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ABSTRACT This paper presents an analysis of the implementation and performance of a deep learning
model based on Recurrent layers and Variational Auto Encoder model (VAE) architecture for prediction of
future local trajectory and maneuver. The proposed method uses the encoder part of the VAE to represent
the vehicle’s surroundings agents behavior in time, taking advantage on the fact that VAE encodes similar
situations or states close in the latent space and the generative properties of the VAE decoder, that is used to
generate naturalistic driving trajectories. Furthermore, the variance of the predicted trajectory is estimated
using the statistical properties of VAE model, increasing it if the input data is noisy or unrealistic and
decreasing it if the model is certain about the prediction. The model is trained and evaluated with a public
dataset. The results show that the proposed architecture outperforms state of the art methods in trajectory
prediction error and provides a variance estimation that depends on input quality.

INDEX TERMS Intelligent vehicles, navigation, intelligent vehicles, land vehicles, prediction algorithms,

trajectory prediction.

I. INTRODUCTION

An accurate and reliable trajectory prediction module, capa-
ble of predicting the future paths of the surrounding vehicles,
is a key aspect for modern autonomous driving vehicles nav-
igation algorithms. Those algorithms, such as path planning
or decision making, need as input the future behavior of the
surrounding vehicles to work properly. However, an accurate
trajectory prediction is still a challenging problem due to
the uncertainty on the behavior of vehicles and the dynamic
nature of the environment. This issue is aggravated in the last
seconds of a long term trajectory where it tends to be highly
non-linear and unpredictable as it is much stronger influenced
by the intentions of the drivers which may have independent
goals or different driving styles [1]-[4].

Latest works on trajectory prediction benefit from the use
of deep learning models which are more robust and general-
ize better. In particular, models such as Generative Adver-
sarial Networks (GANSs) [5] or Variational Auto-Encoder
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(VAE) [6], can be very useful for this purpose thanks to their
generative properties.

Above all, VAE models have become increasingly pop-
ular and have been used in a variety of works with excel-
lent results typically for noise reduction [7], dimensionality
reduction [8], [9] and realistic data generation [10]-[12].
Thus, trajectory forecasting can benefit from all those VAE
capacities, as the input data for the prediction can be noisy,
it is intended to extract the relevant features of the surround-
ings in a lower dimensional space and it is necessary to
generate a realistic trajectory.

This work proposes a deep learning model based on VAE
and Long-Short Term Memory (LSTM) layers that predicts
the future maneuver of the vehicles in the surrounding, but
also generates the future path that the vehicle will follow. This
approach makes a deep study of the latent space generated by
the VAE to prove that, on the one hand, close n-dimensional
points correspond to similar situations, and on the other hand,
far away ones to very different ones. It is also proved that all
vehicles interactions and states over time are represented on
this space.
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Furthermore, the generator of the VAE is used to generate
naturalistic trajectories, which are similar to the ones of the
training set, generating not only the lane change maneuver
detection, but also how it will be performed (acceleration,
speed or how fast to leave and merge the lane).

This work is focused on highway scenarios as the dataset
used provides highway data, but its flexibility makes it appli-
cable to many different highway scenarios with different
number of lanes or road geometry.

The proposed model is evaluated with state of the art
methods in the same dataset, outperforming them in trajectory
error.

The contributions of this paper are:

« VAE encoder is proven to generate a better latent repre-
sentation that improves trajectory error.

o VAE decoder with LSTM is utilized to produce natural-
istic paths.

« Uncertainty of the trajectory is estimated.

o Theoretical analysis of the performance of VAE applied
to trajectory prediction is performed.

The remainder of this paper is organized as follows.
In section II, relevant works are discussed. Section III
motivates the dataset chosen, and describes the data pre-
processing. Section IV describes the proposed architec-
ture. Finally section V presents and discuss the results and
section VI concludes the paper.

Il. RELATED WORK

According to [13], trajectory prediction algorithms can be
classified into three main types: based on a physics model,
on a maneuver model or on an interaction model. Classic
models rely on the definition of a physic model of the vehicle.
This model can include either the geometry of the vehicle
(kinematic model), or it can also consider the forces that
affect its motion (dynamic model). This kind of model is com-
monly used for collision detection, as the time horizon is not
very large. Physics-based models main drawback is the high
dependence on the initial conditions, usually estimated with
noisy sensors, and the limited information of the environment
(road geometry and surrounding vehicles). Some examples of
this kind of models can be found on [14], [15].

