, Osiris and Oyente
showed very low recall and Mythril did not detect any
timestamp dependency vulnerabilities.
In Fig. 7, we show the average detection results of six

state-of-the-art tools and the proposed CodeNet-based vul-
nerability detection method for the smartbugwild dataset.
The proposed CodeNet-based vulnerability detection method

showed the best performance on accuracy, recall and f1-score
by as much as 97.66%, 98.57% and 97.63%, respectively.
Even though precision of the proposed CodeNet-based vul-
nerability detection method showed worse results than the
others, the proposed CodeNet-based vulnerability detection
method showed good-enough result by as much as 96.79%.

In Table 3, we compared the detection performance of
the proposed CodeNet-based vulnerability detection method
with six state-of-the-art static tools for smartbugcurated

dataset, where there is no Tx.origin vulnerability. Since
there exist no labels for benign dataset, we only measured
recall. In reentrancy vulnerability detection, Oyente, Slither,
Smartcheck and the proposed CodeNet-based vulnerabil-
ity detection method showed good performance, which is
similar to that for the smartbugwild dataset. In unchecked
low-level calls vulnerability detection, Mythril, Smartcheck
and the proposed CodeNet-based vulnerability detection
method showed the best performance. In timestamp depen-
dency vulnerability detection, Smartcheck and the proposed
CodeNet-based vulnerability detection method showed the
best performance by as much as 60.00%. On average,
Mythril showed the best performance by as much as 86.20%.
However, Mythril did not detect timestamp dependency

TABLE 3. Vulnerability detection rate comparison to static analysis tools
on smartbugcurated dataset.
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FIGURE 8. ROC curve for differnet CNN architectures.

TABLE 4. Vulnerability detection accuracy, precision, recall and f1-score
results comparison to static analysis tools on smartbugwild.

vulnerability. The proposed CodeNet showed the best per-
formance by as much as 85.51% on average for reen-
trancy, unchecked LL calls and timestamp dependency
vulnerabilities.

To show that the performance of CodeNet is better than
other CNN-based image classification architectures, we mea-
sured the performance of well-known CNN architectures,
i.e.,VGG and Inception, for smartbugwild dataset. To mea-
sure the performance using same dataset, we modified
2-dimensional CNN layer parameter from to 1-dimensional
one since CodeNet gets 1-dimension image. Table 4 shows
the summary of the evaluation result using different CNN
architectures for smartbugwild. We observed that CodeNet
showed overwhelming performance for four types of vulnera-
bilities except for precision for reentrancy and unchecked low
level calls. Note that VGGNet model did not learn features
from the dataset. This is because the last convolution layer of
VGGNet is designed as a fully connected layer, which easily
loses the local feature information [15], [33]. Compared to
VGGNet, Inception and CodeNet do not lose the local feature
information because of GAP and GMP before the last layer
respectively [15], [33].

Since precision and f1-score are calculated by dividing
false positives whose values in VGGNet are 0%, the detection
results are not available for VGGNet. In reentrancy vul-
nerability detection, even though CodeNet showed best per-
formance in accuracy, recall and f1-score, Inception model
showed the best performance in precision by as much as
99.16%. In unchecked low-level calls vulnerability detection,
CodeNet showed overwhelming performance except for pre-
cision. Even though VGGNet showed the best performance
in recall, it is because VGGNet always predicted into True
value. Inception showed bad performance in accuracy, recall
and f1-score by as much as 62.25%, 22.41% and 36.30%,
respectively while showing good performance in precision.
In tx.origin and timestamp dependency, CodeNet outper-
formed other models. VGGNet showed the best performance
in recall for timestamp dependency vulnerability detection
because it always predicted timestamp dependency vulnera-
bility into True.
To show the performance of CodeNet at all classifica-

tion thresholds, we observed Receiver operating characteris-
tic(ROC) curves for different CNN architectures. As shown in
Fig. 8a, VGGNet shows diagonal lines which mean a random
guess. In Fig. 8b, Inception generates a line in the upper left
corner of coordinate (0,1) for the reentrancy vulnerability,
which means low false negatives and false positives. Also,
lines for tx.origin and time dependency vulnerabilities are
lower than reentrancy vulnerability, which means that there
exist more false negatives and false positives than reentrancy
vulnerability. Compared to these two well-know CNN archi-
tectures, CodeNet generates upper left lines for reentrancy,
tx.origin and time dependency vulnerabilities, which means
low false negatives and false positives.

