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ABSTRACT Convolutional Neural Network (CNN) plays an important role in several machine learning tasks
related to speech, image, and video processing applications. The increasing demand for faster processing
in real-time applications requires high-speed implementation of CNN. However, in general, CNN involves
higher latency due to the computationally intensive behavior of the convolutional layer.While state-of-the-art
architecture provides efficient dataflow of the convolutional operations, this paper proposes a hardware-
efficient, high-speed convolution block for ASIC implementation of the CNN algorithm. The proposed
convolution block is designed using a novel bit-level-multiply-accumulator (BLMAC) with a modified
Booth encoder and a Wallace reduction tree. The critical path of the overall architecture is significantly
shortened due to the time-optimized implementation of the proposed BLMAC, which is a main component
of the convolution process. Critical path analysis and dataflow strategy are also provided to demonstrate
the acceleration of the proposed design. The proposed architecture was synthesized using Synopsys Design
Compiler to prove its accelerated processing. The ASIC synthesis results of the proposed architecture using
a 65nm standard cell library show at least 53% reduction in latency, 52.2% reduction in area-delay product,
and 54.2% reduction in power-delay product compared to the state-of-the-art architecture.

INDEX TERMS Convolutional neural network (CNN), convolution layer, modified Booth encoder, Wallace
reduction tree, ASIC.

I. INTRODUCTION
Convolutional neural network (CNN) has demonstrated high
level of efficacy and accuracy in a variety of complexmachine
learning tasks, including intelligent speech and image
processing, natural language processing, pattern recognition,
object detection, anomaly detection, and many others [1]–[5].
Followed by AlexNet, the CNN variant proposed by Alex
Krizhevsky et al., which could show excellent performance
in the ImageNet competition in 2015 [6], several efficient
variants of CNN algorithms such as Visual Geometry
Group (VGG), GoogleNet, ResNet, etc. have been pro-
posed. While these architectures offer better performance,
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the computational complexity of the CNN is increased
exponentially as the number of parameters is increased.
Hence, the reduction in computation-time becomes a chal-
lenging task to speed up the CNN for various machine
learning applications. Several efforts have been made to
accelerate CNN for intelligent edge computing applications.
From a hardware implementation perspective, digital signal
processing (DSP) chips, graphical processing unit (GPU),
field programmable gate array (FPGA), and application
specific integrated circuit (ASIC) are possible platforms for
the CNN implementation. Among these existing hardware
platforms, ASIC, generally, requires high initial development
cost, but it is the most efficient one that realizes high
throughput, low latency, and small chip area with low power
consumption [7].
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The CNN is typically composed of a multiple convo-
lutional layer followed by a pooling layer and a fully
connected (FC) layer [8]. It is often required to have a
large number of convolutional layers in CNN in order to
increase the functional accuracy [9]. However, as the number
of convolutional layers increases, so does the computational
complexity and the cost of implementation. Since the com-
putation of convolution involves more than 95% of the CNN
operation [10], several efforts have been made to efficiently
accelerate the convolution process. Ardakani et al. [11] pro-
pose an efficient architecture to realize convolutional layers
of VGGNet. In addition, they coherently integrate the
dataflow of the convolutional process with the computational
core of the FC layer of the state-of-the-art VGG architecture.
Based on their validated dataflow, this paper proposes
an area-time-power efficient processing element (PE) for
convolutional layer computations. The proposed architecture
employs a modified Wallace reduction tree (WRT) and a
modified Booth encoder (MBE) with bit-level pipelining to
accelerate the processing. The contributions of this paper are
outlined as follows:

1) A novel high-speed bit-level-multiply-accumulator
(BLMAC) based on modified WRT and MBE is
designed to reduce the latency of CNN
operations.

2) A novel dual-clock strategy is proposed to improve the
hardware utilization as well as overall latency where
the MAC operations are accelerated with a clock with
a short period while their accumulation operates with a
longer clock period.

3) An area-time-power efficient hierarchical structure of
the processing element with bit-level error correction
is proposed.

4) An efficient dataflow strategy is proposed to efficiently
utilize neurons with lower latency.

5) Precise critical path analysis is performed and critical
path delay is significantly reduced to accelerate the
computation of convolutional layer.

6) The effectiveness of the proposed architecture is
demonstrated by the results estimated through the
synthesis of proposed design.

The rest of the paper is organized as follows. Section II
introduces the CNN structure and research background for
several CNN architectures. The VGG16 network and its
convolutional behavior are also described in this Section.
The architectures of the proposed BLMAC and processing
element are presented in Section III. In Section IV, the
dataflow design and latency analysis of the proposed
architecture are presented. Section V provides the critical
path analysis to find the appropriate timing constraints for
effective hardware utilization and high-speed processing of
convolution operation. In Section VI, the result of ASIC
synthesis of the proposed architecture is discussed and
compared with the existing design. Applications of the
proposed architecture are also discussed in this Section.
Finally, Section VII concludes this paper.

FIGURE 1. The typical functionality of a convolutional layer.

II. ALGORITHM AND ARCHITECTURE OF CNN
This section summarizes the operation of the CNN algorithm
and VGGNet architecture with 16 layers, namely, VGG16.
A widely used reference hardware architecture is also
introduced for VGG16 implementation.

