
Received February 26, 2022, accepted March 17, 2022, date of publication March 24, 2022, date of current version March 30, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3161974

The Probability Density Function of Bearing
Obtained From a Cartesian-to-Polar
Transformation
KEVIN R. FORD 1, (Member, IEEE), AND ANTON J. HAUG 2, (Life Member, IEEE)
1Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA
2Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA (Retired)

Corresponding author: Kevin R. Ford (kevin.ford@jhuapl.edu)

ABSTRACT The problem of tracking a two-dimensional Cartesian state of a target using polar observations
is well known. At a close range, a traditional extended Kalman filter (EKF) can fail owing to nonlinearity
introduced by the Cartesian-to-polar transformation in the observation prediction step of the filter. This is a
byproduct of the nonlinear transformation acting on the state variables, which make up a bivariate Gaussian
distribution. The nonlinear transformation in question is the arctangent of Cartesian state variables X and Y ,
which corresponds to the target bearing. At long range, the bearing behaves as a wrapped Gaussian random
variable, and behaves well for the EKF. At close range, the bearing is shown to be non-Gaussian, converging
to the wrapped uniform distribution when X and Y are uncorrelated. This study provides a concise derivation
of the probability density function (PDF) for bearing for the EKF observation prediction step and explores
the limiting behavior for this distribution while parameterizing the target range.

INDEX TERMS Bearing, Gaussian, Kalman filter, PDF.

I. INTRODUCTION
In radar target tracking applications [2], [3], [9], a Kalman
filter (KF) is often used to track objects within the field of
view of a sensor. In this context, sensors typically deliver
measurements in polar coordinates. However, the state vector
of the object being tracked is typically defined in Cartesian
coordinates. This necessitates a Cartesian to polar transfor-
mation to make predictions for the sensor measurements.

The azimuthal angle, or bearing, can be computed using
only the coordinates in the east-north (EN) plane; the coordi-
nate system is shown in Fig. 1. This coordinate transformation
requires one to take an inverse tangent

2 = arctan
(
X
Y

)
, (1)

where X and Y are elements of a vector X and compose the
bivariate Gaussian distribution

X ∼ N(µ,6), (2)

where the mean and covariance are

µ =
[
µX µY

]T
, (3)
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and

6 =

[
σ 2
X ρσXσY

ρσXσY σ 2
Y

]
. (4)

The bearing of the target (2) described in (1) is a random
variable that behaves as a wrapped Gaussian [19] at long
range. For Sections II and III random variables are referred
to with capital letters, whereas deterministic variables are
lower-case.

When the target approaches the origin (collocated with the
sensor), the variance increases, and the distribution for 2
resembles a uniform (−π, π] random variable. As the behav-
ior becomes less Gaussian, the bearing prediction begins to
diverge and can lead to poor tracking accuracy for the KF.
This problem can be ameliorated using a debiased converted
measurement filter [1], [3], [16], which converts the polar
measurements to Cartesian coordinates prior to executing the
algorithm. Another approach is to maintain the filter state
in polar coordinates, as was done in [10] and [11], thereby
avoiding polar-to-Cartesian conversion in exchange for main-
taining a nonlinear dynamic model. A third alternative is to
use observation only (O2) inference to infer the state directly
from the observations [17].
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FIGURE 1. The two dimensional coordinate system used for this paper,
where R denotes range and θ denotes azimuth (bearing) angle from
North.

TheMonte Carlo samples ofX and Y for a radially inbound
trajectory drawn from the PDF given in (2) are shown in the
left half of Fig. 2. For simplicity, X and Y are considered
uncorrelated with equal variance for this example. Clearly,
the bearing samples calculated from the Cartesian samples
using (1) diverge at close range, as shown in the right half
of Fig. 2.

FIGURE 2. Plot of radially inbound target (45 degrees from North,
σ = 0.2 data miles); Cartesian Gaussian samples (left) and computed
bearing samples (right).