C. VULNERABILITY DETECTION TIME
To compare the vulnerability detection speed, we measured
average and total execution time of six state-of-the-art tools
and the proposed CodeNet vulnerability detection method.
The results are shown in Table 5. Six state-of-the-art tools
using static rules tools. In particular, Mythril, i.e., the slowest
speed among evaluation tools, took minutes while detect-
ing vulnerabilities on average. Slither, which showed fastest
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TABLE 5. Vulnerability detection time comparison to static analysis tools.

speed among state-of-the-art tools, took secondswhile detect-
ing vulnerabilities on average. Since CodeNet uses a deep
learning technique which shows almost constant execution
time, CodeNet took 0.13 seconds, 0.13 seconds, 0.13 sec-
onds, 0.15 seconds for reentrancy, unchecked low-level calls,
tx.origin and timestamp dependency, respectively. That is,
it took only hundreds of milliseconds, which is at least
14 times smaller than other tools. Also, since a deep learn-
ing technique can be accelerated using a hardware(HW)
accelerator such as graphics processing unit(GPU) and field
programmable gate array(FPGA), the vulnerability detec-
tion speed of CodeNet can be reduced much as accelerator
evolves.

V. CONCLUSION
In this paper, we proposed a new smart contract vulnerabil-
ity detection method using a new CNN architecture, called
CodeNet. From evaluation results, we showed that the pro-
posed CodeNet was much faster than state-of-the-art meth-
ods. Under various types of vulnerability, we showed that
the proposed method shows higher effectiveness in detec-
tion performance and faster detection time than state-of-the-
art smart contract vulnerability detection tools. Specifically,
to show the vulnerability detection performance of CodeNet,
we compared the vulnerability detection performance of
CodeNet with existing well-known state-of-the-art vulnera-
bility detection tools. On average, CodeNet showed the best
performance on accuracy, recall and f1-score with 98.79%,
98.26%, and 98.75% respectively. Also, the CodeNet takes
only hundreds of milliseconds, which is at least dozens of
times faster compared to the other tools. From these evalu-
ation results, we believe that the proposed method can help
to provide more accurate and useful smart contract vulner-
ability detection to improve the smart contract development
environment.

APPENDIX
We overview examples which show four representative smart
contract vulnerabilities, i.e., reentrancy, unchecked low level
calls, timestamp dependency and tx.origin.

A. REENTRANCY
Listing 1 shows SimpleDAO contract. SimpleDAO con-
tract has donate function which donates ether to contracts

Listing 1. SimpleDAO contract.

and withdraw function to withdraw his donated ether from
the contract. Withdraw function has reentrancy vulnerabil-
ity because it uses msg.sender.call.value function to with-
draw ether in Line 8 before updating state variable in
Line 9. Listing 2 shows attack contract example. Using a
fallback function in Line 5 in Listing 2, the attacker re-
enter SimpleDAO’swithdraw function.Whenwithdraw func-
tion in Line 6 in Listing 1 is called, SimpleDAO contract
checks whether the account has enough money or not in
Line 7. Although previous withdraw function is not com-
pleted and the contract state is not updated yet in Line 9 in
Listing 1, call.value function sends ether to the attacker con-
tract accounts and call the attacker’s fallback function in
Line 5 in 2 again. It repeats until SimpleDAO contract’s ether
decreases to zero.

B. UNCHECKED LOW LEVEL CALLS
Listing 3 shows unchecked low level calls example.
Unchecked_call contract sends _amounts to msg.sender
using send function in Line 8 after decreasing balances and
etherLeft variable values in Lines 6-7. If send function fails in
Line 8, previous variable values should be restored. But these
low level functions do not restore the previous execution.
As a result, despite the failure, balances and etherLeft variable
values will be decreased.
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Listing 2. ReenAttack contract.

Listing 3. Unchecked_call contract.

C. TIMESTAMP DEPENDENCY
Listing 4 is Lotto contract that randomly select winner by
block.timestamp hash. If the miner check block.timestamp
hash value before the mining, the miner will win the jackpot.

Listing 4. EtherLotto contract.

D. TX.ORIGIN
Listing 6 is TxAttackWallet contract to exploit TxUserWallet
in Listing 5. If the victim is phished and sends some ether to

TxAttackWallet, the attacker can steal the ether from TxUser-
Wallet because the attacker can get the original address in
Line 14 in Listing 6. It will call transferTo function in Line 7
in Listing 5 with the owner’s address.

Listing 5. TxUserWallet contract.

Listing 6. TxAttackWallet contract.
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