A. CNN AND VGG16 ARCHITECTURE
The CNN extracts the relevant features through a series
of convolutional layers, max pooling layers, and fully-
connected (FC) layers. After passing through these layers,
the input is turned into a single vector, which is easy
to be processed for recognition and prediction, etc. The
convolutional layer is the core building block of CNN since
it is used to extract feature information by carrying out the
convolution operation of the output from the previous layer
with the weights of the current layer. To look at the functional
aspect, the convolution process applies a set of learnable
filters called kernels to the input to create a feature map [12].
Fig. 1 depicts the typical convolutional layer functionality
of passing an input image through the kernel to produce an
output image. The input and output images of the convolution
operation are called input feature map IFMap and output
feature mapOFMap, respectively. Considering the 3× 3.2-D
kernel as shown in Fig. 1, the width and height of IFMap are
2 pixels larger than those ofOFMap, which takes into account
the padding of the boundary.

The pooling layer is inserted after each convolutional layer,
which reduces the number of parameters and speeds up by
down-sampling the adjacent pixels to retrieve the optimal
features. Features extracted by the convolution and pooling
layers are flattened into a single vector whose element is
composed of small details of the input image at high-level
features. While the extracted high-level features could be
connected to the output layer, a FC layer is finally used to
map the extracted features into the desired outputs.

VGG16 is a CNN architecture proposed by Simonyan and
Zisserman in 2015 [13]. At the ILSVRC 2014 competition,
VGG16 showed outstanding results, taking second place
in the overall event. The model achieved 92.7% top-5
test accuracy on ImageNet, a dataset of over 14 million
images belonging to 1000 classes. The VGG16 network
architecture is summarized in Table 1 [14]. The VGG16
architecture contains 13 convolutional layers grouped into
five convolution sets. Each set uses 3 × 3 convolution filters
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TABLE 1. VGG16 network architecture for the classification of RGB image
of size 224 × 224 for 1000 classes.

across the entire network. In Table 1, Conv(3 × 3 × m, N )
denotes the convolution of the input image with N 3 × 3 ×
m kernels to create N output images. After each convolution
set, a 2 × 2 max pooling is performed to reduce the output
image size. Three FC layers are followed at the end of the
last pooling layer, and the final Softmax function converts the
values to indicate their relative importance.

As the study of [15], Quan Liu et al. demonstrated that the
VGG16 has the fastest convergence behaviour, the shortest
training time, and the highest functional accuracy in CNN
performance. Based on this comparative study, the VGG16
is recommended as one of the most suitable models for the
realization of CNN.

B. CONVOLUTION OPERATION
As the name of the algorithm implies, the convolutional layer
is the most important and computation-intensive module in
VGG16 [16]. The convolution operation extracts features
of the image by multiplying each element of the kernel to
the input image and adding the results together. The kernel
moves through the whole IFMap by a suitable predetermined
stride. To avoid loss of boundary information, the VGG16
architecture pads zeros around the boundary of the IFMap.
Algorithm 1 shows a pseudo code of a 2-dimensional

operation in the convolutional layer, where element-wise
multiply-accumulate (MAC) operation between the IFMap

Algorithm 1 Pseudo Code for 2-D Operation in Convolution
Layer
input : 2-D IFMap I (WI ,HI ),

KernelW (WW ,HW ),
Stride S

output: 2-D OFMap O(WO,HO)
WO = (WI −WW )/S + 1
HO = (HI − HW )/S + 1
for i← 0 to HO − 1 do

for j← 0 to WO − 1 do
for k ← 0 to HW − 1 do

for l ← 0 to WW − 1 do
Oi,j+ = Ii×S+k,j×S+l ×Wk,l

and the kernel is depicted. Note that the 2-D kernel size and
stride in VGGNet are fixed to 3 × 3 and one pixel for the
convolutional process, respectively.

As shown in Algorithm 1, CNN is basically based onMAC
computation. Therefore, from a hardware implementation
point of view, the optimization of MAC has a strong potential
to speed up the entire CNN processing. Many studies
have proposed efficient hardware implementations based on
various CNN structures to achieve speed improvement [11],
[17]–[20]. This paper focuses on optimizing the MAC
computation of CNN and the PEs that contain the MAC
unit. Therefore, a reference architecture of CNN is needed
to verify the proposed MAC and the PE architecture. Arash
Ardakani et al. [11] have proposed a novel computation of
the convolutional layer using VGGNet with a 2-D kernel size
of 3 × 3, and demonstrated better performance than other
approaches [17]–[20]. Therefore, we have used the structure
of [11] as a reference architecture to verify the performance
of the proposed PE. However, since the CNN algorithms are
basically based on MAC computations, the proposed PE can
also be applied to other types of CNN implementations.

III. ARCHITECTURE OF PROPOSED PROCESSING
ELEMENT
A. REFERENCE ARCHITECTURE OF THE
CONVOLUTION ENGINE
As can be seen in the literature, CNN hardware accelerators
are of two basic types, e.g., (i) the fine-grained structure
and (ii) the coarse-grained structure [21]. While fine-grained
implementation uses a large number of small PEs, the coarse-
grained architecture uses fewer PEs having more computing
power. In this work, we propose a hierarchical architecture
that can improve the overall performance, taking into account
coarse-grained PEs with finer-granularity of operation within
the MAC.

Fig. 2 shows the reference architecture of a convolution
engine (CE) using the proposed PE architecture. The CE
consists of a weight generator and three PEs for 3 × 3 con-
volution, where each PE performs the MAC computations
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FIGURE 2. A reference architecture of the convolution engines (CE).