The available literature has already explored aspects of the
distributions resulting from the Cartesian to polar transfor-
mation [12]. For instance, the Cauchy distribution is also the
ratio distribution for two independent, zero-mean Gaussian-
distributed random variables. Several authors have performed
statistical analyses of the Cauchy distribution [4], [20], but
the arctangent of a Cauchy distributed random variable only
represents the end-game behavior of 2 at the zero range and
assumes that X and Y are independent.
Other authors have explored the properties of the arctan-

gent distribution and its relationship with the folded standard

Gaussian distribution [22]. These results have value, but do
not address the more general wrapped Gaussian distribution
or its application to target tracking performance.

While we focus on the target bearing in this study, it should
be noted that for the target range (R) given by

R =
√
X2 + Y 2, (5)

where X and Y are drawn from (2), and the probability distri-
bution is a bivariate non-central chi distribution [15]. This dis-
tribution simplifies to the well-known Rice distribution [23]
when X and Y are independent, with equal variance σ 2.

R ∼ Rice (µR, σ ), (6)

where

µR =

√
µ2
X + µ

2
Y. (7)

In the following sections, we focus on the derivation of the
PDF of the bearing and its effect on the Kalman filter perfor-
mance. The derivation is presented in Section II. The asymp-
totic behavior of the distribution as the target approaches the
origin is examined in Section III. The implications of the
asymptotic behavior of the bearing for a Cartesian EKF with
polar measurements are discussed in IV.

II. DERIVATION OF THE PROBABILITY DENSITY
FUNCTION FOR BEARING
Some authors, such as Haug, have already attempted to derive
a density similar to the one desired here. However, the pre-
cise PDF for the bearings was not properly determined in
[8] and [9]. Improper use of the direct transformation given
in (1) causes a loss of sign information when taking the
quotient of two variables because the inverse tangent function
is periodic over (−π /2,π /2), not the full circle. Mallick [18]
pointed out in a recent note that the true transformation used
in many tracking applications is the four-quadrant inverse
tangent, despite many books, journals, and conferences writ-
ing the measurement function as in (1). In practice, a four-
quadrant inverse tangent (such as that used in MATLAB)
is used.

Using the two-quadrant inverse tangent, as Haug did
in [8], [9] results in PDFs with peaks centered on the true
bearing as well as the true bearing ±π , as shown in Fig. 3.
Further analysis shows that the PDF in [9] integrates to two
over the full support, disqualifying it as a true PDF.

This study uses simple polar relations and variable trans-
formations to obtain the PDF of a bearing random variable
derived from aCartesian to polar transformation. The PDF for
the bearing can be used to assess the viability of the Gaussian
assumption for the bearing as a function of range.

The development of the PDF for bearing begins with the
polar-to-Cartesian transformations of R and 2 into X and Y
in an EN coordinate system given by

X = R sin(2), (8)
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FIGURE 3. Incorrect application of inverse tangent function to obtain PDF
for 8 results in double peaks (µX = µY = 3 and σ = 2 for this example).

and

Y = R cos(2). (9)

For convenience later in the derivation, it was helpful to
redefine the mean values of X and Y in terms of their polar
equivalents. Specifically, we define a mean target range µR
with (7) and mean bearing µ2 such that

µX = µR sin (µ2) , (10)

and

µY = µR cos (µ2) , (11)

with

µ2 = arctan
(
µX

µY

)
. (12)

The joint distribution for X and Y can be written as

fXY(x, y) =
1

2πσXσY
√
1− ρ2

exp

[
−

z (x, y)

2
(
1− ρ2

)], (13)

where

z (x, y) ≡
(x − µX)

2

2σ 2
X

+
(y− µY)

2

2σ 2
Y

−
2ρ (x − µX) (y− µY)

σXσY
. (14)

Substituting the results of (8)-(12) into (13) yields

fXY (x(r, θ), y(r, θ))

=
1

2πσXσY
√
1− ρ2

× exp
[
−
a (θ) r2 − b (θ) r + c

d

]
(15)

where

a (θ) =
sin2 (θ)

σ 2
X

+
cos2 (θ)

σ 2
Y

−
ρ sin (2θ)
σXσY

; (16)

b (θ) = 2µR

(
sin (µ2) sin (θ)

σ 2
X

+
cos (µ2) cos (θ)

σ 2
Y

)
−
2ρµR sin (θ + µ2)