In the maneuver based models, the vehicle is considered
independent from the others on the road, and the model has
to predict, from a collection of different possible trajectories,
which one the vehicle is more likely to perform. Although
this kind of model can consider the surrounding obstacles or
road geometry in order to discard a part of the maneuver set,
not considering the interactions with other vehicles can lead
to an undesired behavior. A representative example on this
is [16], where the predicted path is sampled from a set of real
trajectories according to the current situation.

The interaction aware models considers that vehicles
motion is influenced by other vehicles in the scene. This
kind of models rely on detecting and identifying the inter-
action precisely, but correctly modeling or considering those
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interactions can be challenging. Dynamic Bayesian Networks
have been used in different works [17], [18] to solve this
problem, but in the recent years, the high flexibility and
performance of machine learning, has lead on an extensive
use of these techniques for prediction or forecasting. Latest
relevant works in the topic, use deep neural network to predict
the future path, where different layers or input representation
are the main difference between works. In [19], authors use
a 3D tensor that represents the potential field of the traffic
scene in different time steps, whereas in [20] and [21] the
interactions between vehicles are modeled using an attention
layer or an interaction layer respectively. In [3], a convolu-
tional social pooling layer is used to encode the past motion
of the neighboring vehicles and a LSTM decoder generates
the future trajectory (CS-LSTM).

There can be observed two main characteristics on the deep
learning models reviewed: The use of LSTM layers in the
models which improves their capacity of handling data time
series [3], [22]-[26], and an encoder-decoder architecture,
also named as sequence to sequence for LSTM models, which
is extensively used in many different deep learning models
like [27].

VAE follows the encoder-decoder architecture which is
used in most of the reviewed works, but it is based on bayesian
statistics. This type of model stands out for its generative
capacities and the ability to produce a regular latent space
with good properties for generation.

VAE has been used in different Autonomous Vehicles
algorithms to generate a database of realistic trajectories:
TrajVAE work [11] uses a VAE based model to generate
realistic large-scale trajectories (from dozens of seconds to
minutes) to create a dataset. However, the trajectories gen-
erated by this method are different to the ones studied in this
paper, which are dependent on the surrounding vehicles, with
up to five seconds prediction, demanding higher precision.

Multi-Vehicle Trajectory Generation (MTG) method [12],
uses a VAE to generate trajectories of pairs of vehicles that
drive through a road or an intersection. This method succeeds
creating realistic trajectories, but it can not be used to predict
trajectories of the surrounding vehicles, as this method is
oriented to generate reliable testing scenarios, and does not
include information of the surrounding vehicles.

Models based on GAN architecture are also known for
generating realistic data. This kind of models have been used
for predicting the future trajectory of a vehicle proving their
utility as can be shown in [28]-[30]. However, a comparison
between GANs and VAE models for trajectory generation
performed in [11] and [12] shows how GANs can produce
a higher quality reconstruction, but tend to lack full support
over the data unlike VAE, which is essential in an unpre-
dictable environment like a road [31].

The work presented in [1] generates prediction of vehi-
cles trajectories using a conditional VAE (cVAE) that has as
an additional input which is the intention predicted by an
additional model that works as a classifier. This framework
predicts future trajectories of the vehicles and outperforms
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the compared methods. However, it highly relies on a good
performance of the intention recognizer classifier that makes
the cVAE generate one of three types of maneuver (keep in
lane, merge left/right lane). In addition, the dataset used in
this work, does not provide classes for the maneuvers, so they
need to be added manually and the criteria for deciding if
a trajectory belongs to a class is not covered. In contrast,
the proposed method does not depend on a classifier and the
number of classes is not limited to three, instead the model
can learn any trajectory type.

The aim of this work is to apply a simple VAE model based
on LSTM recurrent layers to generate a realistic future local
trajectory. The proposed method considers vehicles interac-
tions, as it includes time-distributed data of the surrounding
vehicles within the date used to generate the path. These
interactions are implicit in the model i.e. it does not analyze
interactions independently.