FIGURE 3. Architecture of the proposed BLMAC.

within one kernel window. Each of the PEs receives an input
pixel and its weight from the weight generator. The dataflow
indicating the order in which the input pixels and weights are
fed in each clock cycle is described in Section IV.

B. ARCHITECTURE OF PROPOSED BIT-LEVEL MAC
Since the MAC operations comprise the core computation of
the PEs, in order to overcome the low throughput drawback
of the existing PE architectures, we propose here a speed-

optimized bit-level MAC, namely BLMAC. The MAC unit
generally performs multiplication followed by successive
accumulation. In an integrated form, both the operations
can be combined by realizing it through three different
sections: (i) partial product (PP) generation, (ii) partial
product addition, and (iii) output accumulation. We present
here a novel architecture of MAC unit which is the core
computing unit of the proposed PE as shown in Fig. 3. The
MAC unit multiplies the pixel values in each row of the
IFMap by a weight value, and then adds the product value
to the accumulated result.

Specifically, the Booth encoder can be used to generate
the partial products (PPs) corresponding to the multiplication
of an input pixel with a kernel value. The modified Booth
encoder (MBE) proposed in [22] is used to reduce the number
of PPs in half, i.e.,m/2 instead ofm, form-bit multiplication.
The performance of the CNN algorithm converges in 16-bit
resolution according to [16], thus in the proposed BLMAC,
m is set to 16. The pseudo code for generating eight PPs is
given in Algorithm 2. Also, Fig. 4 shows the bits of each of
the eight PPs generated by the 16-bit MBE.

The product value is obtained by adding up all the eight
PPs produced by the MBE. The simplest way to perform
this is to use an adder-tree composed of seven ripple carry
adders (RCAs). However, the propagation delay of k-bit RCA
increases proportionally with k since

TRCA = k × TFA, (1)

where TFA is the propagation delay of a full adder (FA).
Therefore, the delay of multiplication increases proportion-
ally with the number of PPs. In order to accelerate pro-
cessing in the proposed architecture, the Wallace reduction
tree (WRT) is used to reduce them/2 PPs to two PPs [23]. The
main task of WRT is to group two or three bits at the same
bit position and use a half adder (HA) or a full adder (FA)
to reduce to two bits over two consecutive bit positions. This
process continues until sum of the PPs are reduced to two
words by the WRT. The dot diagram of WRT for reducing
eight PPs generated by 16-bit MBE to two words over four-
stages is shown in Fig. 5(a).

The proposed BLMAC architecture does not employ RCA
to add the final two words generated by WRT, to avoid a
long propagation delay of RCA as required according to
(1). In the proposed structure, these two words are stored
in two separate registers (Register 1 and Register 2 as
shown in Fig. 3). In the next clock cycle, two other words,
corresponding to another multiplication, are generated by the
WRT, and added to the previous result stored in Register 1
and Register 2. The process of reducing the four words
to two is carried out by a 4-to-2 compressor denoted as
CP1 (as shown in Fig. 3). The detailed dot diagram of the
compressor is shown in Fig. 5(b). Considering 3 × 3 kernel
filter, this process is performed over three clock cycles.
The accumulated results are passed to other two registers
marked as Registers 3 and 4 while Registers 1 and 2 are
reset to receive the partial results corresponding to the next
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FIGURE 4. Eight partial products generated by a 16-bit MBE.

Algorithm 2 Pseudo Code for Partial Product Generation of
16-Bit MBE
input : Input {ai}15i=0, {bi}

15
i=0

output : Partial results {pi,j}
7,16
i=0,j=1, {si}

7
i=0, {ci}

6
i=0, τ , α0,

α1, α2
variable: {nai,j}

7,16
i=0,j=0, {negi}

7
i=0, {onei}

7
i=0, {twoi}

7
i=0,

{ti}7i=0, ε, d
neg0 = b1
one0 = b0
two0 = b1 · b0
for i← 1 to 7 do

negi = (b2i + b2i−1) · b2i+1
onei = b2i ⊕ b2i−1
twoi = (b2i+1 · b2i · b2i−1)+ (b2i+1 · b2i · b2i−1)

for i← 0 to 6 do
ci = negi · (onei + a0)

for i← 0 to 7 do
for j← 0 to 15 do

nai,j = aj ⊕ b2i+1
nai,16 = nai,15
for j← 1 to 16 do

pi,j = (onei + nai,j) · (twoi + nai,j−1)
si = pi,16
ti = onei + a0

ε = a1 if a0 · b15 = 0 else a1

τ = (one7 + ε) · (two7 + a0)
d = (b15 + a0) · (b13 + a1) · (b14 + a1) · (b14 + b13)
α2 = s0 · d
α1 = α2

α0 = s0 ⊕ d

MAC operation. Finally, the proposed BLMAC computes
three consecutive multiplications followed by accumulation
to generate two partial results, PP1 and PP2, and pass them
to the next module to get the convolution sum with the 3-D
kernel. Note that the product of two 16-bit numbers must be

FIGURE 5. (a) Dot diagram of Wallace reduction tree. (b) Dot diagram of
4-to-2 compressor (CP1).

set to 32 bits, and the sum of these 3 products requires an
additional 2 bits to avoid quantization errors. Thus, PP1 and
PP2 are each set to 34 bits. Also, note that Registers 1 and 2
in Fig. 3 use a different clock source than Registers 3 and 4.
Specifically, the word-clk period is set to be longer than
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FIGURE 6. Architecture of the proposed processing element (PE).