σXσY
; (17)

c = µ2
R

(
sin2 (µ2)

σ 2
X

+
cos2 (µ2)

σ 2
Y

−
ρ sin (2µ2)
σXσY

)
;

(18)

d = 2
(
1− ρ2

)
. (19)

A change of variable [5] can now be performed to obtain
the joint distribution in polar coordinates, fR2(r, θ), using

fR2(r, θ) = |J (r, θ)| fXY (x (r, θ) , y (r, θ)) (20)

where J(r, θ) is the Jacobian [21] of the transformation equa-
tions (8)–(9) given by:

J(r, θ) =

∣∣∣∣∣∣∣
∂ (r sin (θ))

∂r
∂ (r sin (θ))

∂θ
∂ (r cos (θ))

∂r
∂ (r cos (θ))

∂θ

∣∣∣∣∣∣∣ = −r . (21)

This leads to

fR2(r, θ) =
r

2πσXσY
√
1− ρ2

× exp
[
−
1
d

(
a (θ) r2 − b (θ) r + c

)]
. (22)

The joint PDF for R and 2 can be simplified by completing
the square in the exponential argument to obtain

fR2(r, θ) =
r

2πσXσY
√
1− ρ2

exp

[
c−

b2 (θ)
4a (θ)

]

× exp

[
−
a (θ)
d

(
r −

b (θ)
a (θ)

)2
]
. (23)

To obtain the marginal PDF of 2, we integrate (22) with the
support of R, resulting in:

f2(θ ) =

∞∫
0

fR2(r, θ)dr

=
1

2πσXσY
√
1− ρ2

exp

[
c
d
−

b2 (θ)
4a (θ) d

]

×

∞∫
0

r exp

[
−
a (θ)
d

(
r −

b (θ)
a (θ)

)2
]
dr . (24)

Using standard integral methods or referring to [6], we can
obtain the marginal distribution for 2:

f2(θ ) =
1

2πa (θ) σXσY
√
1− ρ2

× exp

(
c
d
−

b2 (θ)
4a (θ) d

)[
d
2
exp

(
b2 (θ)
a (θ) d

)

+ b(θ )

√
πd
a(θ )

8

(
b(θ )

√
2

a (θ) d

)]
, (25)

where (x) is the cumulative distribution function (CDF) of the
standard Gaussian distribution N(0,1).
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When X and Y are uncorrelated (ρ = 0) with equal
variance (σX = σY = σ ), equation (27) simplifies to

f2(θ ) =
1
2π

exp

[
−
µ2
R

2σ 2

]

+
α(θ )
√
2πσ 2

exp

[
−
µ2
R − α(θ )

2

2σ 2

]
8

(
α(θ )
σ

)
.

(26)

where

α(θ ) ≡ µR cos (θ − µ2). (27)

The asymptotic behaviors of the general PDF (25) and sim-
plified PDF (26) are discussed in Section III.

III. ASYMPTOTIC BEHAVIOR OF THE
BEARING DISTRIBUTION
The mixed uniform and Gaussian behavior of the distribution
given in Equation (26) may not be immediately obvious.
It only becomes so by observing the asymptotic behavior of
each term in (26) with respect to µR. The first term of (26) is
designated as f2(1)(θ ), and the second term as f2(2)(θ ). Let

f(1)2 (θ ) =
1
2π

exp

[
−
µ2
R

2σ 2

]
. (28)

Now it is more easily shown that

lim
µR→0

1
2π

exp

[
−
µ2
R

2σ 2

]
=

1
2π

(29)

and

lim
µR→∞

1
2π

exp

[
−
µ2
R

2σ 2

]
= 0. (30)

Thus, as µR approaches zero, f2(1) (θ ) becomes a wrapped
uniformPDF over (-π, π], whereas asµR approaches infinity,
f2(1)(θ ) vanishes.