Ill. DATASET AND DATA PREPROCESSING

To train the model, a driving dataset that includes vehicles
trajectories in an highway is required. One of the most used
dataset on this topic is the one provided by the Next Gen-
eration Simulation (NGSIM) project [32], which includes
several hours of driving data. However, as studied in [33],
this dataset has some problems in the data which can not
be corrected throw filtering, such as wrong trajectories that
collide with near ones or unrealistically large magnitudes.

Recently released highway drone (highD) dataset [34],
has overcome most of the problems mentioned of NGSIM
dataset, giving not only more accurate data, but also a larger
collection of samples (highD dataset provides a total driven
distance 9 times higher than NGSIM).

In addition, most of the latest state of the art works in
the topic of trajectory prediction use highD dataset for both,
training and evaluating the results [4], [19]-[21].

Thus, for this work, highD dataset is used.

A. PREPROCESSING AND NORMALIZATION

HighD Dataset includes dynamic information like position,
speed and acceleration for every vehicle in the road at a
timestamp. Combining and low-pass filtering that informa-
tion, surrounding vehicles can be extracted, defining eight
zones for every vehicle where possibly other vehicle can be
driving as shown in Fig. 1. For every zone, a metric m; is
generated to represent the distance to the nearest vehicle in
that zone. The expression of the metric for all zones except
for zones 2 and 7 is given by

v dmax — di, £ d; < dpax
m; = . (D
0, otherwise

where d,;,4, 1s the value of the maximum distance to consider
(set experimentally to a value of 200m) and real distance d;
is transformed to a metric m; (that is input to the network) to
better represent the absence of a vehicle in that zone and to
evenly represent different distance values. For zones 2 and 7,
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FIGURE 1. Zones representation around ego-vehicle (blue). Two other
vehicles (yellow) are placed to give an example of how d; is obtained.

m; is set to 1 if a vehicle or part of a vehicle is inside the zone
and O otherwise.

The rest of the values are normalized to fit a normal distri-
bution, but position for coordinates is done in the following
way. For the longitudinal coordinate, the first value is sub-
tracted for all sequence to make them start on O and all the
values are min-max normalized. Lateral coordinate in every
road is transformed to fit a common one where lanes centers
are in 0.25, 0.75 and 1.25 meters.

B. MANEUVER LABELING

A maneuver label is generated for the dataset, where every
trajectory is classified into three categories: keeping lane and
left/right lane change if at any moment of the trajectory at
least one time step is close in time to a lane change maneuver.
This label will not be utilized in the training as it provides
future data leakage, but will be used to perform a deeper
analysis on the proposed model in section IV-D.

C. DATA SPLIT

The dataset consists on 60 recording sequences. In order to
properly evaluate the performance of the proposed model, the
dataset is split into 45 sequences of train data and 15 of test
data (75-25%) to make sure that the performance is evaluated
in never seen sequences. In addition, 30% of train data is used
for validation and hyperparameters tuning.

IV. PROPOSED MODEL ARCHITECTURE

This section describes the proposed model architecture: First,
the VAE models used are described, followed by the model
used to predict the future trajectories and a description of how
the full model is trained. Finally, an analysis of the latent
space generated by the encoder and the performance of the
VAE itself is made.

A. VAE

A VAE model [6], is very similar in shape to a standard Auto-
Encoder (AE), which uses an encoder-decoder architecture
to reconstruct the input data but with some differences. The
VAE encoder, instead of mapping the input data into a single
multi-dimensional point, it generates a Gaussian distribution
over that point defined by its mean and variance. The loss
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FIGURE 2. Proposed model full architecture. Each box represents a sequential model where the type of layers and the number of neurons are

enumerated from top to bottom.

function includes an additional term to force the latent space
be similar to a normal distribution [31].

The temporal nature of the problem makes the use of
recurrent neural networks convenient for temporal feature
extraction and time-series generation. The proposed model
architecture for the VAE model uses LSTM layers, widely
used for complex sequence learning problems [35], combined
with fully-connected and time-distributed fully-connected
layers.