3 times the bit-clk period, thus each time when three products
are computed, PP1 and PP2 are updated.

C. ARCHITECTURE OF PROPOSED PROCESSING ELEMENT
Based on the proposed BLMAC design, a high-speed PE
architecture for the CNN is proposed (shown in Fig. 6). The
proposed architecture consists of one BLMAC, two RCAs,
a shift register, a 3-to-2 compressor (CP2), and a 5-to-1
multiplexer (MUX).

The BLMAC only produces the sum of the three products.
Depending on the size of the kernel, the number of BLMAC
outputs that must be accumulated to create one output pixel
varies. For example, for a 3 × 3 × 64 kernel, the output
of BLMAC should be accumulated 192 times. However,
they are not generated in successive clock cycles. Therefore,
a proper dataflow is required to be envisaged such that the
corresponding accumulated value can be obtained from the
shift-register successively. In VGG16, as shown in Table 1,
the 32-bit product values need to be added up to 4,608 (=3×
3 × 512) times. Therefore, the bit width of the shift register
is set to 45 bits. The 3-to-2 compressor (CP2) and RCA1
are used to add the two outputs of the BLMAC and the
output of the shift register, whose dot diagrams are shown
in Figs. 7(a) and 7(b), respectively.
The output PP1 and PP2 of WRT (shown in the last

stage of Fig. 5(a)), have bit indices of [31:0] and [31:5],
respectively. Since the result of a 16-bit multiplication can
be represented in 32 bits without overflow, the carry out
can be discarded after adding these two partial results.
However, in the proposed structure, the two partial results
are not added, but are stored separately in two registers of
BLMAC in order to limit the critical path. The pair of partial
results (PP1 and PP2) of BLMAC are added with the results

FIGURE 7. (a) Dot diagram of 3-to-2 compressor (CP2). (b) Dot diagram of
RCA1. (c) Dot diagram of RCA2.

TABLE 2. Binary representation of the correction vectors used in the five
different types of convolution layers.

of the previous results of BLMAC available in the 45-bit
shift register. Note that the carry out, which should have
been discarded earlier during the addition of PP1 and PP2,
is accumulated. If the two inputs of MBE have the same sign,
then 232 corresponding to the carry out needs to be subtracted.
Even if the two signs are different, this subtraction should
be done to prevent the sign of the multiplication result from
changing due to zero extension. That is, a bias of 232 occurs
each time a multiplication is performed, regardless of the
two input signs of MBE. The number of multiplications is
equal to the kernel size of the convolution layer, and VGG16
has 5 different sized kernels as shown in Table 1. Thus,
depending on the convolutional layer being performed, one
of the five pre-calculated correction vectors can be selected
by a 5:1 MUX and subtracted from the output of the RCA1.
The second ripple carry adder in Fig. 6, namely RCA2,
performs this subtraction, and the corresponding dot diagram
is shown in Fig. 7(c). Table 2 lists the binary representation
of correction vectors used in the five different types of
convolution layers. For example, for the 3 × 3 × 64 kernel,
576 multiplications are performed to produce one output
pixel, so a correction vector corresponding to −576 needs to
be added.

IV. DATAFLOW DESIGN AND LATENCY ANALYSIS
The convolution layer consists of as many neurons as the
number of pixels in 2-D OFMap, and each neuron performs
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TABLE 3. The dataflow scheme for convolutional computation for N = 14.

a MAC operation. In other words, considering the 2-D
convolution of the VGG16 convolution layer, a total of
WO × HO neurons (number of neurons to generate all the
pixels inOFMap) is required. Assuming that the neurons read
the input pixels in IFMap sequentially, one per clock cycle,
and performs one multiplication-and-accumulation in a given
clock cycle, the number of clock cycles required to get the
whole 2-D OFMap is WI × HI × CI where WI , HI , and
CI are the width, height, and number of channels of IFMap,
respectively. Also, the number of clock cycles required to
generate every CO output channel is WI × HI × CI × CO.
When all these neurons are used in parallel, they occupy a
large silicon area. In addition, the number of cycles in which
one neuron actively performs MAC operations in the entire
cycle is WW × HW × CI × CO, which is the size of the 3-D
filter multiplied by the number of output channels. Therefore,
it can be seen that the utilization of one neuron is significantly
low despite the use of a large silicon area.

The reference architecture continuously recycles a limited
number of neurons to reduce the silicon area [11]. That is,
every pixel in OFMap is produced by serially reusing a
subset of N neurons. In this case, the number of clock cycles
required would be 3 × (N + 2) × CI × CO ×WO × HO)/N
for the 3× 3 kernel filter. For example, if a subset ofN = 7 is
used in the first convolutional layer, then 3 × 9 × 3 × 64 ×
224 × 224.7 = 37,158,912 clock cycles are consumed while
226 × 226 × 3 × 64 = 9,806,592 clock cycles are used in
a parallel architecture. This means that the serial architecture
increases the latency by 3.79 times compared to the parallel
architecture, but can significantly reduce the silicon area.

The value ofN can be 7, 14, 28, 56, 112, 224 to fit the number
of neurons withOFMap in the VGG16 architecture. Note that
the selection of the size of subset N is a trade-off between
silicon area and throughput.

