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ABSTRACT A new method of road roughness level identification based on the bidirectional gated recurrent
unit (BiGRU) network is proposed in this paper, which is contribute to solve the problems of intelligent
chassis technology such as suspension control. Firstly, the vehicle vibration response data is attained by the
ride comfort simulation of two-degree-of-freedom vehicle vibration model. Then the mapping relationship
between the road roughness level and the vehicle vibration responses is determined, and the road roughness
level identification model is established. The Adam algorithm and mini-batch gradient descent are utilized
to improve the accuracy and increase the speed of the model training process. Finally, in order to verify
the feasibility and practicability of the model, the ride comfort experiments are carried out on asphalt and
brick roads. The results show that the accuracy of the road roughness level identification model based on
the BiGRU network reaches 95.83%, and the recognition result is reliable. Moreover, the experimental road
level can be successfully identified through the road roughness level identification model, which has high

engineering application value.

INDEX TERMS GRU, road roughness level identification, reverse analysis, vehicle responses.

I. INTRODUCTION

To car in the process of driving, the road uneven is the most
important excitation source for vehicle vibration. Accurate
road excitation information is of great significance to vehicle
dynamics control, especially suspension control. It is impos-
sible to use the same set of suspension control parameters
to meet synchronously the requirements of ride comfort and
driving safety. Therefore, road roughness level information
can provide a direct basis for parameter adjustment in suspen-
sion control. At present, the common methods for obtaining
road information include the measurement and the reverse
analysis.

Measurement methods include direct measurement and
non-contact measurement. To the direct measurement
method, the road roughness measuring instrument is used to
directly measure the road roughness [1]. However, the direct
measurement method cannot achieve real-time on-board
measurement, so it is rarely applied at present. To the Non-
contact measurement method, the laser radar, infrared, vehi-
cle cameras and other equipment are used to extract road
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information. Z. Vidas et al. [2] used image analysis and
laser scanning to identify road types. M. A. Bekhti et al. [3]
extracted the road features by collecting images of the road
ahead, and established the relationship between the road
and the vibration of the vehicle, predicted the vibration of
the vehicle. Q. Liu ef al. [4] established a road recognition
model based on convolution neural networks, which can
accurately identify a variety of roads. S. Wang et al. [5]
used image feature data fusion methods to identify non-
urban roads, and BP neural Network is used for classification.
H. Xu [6] used millimeter-wave radar to study the radar
scattering area and time-frequency map to identify the road.
Although the non-contact measurement method obtains a
wide range of roads, it is costly and sensitive to weather and
other conditions.

In the reverse analysis method, the acceleration sensors
and displacement sensors are installed on relevant position of
vehicle, and the reverse identification of the roads are com-
pleted by obtaining the vehicle vibration response of different
roads. H. M. Ngwangwa et al. [ 7], [8] collected vehicle vibra-
tion response information and used neural network methods
to identify Belgian roads. T. H. Nguyen et al. [9] detected
the state of the road surfaces based on vehicle response and
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random forest methods, and then perform roads classification
and identification. C. Lin et al. [10] established the road
roughness prediction model based on NARX neural net-
work and used vehicle responses to predict road roughness.
J.Lietal [11], [12] predicted road roughness based on the
reverse analysis of vehicle vibration response. By comparing
four typical neural networks, namely BP neural network,
RBF neural network, wavelet neural network and NARX
neural network, it shows that NARX neural network has the
best effect in predicting road roughness. Y. Wang et al. [13]
used the intelligent tire road recognition algorithm based on
support vector machine to study the road level recognition.
Although the real-time performance is not as good as that of
the measurement method, it is not easily affected by factors
such as weather, light, dust, etc., and the cost is low.

With the gradual popularization of artificial intelligence,
deep learning algorithm has being a research hotspot in recent
years. Its advantage lies in the non-linear mapping of the
data feature layer and the ability to automatically construct
deep features. In addition, there is no need to manually select
feature parameters, and it has good generalization ability.
At present, deep learning algorithm has made certain devel-
opments in the field of intelligent transportation systems and
vehicles, such as traffic flow prediction [14], environment
perception [15], [16] and driving behavior recognition [17].
L. Cheng et al. [18] proposed a convolution neural network
model with an improved activation function to classify road
conditions. G. Liang et al. [19] identified the road roughness
level in real time based on the LSTM network and time-series
wheel center acceleration. The results show that the algorithm
has high accuracy in identifying road roughness. Inspired
by deep learning, the reverse analysis of vehicle vibration
responses based on BiGRU network is proposed to identify
the road roughness level in this paper. Firstly, the road rough-
ness level identification model is designed. Secondly, by the
two-degree-of-freedom vehicle vibration model ride comfort
simulation experiment, the vehicle vibration response signals
of different levels of roads are obtained. Then, the vehicle
vibration response data set is used to train and test the road
roughness level identification model. Finally, in order to ver-
ify the feasibility and practicability of the model, the ride
comfort experiments are carried out on typical roads, and the
road roughness level identification model is used to identify
the experimental road.