The proposed model uses two VAE models, which are
trained separately. The first model is trained with M features,
corresponding to all the surrounding vehicles data (distances
and speeds) for the T previous time stamps. For this model
(VAEg,;), only the encoder part is used in the final model to
generate the latent variables, but the full model is analyzed in
section IV-D to prove that all relevant features are represented
in the latent space. The second model (VAEyy) is trained only
with longitudinal and lateral positions for 7' time stamps. The
decoder part of this model is used to generate naturalistic
trajectories in the full model. In addition, the encoder part
generates latent variables of the previous trajectory of the
vehicle, which are combined with the VAE,,, encoder ones
to have a better latent description of the environment.

The loss function utilized, combines the Kullback—Leibler
(KL) divergence loss Dk, that measures how similar two
probabilistic distributions are

D1 = —%'<1+1og(az>—u2—az> 2)

where 1 and o2 are the predicted mean and variance, and the
mean square error (MSE) between the reconstructed sequence
y; and the ground truth y; for T time steps

T
1 -
MSE = — - X;(yi — 5’ 3)
1=
Both losses are combined in a weighted sum
loss = B - Dgr, + MSE 4

where f is a weight that can be treated as an hyperparameter
tuned experimentally that increases the importance of a close
reconstruction (low value) or a regular latent representation
(high value) as shown in [36].
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B. PREDICTION MODEL

The prediction model takes as an input the encoded situation
of the driving scenario for the last T" time steps (L, ,, and L, )
generated by the two encoders of the model, where # is the
input latent feature, and predicts a latent representation of the
future trajectory of the vehicle My ,, and M, ;,, where m is
the output latent feature.

The first step of this model is to sample the input latent
data. VAE encoders generate two values per dimension cor-
responding to a Gaussian distribution: mean (L, ) and vari-
ance (Ly ). The latent input variable is randomly sampled
following that distribution both in the training and in the
prediction stages. This sampling procedure allows to improve
the robustness of the model compared to using only the mean
value and discarding the variance and makes possible to
estimate the trajectory mean and variance in the prediction
stage using the Monte Carlo sampling method.

The sampled data are fed to a relatively simple model based
only on Fully Connected Layers. Considering that the input
data have been processed by the encoder and the output data
will be processed by the decoder, the complexity of the model
and layers does not need to be high.

C. FULL MODEL TRAINING
The full model is trained in two stages:

First, the VAE models are trained. VAEj,,, model (in
charge of encoding the information of the driving scene)
is trained with surrounding vehicles data, whereas VAE,, is
trained with trajectories from the dataset. The aim of those
models is to encode the input data into a lower dimensionality
variable and to decode the predicted value into real trajecto-
ries. Thus, the input and the output training for each model are
the same, using MSE error as a training loss of the models.

After that, the full model is ensembled to train the pre-
diction model. To do this, the previously trained encoders
from VAE,, and VAE,y, and the decoder from VAE,, (whose
weights are set as non trainable) are put together with the
prediction model as shown on Fig. 2. The input data to the
ensembled model are the current and past states X,,, ;, where m
can be either the feature index or x/y to denote longitudinal or
lateral trajectory respectively and ¢ is the time step. The loss
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is computed using the MSE between the reference trajectories
and the ones generated by the decoder (Y, ;). This loss is
backpropagated through the decoder to the prediction model
in order to update its weights.

D. LATENT ANALYSIS

Number of latent variables is a key parameter that needs to
be carefully chosen. That value needs to be sufficiently large
to correctly represent all the input data, but also as low as
possible so relevant characteristics are extracted from the
data. To choose that parameter, a principal component analy-
sis (PCA) is performed, using the LAPACK implementation
of the singular value decomposition as shown in [37]. First,
a sufficiently large number of dimensions is chosen to train
the VAE. After that, the results of the PCA are analyzed, and
using the cumulative sum of the explained variance ratio, the
number of chosen dimensions is the lower that explains at
least 95% of the data which, for the VAEj,,, model, is 7, and
for VAE,, models is 2.