As shown in Fig. 2, the reference architecture consists
of three PEs, and every pixel in OFMap is created with
these three PEs regardless of the value of N . The proposed
BLMAC unit speeds up the MAC operation by using the
bit-clk with a short clock period, while the result of three
consecutive MAC operations are synchronized to the word-
clk with a period of 3 times the bit-clk period and stored
in the Registers 3 and 4 in Fig. 3. The outputs of Registers
3 and 4 are added with the result of the previous BLMAC
operation stored in the shift register in Fig. 6. Considering
a hierarchical structure that uses these two clocks with
different speeds, the proposed structure requires a different
dataflow than that of [11]. As an example, Table 3 shows
the dataflow of 3 × 3.2-D convolution operation of the 11th,
12th, and 13th convolution layers when N = 14, that is,
Conv(3 × 3 × 512.512). The size of 2-D IFMap becomes
16 × 16 considering zero padding at the border, and the size
of 2-DOFMap becomes 14× 14. Table 3 contains the details
of the dataflow generating 14 output samples from the first
row of OFMap, i.e., from O0,0 to O0,13.

The BLMAC in the PE1 performs MAC operations over
3 cycles of bit-clk #1, #2, #3, and stores the result in the
shift register. As a result, the calculations involving the first
row of IFMap should be stored in bit-clk cycle #3, #6, #9,
#12, #15 in the case of PE1. Then, the edge of word-clk that
operates Registers 3 and 4 should also occur accordingly.
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TABLE 4. The dataflow scheme for convolutional computation for N = 28.

On the other hand, BLMAC in PE2 produces results after
4th, 7th, 10th, 13th, 16th bit-clk cycles, and the PE3 produces
results after 5th, 8th, 11th, 14th bit-clk cycles. Therefore,
the three word-clks that operate PE1, PE2, and PE3 have a
phase difference as much as one bit-clk period over that of the
preceding PE.

If PE1 starts the processing of the second row of IFMap
(i.e., I1,0 to I1,15) in bit-clk cycle #17, then the first BLMAC
result of the second row is generated after bit-clk #19. Since
the word-clk for PE1 is synchronized with the bit-clk at Clk
#3n in Table 3, the results generated after bit-clk #19 cannot
be taken from Registers 3 and 4. Therefore, the operation of
the second row should start from the 19th bit-clk, and the
BLMAC result should be scheduled to appear in the 21st bit-
clk. This output value is added to the one stored in bit-clk
cycle #3 by CP2 and RCA1 (shown in Fig. 6), and stored
back in the shift register. After bit-clk #39, a total of 9 MAC
operations of 3 × 3 are completed, resulting in the first
OFMap pixel, O0,0. This operation continues and the last
pixel in the first rowO0,13 is generated during the 52nd bit-clk
cycle.

The proposed dataflow for the subset of N = 28 is shown
in Table 4 considering that the number of IFMap pixels in
a row is less than N . As a result, the convolution process
of the first row of IFMap with the first row of the kernel
gets completed using the first 14 neurons. Since 28 neurons
are available, to avoid wasting of the rest of the neurons,
we use them for the convolution of the second row of IFMap
(i.e. I1,0 to I1,15) with the first row of the kernel. Then, the
output pixels of the first row of OFMap (i.e. O0,0 to O0,13)
are generated between the bit-clk cycles #75 and #88.
The length of the shift-register in each PE depends on the

value of N . The value of M in Fig. 6 shows the length of
the shift register according to each N value. As can be seen

from the figure, as N increases, the length of the shift register
increases, so the silicon area also increases. On the other
hand, as the value of N increases, the number of cycles to
complete the convolution process decreases. Appropriate N
value can be selected to have the desired trade-off between
cost and speed depending on the design objective.

V. DESIGN INNOVATIONS AND CHALLENGES IN THE
PROPOSED ARCHITECTURE
A. CRITICAL PATH ANALYSIS
The proposed structure follows a hierarchical design using
two clock sources, the bit-clk and word-clk, and based on
precise critical path analysis, we set the timing constraint to
Tword-clk = 3Tbit-clk. Therefore, precise analysis of the critical
paths is required to set appropriate timing constraints for each
of the clocks. In this paper, we aim at a high throughput
implementation of CNN, and to achieve that it is essential
to reduce the Tbit-clk by minimizing the critical path delay of
BLMAC. However, if the critical path of the circuit operated
by word-clk (the circuit outside the BLMAC in Fig. 6)
becomes long, the optimization of the BLMAC in terms
of throughput becomes ineffective. Therefore, to achieve
high throughput we minimize the Tbit-clk, and the Tword-clk is
designed to be not more than 3Tbit-clk. A critical path delay
model is accordingly evolved to support proposed strategy
for high-throughput implementation of CNN.

Modeling the critical path and accurately predicting
propagation delays are not straightforward. In particular,
since the propagation delay of each gate varies with the
temperature and the load capacitance, the actual circuit delay
is inevitably different from the delay obtained through the
analysis. It is also difficult to predict exact values of delay
of the synthesized design because synthesis tool sometimes
does minor changes in the selection of library cells during
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TABLE 5. Propagation delays on different paths of a half adder and a full
adder.

various optimization stages. In order to overcome the problem
associated with evaluation of the exact propagation delay
value, in this paper, propagation delay is not expressed as
absolute value in ns, but as a relative value as multiple of gate
delay (nTG). During the analysis, we check if the critical path
obtained through synthesis report matches our prediction,
if the critical path is effectively reduced, and if the timing
constraint of Tword-clk = 3Tbit-clk is not violated.