Now examine the second term in (26) and define

f(2)2 (θ ) =
α(θ )
√
2πσ 2

exp

[
−
µ2
R − α(θ )

2

2σ 2

]
8

(
α(θ )
σ

)
. (31)

From (27) it is clear that α(θ ) approaches zero as µR
approaches zero because α(θ ) is linear with respect to µR.
Therefore, as µR approaches zero,

lim
µR→0

α(θ )
√
2πσ

exp

[
−
µ2
R − α(θ )

2

2σ 2

]
8

(
α(θ )
σ

)
= 0. (32)

Thus

lim
µR→0

f(2)2 (θ ) = 0, (33)

and the result for the distribution when X and Y are uncorre-
lated with equal variance is:

lim
µR→0

f2 (θ)→ U (−π, π). (34)

The standard normal CDF also exhibits simple behavior
in limiting cases, such that it approaches constant scaling
factors.

lim
µR→0

8

(
α(θ )
σ

)
=

1
2

(35)

and

lim
µR→∞

8

(
α(θ )
σ

)
= 1. (36)

As µR increases, the influence of f2(2)(θ ) becomes more
pronounced. Taking the Taylor series expansion of the leading
term in (31) about µ2 yields:

α(θ )

σ
√
2π
=

µR

σ
√
2π

[
1−

1
2
(θ − µ2)

2
+ . . .

]
. (37)

For θ near µ2 (37) reduces to

α(θ )
√
2πσ

≈
µR
√
2πσ

. (38)

Similarly, the exponential term in (31) becomes

µ2
R − α(θ )

2

2σ 2 ≈
µ2
R

2σ 2 (θ − µ2)
2. (39)

By applying the approximations in (38) and (39) to (31) we
can find the limit of f2(2)(θ ) as µR approaches infinity:

lim
µR→∞

f(2)2 (θ ) ≈
1

√
2π
(
σ
µR

) exp

− (θ − µ2)2

2
(
σ
µR

)2
. (40)

Because f2(1)(θ ) vanishes for large µR and f2(2)(θ ) can be
approximated using (40), the PDF of the bearing at long
ranges can be written as a (wrapped) Gaussian distribution:

lim
µR→∞

f2 (θ)→ N

(
µ2,

(
σ

µR

)2
)
. (41)

A simple test can be used to demonstrate that the PDF of
2 behaves like the wrapped Gaussian distribution in (41).
Fig. 4 shows that as the ratio µR/σ increases (where the true
σ is constant), the sample standard deviation (represented by
the blue dots in Fig. 4) quickly converges to the approximated
standard distribution. From the plot in Fig. 4, the difference
becomes indistinguishable at approximately µR/σ = 5. The
approximated standard deviation was obtained by taking the
square root of the variance from (43), whereas the true stan-
dard deviation refers to the standard deviation of the samples
found on the right-hand side of Fig. 2.

A plot of the bearing PDF from Equation (26) for various
bearing values and mean ranges is shown in Fig. 5. A careful
inspection of the plot in Fig. 5 reveals that the distribution
is a wrapped Gaussian centered on the nominal bearing
(µ2 = 45 ◦) when µR is large. It can be seen that as µR
decreases the PDF transitions from that of a wrapped Gaus-
sian with support (−π, π] to Uniform over the same support.
The asymptotic behavior of the generalized version of

the distribution (25) is not as convenient as that of the
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FIGURE 4. Plot depicting sample standard deviation and its
approximation found by taking the square root of the variance for the
wrapped Gaussian distribution.

FIGURE 5. Plot of the bearing PDF for various values of µR with constant
σ = 0.1 as the standard deviation.

simplified version. At long range, the distribution is some-
what similar to a wrapped Gaussian, but for the sake of sim-
plicity, this paper will focus on the behavior of the distribution
at close range. The key finding from this section relates to the
expected value of the distribution

lim
µR→0

E [2] = 0. (42)

The conclusion drawn in (42) is clear for the simple case
presented in (34) when the distribution approaches uniform
over (−π , π ]. Determining the expected value for a general
distribution requires additional computation.