Furthermore, a deep study on the latent variables generated
by VAE encoder is performed. This study aims to prove
two assumptions: the latent space represents correctly all the
input data, and similar driving situations are close together.
For the first assumption mean absolute error (MAE) of the
reconstructed data by the decoder is analyzed, giving a quan-
titative result of 0.7m for lateral trajectory and 0.04m for
longitudinal trajectory. Furthermore, a visual inspection of
several samples of the data, gives a good qualitative result
as shown in Fig. 3, where surrounding reconstructed data are
similar to original data and captures the evolution of dynamic
data (Fig. 3(a) and 3(d)) and sharp distances changes due to
other vehicles lane changes (Fig.s 3(b) and 3(c)), meaning
that the VAE model gathers all the relevant data in the latent
variables.

—— State feature e  Reconstruction

1<m

Normalized value
o

Normalized value

T T T T T T T
0 10 20 30 0 10 20 30
Time step Time step

(a) Lateral velocity. (b) Forward distance.
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> . >
T 01 L—- T 01
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(c) Backward distance. (d) Longitudinal acceleration.

FIGURE 3. VAEgyr time reconstruction (red) of some state features

(green). X axis represents the time-step, whereas Y axis is the normalized
value of the variable.
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For the second assumption, the latent variables of only
the surrounding data are grouped according to the maneuver
that is taking place or will take place soon in the input
data. Fig. 4 compares the most representative 2D slices of
the latent hyperspace for VAE and normal AE. Encoded
maneuvers in latent space for VAE are clearly distinguishable
and form different groups (Fig. 4(a)), whereas for normal
AE, the different maneuvers are not distinguishable as their
corresponding latent variables are placed in the same place
(Fig. 4(b)). This analysis evidence that only using information
of the surrounding vehicles, it is possible to predict the next
maneuver, and VAE is able to distinguish and separate those
situations.

e Keep on lane

e Change left e Change right

3 3 3
=l
E of 01 0
o
%
= " " 7 ¥

3 3 3

3 0 3 3 0 3 3 0 3
Lat. dim a
(a) VAE

3 3 3 :
. .
Eo0 0 01
o
g .
-

3 -3 -31

3 0 3 3 3 0 3
Lat. dim a
(b) AE

FIGURE 4. Most representative 2D slice of latent hyperspace for VAE and
AE lat dim a and lat dim b. Colors denotes future maneuver: keep on lane
(red), change left (green) and change right (blue).

In addition, Fig. 5 shows VAE decoder lateral and longitu-
dinal trajectory reconstruction for different combinations of
two latent space variables. VAE has learnt a smooth represen-
tation of all possible trajectories in the latent space. In this
specific case, latent dimension 0 mostly represents the lateral
road position, whereas latent dimension 1 denotes the maneu-
ver or lateral displacement. This smooth representation of all
the trajectories in the latent space is meant to improve the full
model precision, as an small error in the future trajectory in
the latent space, would result in a very similar trajectory.

Furthermore, the low dimensional representation of the
state, where different maneuvers are grouped, makes easier
for the following layers to forecast correct predictions, and
reduces the complexity required for the prediction model.

V. RESULTS

The proposed model has been evaluated using sequences
from the database to assess its accuracy. This section
describes the process of obtaining the necessary metrics
to determine the accuracy of the model, compares the
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FIGURE 5. VAE decoder output trajectory reconstruction (green line) for
different latent dimensions pairs (Lat dim 0, Lat dim 1). Lanes limits
denoted by grey lines.

results with state-of-the-art models and evaluates the results
obtained.

In addition, a second experiment is performed where the
input data quality is degraded by adding noise. The results
shows how a low quality input affects both the accuracy and
covariance of the model

A. EVALUATION METRICS

Similar works on the topic of trajectory prediction evaluate
the performance of their approach using either the root mean
square error (RMSE) or the MAE separately for longitudinal
and lateral prediction which gives a good intuition of the
model performance. For this reason, these two metrics will
be calculated to evaluate the proposed model and to compare
it with similar works.

B. BASELINE MODELS
Table 1 compares the performance of the proposed method for
different time prediction horizons with the following models:

1) 3D CNN-LSTM [19]: Interaction aware model based
on a 3D spatio-temporal tensor that represents sur-
roundings of the environment. It is compared to, and
outperforms a simple LSTM model, and convolutional
social pooling LSTM [3].