Let us first analyze the critical path in BLMAC operating
with bit-clk (shown in Fig. 3). The critical path for MBE is
the path that computes α0 (the 17th bit of the first partial
product in Fig. 4). When the process of obtaining α0 from
Algorithm 2 is traced back, it can be seen that the delay is the
sum of the delays of 2 XOR gates, 1 AND gate, and 1 OR
gate. To simplify subsequent analysis, let us define the unit
gate delay as TG, and assume that the delays for XOR, AND,
and OR gates are 2TG, TG, and TG, respectively. Then, the
total propagation delay of MBE becomes 6TG. Note that this
critical path delay is fixed regardless of the input bit-width of
the MBE.

Since both WRT and CP1 in Fig. 3 are implemented only
with FA and HA, it is also necessary to estimate their delays
using TG. The propagation delay from each input to output
of FA and HA are summarized in Table 5. A denotes one
of the pair of inputs and the output sum and carry-out bits
are denoted by S and COUT, respectively of FA and HA. CIN
denotes the carry input of FA. Note that the delay of XOR
gate TXOR is taken as 2TG and the delay of AND gate is taken
as TG.

The operation of FA in stage of the WRT is not affected
by the results of other FAs or HAs in the same stage. Since
the FAs and HAs belonging to the same stage can operate
simultaneously, the propagation delay of one stage of WRT
cannot be greater than the propagation delay of FA. The delay
of n-stage WRT therefore can be expressed as

TWRT = nTFAS = 2nTXOR = 4nTG, (2)

where n is the number stages of WRT. The delay of 4-stage
WRT shown in Fig. 5(a) can be estimated as 16TG. Similarly,
since the number of stages in CP1 shown in Fig. 5(b) is 2,
its delay becomes 8TG. The propagation delays of different
components of BLMAC and the total propagation delay of
BLMAC are listed in Table 6. If the propagation delay of
the register is ignored, it takes a total of 30TG to perform
one MAC operation. Therefore, if the period of bit-clk is set

TABLE 6. Propagation delay of different components of the BLMAC.

TABLE 7. Estimate of the propagation delay of the second stage of the PE.

to be greater than 30TG, the timing constraint would not be
violated.

To analyze the critical path of the proposed structure
operated by the word-clk, it can be seen that the single stage
CP2 has 1 FA delay, that is 4TG as shown in the dot diagram
of Fig. 7(a). In addition, the delay of RCA1 can be calculated
as

TRCA1 = TFAC + 32TFCC + 9THAC + THAS, (3)

where TFAC is the delay from A to COUT of FA in bit position
2 in Fig. 7(b). The second term 32TFCC is the delay from CIN
to COUT of FAs in the bit positions 3 to 34. Also, 9THAC
and THAS are the delay from CIN to COUT of HAs in the
bit positions 35 to 43, and the delay from CIN to S of HA
in the bit position 44, respectively. Note that the HA in bit
position 1 is not on the critical path because the TFCC in bit
position 2 is greater than the sum of THAC in bit position
1 and TFCC in bit position 2. Using the propagation delays
of FA and HA in Table 5, the delay of RCA1 in (3) can be
expressed as 79TG. Meanwhile, of the two inputs of RCA2,
the correction vector can be computed in advance. Once the
output S of RCA1 is available at any bit position, the full
adder in the same bit position can start the operation. That is,
if the output S in the most significant bit position of RCA1 is
available, the operation of RCA2 can be completed after one
full adder delay of TFAS. Therefore, the propagation delay of
RCA2 would be 4TG. The sum of the delays for CP2, RCA1,
and RCA2, which is equal to 87TG as shown in Table 7,
amounts to the critical path delay of the second stage of the
PE governed by the word-clk.
As mentioned earlier, one word-clk period is set to 3bit-

clk periods. If the bit-clk period is set to 30TG as in Table 6,
the word-clk period can be set to 90TG which is 3 times bit-
clk period. Note that this setting does not violate the timing
constraint since the delay of the critical path using word-clk
is only 87TG, which is shorter than the word-clk period.
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B. DESIGN INNOVATIONS FOR HIGH-SPEED
IMPLEMENTATION
A sequential multiplier requires several clock cycles to
perform one multiplication. On the other hand, the Booth
algorithm and WRT-based parallel multiplier used in this
paper can generate multiplication results every clock cycle,
which is essential to achieve high throughput rate. We have
used the modified Booth algorithm to effectively reduce the
number of PPs in WRT and avoid sign extension, thereby
effectively reducing the area as well as the computation-time.

Although a parallel multiplier can perform a multiplication
in each clock period, its overall delay is limited by the
vector-merging addition of the sum word and the carry
word at the last stage of WRT. Since CNN accumulates the
results of multiplication multiple times during a convolution
operation, it involves a MAC operation with feedback path,
making it difficult to utilize pipelining to speed-up the
processing. The implementation of pipelining in the feedback
path for the MAC operation in the proposed architecture is a
critical design challenge but opens up potential for dramatic
improvements in speed which is discussed in the following.
• The logic for MAC operation of VGG16 is designed
in a hierarchical structure. Specifically, BLMAC in
Fig. 6 is driven by bit-clk and the other components
are subsequently operated by word-clk. Through this
hierarchical design, the effect of realizing a two-
stage pipelined structure in which pipeline registers are
inserted after each MAC operation could be obtained.
Since VGG16 is based on a 3 × 3 convolution filter,
the proposed architecture is designed in such a way
that three consecutive MAC operations become the first
pipeline stage, and their accumulation is performed in
the second pipeline stage.