The limiting behavior for each of the scalar values pre-
sented in (16)–(19) is simple to determine,

lim
µR→0

a (θ) =
sin2 (θ)

σ 2
X

+
cos2 (θ)

σ 2
Y

−
ρ sin (2θ)
σXσY

(43)

lim
µR→0

b (θ) = 0, (44)

lim
µR→0

c = 0, (45)

lim
µR→0

d = 2
(
1− ρ2

)
. (46)

At close range the general distribution becomes

lim
µR→0

f2 (θ) =
d

4πa (θ) σXσY
√
1− ρ2

. (47)

The right-hand side of (47) is a function of θ because of
the presence of a(θ ), and is unlike (34). However, simple
trigonometric identities can be used to show that a(θ ) is

FIGURE 6. Plot of the bearing PDF at µR = 0 with σX = 0.7, σY = 1.0, and
ρ = −0.5.

twice periodic over (−π, π]. Thus, (42) also applies to the
generalized version of the distribution in (25).

This result can also be computed explicitly using the
method to find the moments of wrapped random vari-
ables [19]. An example of the distribution at zero range is
shown in Fig. 6.

Curiously, the distribution for the case in Fig. 6 resembles
the incorrect distribution shown in Fig. 3. However, the dual
peaks in Fig. 3 are due to the ambiguity introduced by the
arctangent function in general, while the peaks in Fig. 6 are
artifacts caused by a(θ ). This distribution also integrates to
unit area, unlike the incorrect distribution presented earlier.

In the next section, it will be shown how (42) impacts the
Kalman filter position estimates and causes them to become
lose accuracy at close ranges.

IV. IMPACT ON KALMAN FILTER PERFORMANCE
The Kalman filter algorithm is well known to perform
optimally for linear functions of Gaussian distributed vari-
ables [13]. A Cartesian KF, which relies on measurements in
polar coordinates, clearly violates the linearity requirement
owing to nonlinear functions (1) and (5).

The state model is described by

xn = f (xn−1)+ vn−1, (48)

where the vector v is zero-mean Gaussian distributed with
covariance Q. The state vector (including the velocity terms)
is assumed to be

xn =
[
xn yn ẋn ẏn

]T (49)

where xn and yn represent the Cartesian position of the target
at time n. Note that in this section, bold lower case letters refer
to vectors, while bold upper case letters refer to matrices.

Using the constant velocity (CV) assumption for the state
model, the function f(x) is linear as follows:

f (xn-1) = Fxn-1. (50)

The state transition matrix F for this model is

F =


1 0 1t 0
0 1 0 1t
0 0 1 0
0 0 0 1

, (51)
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where 1t is the time difference between measurement
updates.

The state (x̂) and error covariance (Pxx) predictions at time
n based on observations up to time n-1 are also linear for the
CV model:

x̂n|n−1 = Fx̂n−1|n−1, (52)

Pxxn|n−1 = FPxxn−1|n−1F
T
+ Qn, (53)

where Qn is the process noise matrix. Assuming that the
target is equally maneuverable in all directions and the mea-
surement update period is constant, the process noise matrix
becomes

Q =



q (1t)3

3
0

q (1t)2

2
0

0
q (1t)3

3
0

q (1t)2

2
q (1t)2

2
0 q (1t) 0

0 0 0 q (1t)


,

(54)

where q denotes the process noise intensity. In practice, the
process noise intensity is selected by the filter developer to
account for the uncertainty of the dynamicmodel. This tuning
parameter directly influences the position variance terms on
the main diagonal of the predicted covariance (53).

The observation model is

zn = h (xn)+ wn, (55)

where the vector w is Gaussian distributed with zero mean
and covariance matrix S and is assumed to be independent of
v. The covariance matrix for the observations is often treated
as independent for the range and bearing measurements

S =
[
σ 2
R 0
0 σ 2

2

]
. (56)

The observation model is the same pair of nonlinear functions
discussed previously

h (xn) =
[
rn
θn

]
=

[ √
x2n + y2n

arctan
(
xn
/
yn
) ] (57)

In Section III it was shown that the resulting distribution
for the bearing will appear Gaussian at long range, and pro-
gressively less Gaussian as µR shrinks. Given the knowledge
of the probability density of the target state for all prior
measurements p(xn|z1:n−1), the predicted bearing approaches
zero at close range,

ẑn|n−1 =


∫
�x

√
x2n + y2np (xn|z1:n−1)dxn

0

. (58)

The residual vector ξn for the filter is

ξn = zon − ẑn|n−1, (59)

using the latest observation data, zon. The residual in the bear-
ing dimension increases as the bearing predictions become
uniformly randomly distributed. Residual growth of this

nature is indicative of a poorly matched model to the tracking
problem, and may result in poor tracking performance [7].