2) Multi-Headd Att. [20]: A model based on a multi-head
attention layer. It is compared to, and outperforms
a linear model, a vanilla LSTM model and an
encoder-decoder LSTM model. The original paper only
performs tests up to 3s.

3) Simple AE: It is a baseline version of the proposed
model where
the VAE models are trained as a normal AE. This model
is used to test whether the use of a VAE model provides
the expected improvements over a simple AE.
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To ensure a fair comparisons, the model is tested in the
test subset of the highD dataset, the same one used in all the
selected baseline methods.

C. RESULTS EVALUATION

The data results have been obtained by evaluating the predic-
tions of the proposed model, which are compared with the
real trajectories collected in the database.

The input of the model are different sequences that include
all the pre-processed data that the model needs. This model
have been evaluated and re-configured five times to gener-
ate predictions for different time horizons (from 1 second
to 5 seconds). The obtained results are compared with the
ground truth trajectories that the vehicle have followed in
each sequence, computing different metrics that evaluates the
model.

The proposed method captures better the environment sit-
uation and generates realistic trajectories, meaning that the
main improvements are for long-in-time trajectories, whereas
for short-in-time trajectories, results show non improvement
as it is shown in Table 1.

TABLE 1. Longitudinal and lateral MAE and RMSE for compared methods.

Time 3D CNN- Multi- Simple Proposed
Hor. LSTM Head Att. AE method
(s) MAE RMSE MAE MAE/
(m) (m) (m) RMSE (m)
1 0.23 0.43 0.25 0.21/0.30
Long. 2 0.59 0.47 0.5 0.37/0.52
3 1.12 0.89 0.74 0.46/0.68
4 1.81 - 1.07 0.70/0.98
5 2.63 - 1.39 0.91/1.33
1 0.07 0.04 0.23 0.06/0.09
Lat. 2 0.16 0.06 0.23 0.13/0.18
3 0.25 0.11 0.24 0.14/0.20
4 0.32 - 0.27 0.20/0.28
5 0.39 - 0.30 0.24/0.36

Fig. 6(a) gives an example of trajectory forecasting for
every vehicle in the scene. Predicted trajectory is close to the
ground truth both in lateral and longitudinal axes. Some of
the sampled trajectories for a vehicle can be far away from
ground truth, but the average of all the samples, results in a
close prediction.

One of the main advantages of the method is the possi-
bility of estimating statistics of the variance of the gener-
ated trajectory. The second experiment performed evaluates
qualitatively how the MSE and the variance of the trajectory
evolves for inputs with different amount of noise in the input
data. The results show that, for known situations (where little
amount or no noise is added), the variance is low (Fig. 6(a)),
but for very different ones (where the amount of noise added
is higher), not only the prediction error is greater, but the
variance increases as it is shown in Fig. 6(b).

In addition, the proposed method is able to run fast enough
for real-time applications. Predictions and sampling can be
performed in parallel, reducing computational time in con-
trast to many interaction models. Data of all vehicles can
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FIGURE 6. Proposed model trajectory prediction (red), ground truth past trajectory (dashed blue) and future ground truth (solid blue with dots
separated 1s) for all vehicles in the scene. All the sampled trajectories are plotted with a low alpha value to represent better the confidence of the
method and compare both sub-figures confidence. Mean predicted trajectory values are plotted in dark red dots separated 1s.

be concatenated and repeated multiple times to sample with
Montecarlo method in parallel using a GPU.

VI. CONCLUSION

In this work, a novel trajectory and probabilistic prediction
system, which makes use of the LSTM VAE network, has
been evaluated.

The test performed using dataset proves the viability of
the approach, and the results provided outperforms state of
the art approaches of trajectory prediction. Furthermore, the
proposal is able to provide trajectory uncertainty by means of
the use of the LSTM VAE network.

Future works will focus in adapting the proposed archi-
tecture to different scenarios like city roads or intersections
as the proposed method has been trained and tested only
in highway roads and to include vehicle sensors raw data
(images or LiDAR pointclouds) to have a better description
of the environment.

The source code used in this work is publicly available at
https://github.com/midemig/traj_pred_vae.
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