• In parallel multipliers, the critical path is lengthened due
to the vector-merging addition of the last two reduced
words (corresponding to the sum bits and carry bits at
the last reduction stage). To overcome this, the last two
reduced words are not added but stored separately in two
registers. In the subsequent clock cycle, another pair of
words are generated and together with the pair of words
stored in the registers in the previous cycle form a set
of 4 words. This set of 4 words are reduced by a 4-to-2
compressor to produce two reduced words, and prevent
an increase in the number of reduced words. Also, two
pipeline registers driven by word-clk are additionally
placed to switch the clock domain between the two
pipeline stages. Although there is an additional cost of
area loss due to the use of additional resistors, the speed
can be greatly improved by this design strategy.

• Critical path analysis is performed so that the propaga-
tion delay of the second pipeline stage is three times that
of the first, considering the size of 3 × 3 convolution
filter. For this purpose, the propagation delay of each
pipeline stage is expressed as the number of gate
delays. This allows us to design two pipeline stages for
maximum utilization of hardware by suitable choice of

the duration of the clock period and maximization of
throughput rate.

• The error caused by not adding the partial result pairs
PP1 and PP2 in BLMAC, is corrected. Specifically,
as shown in Fig. 6, it is designed to correct errors
using MUX regardless of the size of the convolution
filter. Since RCA2, an adder for error correction,
is placed adjacent with RCA1, only 4TG amount of
additional delay is incorporated by this adder as shown
in Table 7. Therefore the proposed architecture increases
the throughput rate without compromising with the
accuracy.

VI. IMPLEMENTATIONS AND RESULTS
A. SYNTHESIS RESULTS
The proposed architecture is coded at the register trans-
fer level (RTL) using VHSIC hardware description lan-
guage (VHDL). It was then synthesized by the Synopsys
Design Compiler with TSMC 65-nm CMOS standard cell
library [24]. During synthesis, the input delay and output
delay are set to 0.01 ns. The timing constraint is adjusted to
find the minimum bit-clk period while the slack was main-
tained positive, and the word-clk period is then set to three
times the minimum bit-clk period. The power consumption
is estimated at the clock period which is set to the reciprocal
of the maximum usable frequency. We have compared the
hardware complexity by implementing circuits where the
values of the N were 7, 14, 28, 56, and 112, respectively.
In order to demonstrate the effectiveness of the proposed
architecture, the state-of-the-art implementation [11] is used
for comparison. According to [16], the word lengths of input
and kernel weights are quantized to 16-bit, reaching the
efficiency of precision and the area. The partial results of the
MAC are stored in a 48-bit shift register to prevent overflow
even with the maximum convolution size.

The performance of the proposed architecture as obtained
from the synthesis results and those of the reference
architectures in terms of data arrival time (DAT), maximum
usable frequency (MUF), latency, area, area-delay-product
(ADP), power consumption, and power-delay-product (PDP)
are listed in Table 8. The values of pADP and pPDP are
also shown in the table to show the percentage improvement
of ADP and PDP compared to the reference architecture,
respectively.

It is interesting to find from the synthesis results that the
DAT of the proposed architecture is 1.04 ns, regardless of the
value of N . The DAT is the critical path delay of BLMAC
working with the bit-clk shown in Table 6. To take full
advantage of this short DAT, the bit-clk period can be set to
the same value as the DAT, thus the MUF up to 961 MHz
can be used. The DAT of the proposed structure is only
41.6% compared to the one of the reference architecture,
demonstrating the acceleration performance of the proposed
structure. In the proposed structure, as the value of N
increases, the size of the shift register increases, resulting in
an increase in the silicon area. Also, the area of the proposed
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TABLE 8. Performance comparison of the proposed architecture and the reference architecture of [11] for different N value.

structure is reduced compared to the reference when N is 7,
14, and 28, but larger when N is 56 and 112. However,
since the DAT is greatly reduced, the proposed architecture
has an advantage in terms of ADP for any of the values of
N . Specifically, ADP can be reduced by 52.2% to 69.2%
depending on the value of N .

The power consumption of the proposed architecture is
also less than that of the reference architecture, except for
N = 112. Although power consumption varies depending
on the clock period, the power-delay-product (PDP) obtained
by multiplying power consumption and the delay tends to
remain constant. Therefore, in this paper, PDP is used as a
comparison metric with existing structures. Specifically, the
proposed architecture has at least 54.2% less PDP than the
reference architecture. Therefore, it can be seen that the
proposed structure not only provides significantly better
efficiency in terms of area-delay product but also the power
consumption.

Power consumption is affected not only by the frequency
of the operating clock, but also by the toggle rate (TR) and the
probability that the input is in logic state 1 (P1 probability).
Most papers provide the power estimated at operating clock
frequency, but do not provide the TR or P1 values, thus it is
difficult to make a fair comparison with other papers in terms
of power consumption. In this paper, we set P1 = 0.1 and
TR = 0.1 times clock frequency, which are reasonable
because they are the default values set by general synthesis
tools. In the proposed architecture, the power consumption
can be effectively reduced by gating of the RCA2 input used
for the correction at the end of the overall calculation of the
3D kernel.