Another key takeaway is that increasing the process noise
has the same effect as decreasing µR, and vice versa, because
of its direct impact on the variance terms in (16)–(18). This
means that a filter designer can unintentionally decrease the
accuracy of their EKF if they are not judicious in their selec-
tion of the tuning parameter q given their measurement update
period constraints.

In many target-tracking applications, target maneuvers are
not known a priori; therefore, they are often modeled as
random accelerations in the CV model. A filter designer
focused on tracking a maneuvering inbound target must
include appropriate levels of process noise to account for
these maneuvers based on the knowledge of the target’s
maneuverability. However, a combination of large process
noise and closing the target range can have a negative impact
on the filter performance owing to the combination of non-
linear and non-Gaussian behavior of the bearing model.

Many have chosen to address the nonlinearity of h(xn)
for mixed Cartesian and polar tracking problems using the
EKF [11], [14], [24]. In the EKF formulation, the estimate
of (55) is simplified as

ẑn|n−1 = h
(
x̂n|n−1

)
. (60)

However, linearizing the filter about the state and covariance
does not address the fact that, at a close range, the arctangent
function is still quite nonlinear.

To demonstrate the effects of range and process noise on
the tracking performance, a series of simple experiments were
performed using a CV Cartesian EKF to track a simulated
radially inbound target (approaching the sensor origin at a
45◦ angle clockwise from north) with range and bearing
measurements. In a real target tracking application, such as
tracking a CV inbound anti-ship missile with a naval radar,
expected target maneuvers must be modeled to stay within
the process noise. No a priori knowledge of the maneuver is
available to the tracker, so the process noise must encompass
the largest possible deviations from the CV model. However,
if the target executes no maneuver, it is easy to accidentally
set the process noise intensity too high.

For this experiment, RMS position error statistics were
collected over the course of 100 Monte Carlo runs, where
measurements were generated by adding Gaussian random
errors consistent with Equation (56) to the truth trajectory. For
simplicity, and to highlight the plight of the target tracking
filter designer, no process noise was added to the target
trajectory. Fig. 7 demonstrates the impact of the nonlinearity
of the bearing at close range as well as the impact of varying
the modeled process noise intensity q.

The results of this simple experiment are in agreement with
the findings of Haug and Williams [11]. In their study, the
error performance for a variety of Cartesian and spherical
tracking filters showed that, at close range, the tracks that
relied on a Cartesian-to-spherical transformation tended to
diverge, unlike the fully spherical filters. The results are also
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FIGURE 7. RMS position error plot for radially inbound target using
various process noise intensity values (with units of nmi2/sec3),
1t = 1 second, σR = 0.25 nmi, and σθ = 1 degree.

in agreement with the findings of Lerro and Bar-Shalom [16],
who showed that a debiased converted measurement filter
offers superior error and consistency performance compared
to the Cartesian EKF.

V. SUMMARY
In this study, we derived and characterized the behavior of
the PDF of a bearing random variable that is a function
of two Gaussian distributed random variables (X and Y ).
The behavior of bearings at close range is often overlooked
in other treatments of Kalman filters that use a Cartesian
coordinate system to define the state vector and its dynamics.
By using this PDF, filter designers can understand the range
at which the Gaussian assumption for bearing may cause
unwanted behavior in their target trackers. Alternatively, they
may wish to use an different tracking method, such as an
all-spherical EKF [11], a converted measurement filter [16],
or an O2 algorithm [17] to reduce or eliminate the impact of
these track divergence issues.

The PDF for the bearingwas provided aswell as its limiting
behavior, which explains why the density appears Gaussian at
long range. In this case, the approximate mean and variance
were provided. At the near-range limit, the expected value
of the bearing approaches zero. This property of density was
then taken with knowledge of the Cartesian EKF to show that
the position estimates behave poorly near the origin and can
degrade the tracking performance, especially when coupled
with poor selection of process noise.
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