According to the dataflow of the proposed architectures,
the delay of each convolution set of the reference and
proposed architectures can be expressed as
dref .

=



3× (N + dN/WOe × 2)× CI × CO ×WO × HO
N × F

,

N > WO
3× (N + 2)× CI × CO ×WO × HO

N × F
,

otherwise
(4)

dprop.

=


3× (N + 4)× CI × CO ×WO × HO

N × F
, N = 14

3× (N + 2)× CI × CO ×WO × HO
N × F

, otherwise

(5)

where CI , CO,WO, HO, N , and F are the number of channels
of IFMap, the number of channels of OFMap, the width of
OFMap, the height of OFMap, the size of subset, and the
clock frequency, respectively. Note that F in the proposed
architecture means the maximum usable frequency of bit-clk.
The computation time of each convolution set with different
values of N are listed in Tables 9 and 10. It can be seen that
the latency of both structures decreases as the value of N
increases. In particular, since the clock period of the proposed
structure is significantly shorter than that of the reference
architecture, the latency required to complete the operations
in entire convolution layers is also significantly reduced.

B. APPLICATION OF THE PROPOSED ARCHITECTURE
The purpose of the proposed design is to achieve significant
increase of throughput using gate-level pipelining. When the
proposed architecture is intended to be used as a computing
core for an existing neural network, it can be flexibly adjusted
according to changes in the kernel size, bit width, and N
value. The flexible realization of proposed architecture to fit
in to the design specifications of CNN as follows:
• For shorter bit-width implementation, pruning can be
applied to the Wallace tree in Figs. 5 and 7 of the
proposed structure, and conversely, for a longer bit width
implementation, bit extension can be applied to the
Booth encoder and the Wallace tree.

• For a generic W × W convolution kernel other than
3 × 3, in the BLMAC in Fig. 3, the transfers from
Registers 1 and 2 to Registers 3 and 4 are to be performed
after W times accumulation instead of 3 times. When
W is greater than 3 and the cumulative count is
incremented, sign-extension is applied in the Wallace
tree to prevent overflow. In this case, the timing
constraint is not violated if the period of word-clk is set
to W × bit-clk.
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TABLE 9. Computation time of VGG16 convolutional layer of the reference architecture [11] for input image of size 224 × 224.

TABLE 10. Computation time of VGG16 convolutional layer of the proposed architecture for the input image of size 224 × 224.

FIGURE 8. The high-level architecture of the proposed parallel
convolution engine.

• If the value of N changes, the size of the shift-register in
Fig. 6 can be changed accordingly.

Based on the throughput requirement of a specific CNN,
the parallelism of the convolution engine can be modified
as shown in Fig. 8. Let us denote the parallelism index as
p. Each CE produces the OFmap of one output channel.
Also, each CE has the same IFmap but receive different
input Weights from different input filters. In the parallel

architecture, latency of computation is decreased by a factor
p, however the area and power consumption are increased by
almost the same factor p. The synthesis results of proposed
parallel architecture with p = 32 and some of the existing
CNN accelerator architectures are shown in Table 11.
The architecture of Moons et al. [25] has been synthesized

using a more recent fully depleted silicon on insulator
(FD-SOI) technology library than the others. The work
of [25] uses the dynamic fixed-point to perform CNN
with flexible bit-width ranging from 1 to 16 bits based
on the precision requirement of the application. When
running VGG16, this architecture provides a throughput of
1.67 fps and consumes just 26 mW power, but our design
involves 13.03% less gate-counts and provides 3.53 times
higher throughput. The proposed hardware accelerator has
2.57 times higher throughput using about 1.77 times less
PDP than the MA-efficient design of [11]. It is also worth
mentioning that the proposed accelerator provides the peak
performance at 181 Giga operations per second (GOPS)
which is 2.38 times higher than that of [11]. The architecture
of Chen et al. [18] which is implemented in 65 nm CMOS
technology involves 1.67 times less power consumption
using data compression and network sparsity techniques,
but the proposed CNN hardware accelerator outperforms the
work of [18] in terms of throughput (8.4× faster), latency
(25.5× lower), gate count (8.4% less) with (3.8× higher)
nominal frequency.
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TABLE 11. Performance comparison of the reference and the proposed architectures.

VII. CONCLUSION
In this paper, we have proposed a novel bit-level MAC design
and PE architecture for high-speed hardware implementation
of the CNN accelerator. The proposed structure can greatly
improve the speed by the proposed bit-level design using
modified two stage Wallace reduction and modified Booth
recoding by reducing the computational delay of MAC
operation. The proposed design works with dual-clock
strategy where the MAC operations are accelerated with
a faster clock while their accumulation for convolution
operation operates with a longer clock period, in a two-
stage hierarchical design. Precise critical path analysis is
performed to set timing constraints appropriately in the
hierarchical structure. The inevitable errors due to the
hierarchical addition, the correction vectors were calculated
on the sideline concurrently, and added to compensate for
the errors. Dataflow and latency analysis of the proposed
structure have been demonstrated for the convenience of
the readers. The proposed structure has been experimentally
proven to be efficient in terms of area, throughput, and power
consumption by showing that it outperforms the existing
architectures in terms of ADP and PDP. Therefore, the
proposed structure is suitable for implementing the CNN for
high-speed real-time applications. In addition, the proposed
structure can be applied to various CNN algorithms with
different network architectures based on MAC computation.
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