Il. ROAD ROUGHNESS LEVEL IDENTIFICATION MODEL

In this paper vehicle vibration responses will be used to
reversely recognize the road level, so the road roughness
level identification model based on the BiGRU network is
established. The recognition process is shown in Fig. 1.

A. THE STRUCTURE OF THE ROAD ROUGHNESS LEVEL
IDENTIFICATION MODEL

The road roughness level identification model is mainly com-
posed of an input layer, a BIGRU layer, a fully connected
layer, and an output layer. The structure of the identification
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FIGURE 1. Process of road roughness level identification.
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FIGURE 2. The structure of the road roughness level identification model.

mode is shown in Fig. 2. Firstly, as the input of the model the
vehicle vibration response data are processed by the BiIGRU
network to extract the time series structural features. Then,
the output vector of the BiGRU network is used as the input
of the fully connected layer for classification. Finally, the
Softmax function is used in the output layer to output the road
roughness levels include the class A road, the class B road, the
class C road, and the class D road.

B. INPUT LAYER

The input of the road roughness level identification model
is:

Xi = {1 (1), o2(0)} ey

where X, represents the model input vector at the moment
of #; a1(¢) is the body acceleration; aa(7) is the wheel accel-
eration. Each group of sample data is determined as 100
moments according to the size of the sliding window.
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FIGURE 3. GRU unit.

C. BIGRU LAYER

Long short-term memory network (LSTM) [20] is used to
adjust the flow of information by introducing a gating mech-
anism to remember long-term timing information, and solves
the problems of gradient disappearance and gradient explo-
sion in traditional recurrent neural networks. However, the
LSTM network model has a complex structure and a long
training time. In 2014, K. Cho et al. [21] proposed GRU to
optimize the structure of LSTM, and its structure is shown
in Fig. 3. GRU is a variant of LSTM network. It retains all
the advantages of LSTM. The performance of the two kind of
network is equal, but the structure of GRU network is simpler.
It replaces the input gate and forget gate of LSTM with an
update gate, and retains the original reset gate. In addition,
the input of the activation function is adjusted by the weight
parameter to retain useful information and discard irrelevant
information, which makes GRU network capable of a strong
memory [22]. GRU is unmatched by other neural networks in
dealing with issues that are highly related to timing. The GRU
network update weight parameter formula is as follows:

1) CALCULATION OF UPDATE GATE

The function of the update gate is to determine the amount of
historical moment information added to the current moment,
which is conduced to the capture of long-term dependencies
in time series data. The amount of information retained at the
previous moment is proportional to the value of the update
gate.

7t = 0 Wy Xy +wpzhy—1 + by) ()

where z; is the update gate of the GRU network; X; is the
input vector of the GRU network at the moment of #; i,
is the output of the GRU network at the moment of ¢ — 1;
wy, and wy, are the weight matrix of the update gate; b, is
the deviation parameter of the update gate; o is the sigmoid
function.

2) CALCULATION OF RESET GATE

The function of reset gate is to forget irrelevant information
at the previous moment, which is conducive to the capture
of short-term dependencies in time series data. The amount
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FIGURE 4. The structure of the BiGRU network.

of information ignored at the previous moment is inversely
proportional to the value of the reset gate.

1y = oWy Xy +wprhi—1 + by) 3)

where r; is the reset gate of the GRU network; w,, and wy,
are the weight matrix of the reset gate; b, is the deviation
parameter of the reset gate.

3) RESET CURRENT MEMORY CONTENT

The reset gate is used to reset the memory information,
and the activation function tanh is used to limit the current
memory content to [—1,1].

hy = tanh(wg, Xy + re * wahi—1 + bp) “)

where 7] is the memory content of the GRU network; w,;, and
wp, are the weight matrix; by, is the deviation parameter; * is
the element-wise multiplication.

4) CALCULATE THE OUTPUT OF GRU NETWORK

The output of GRU network is composed of the output infor-
mation at the previous moment and the current moment, and
the update gate is used to control the inflow of the two types
of information.

he =z % by + (1 = 20) % Iy &)

where £, is the output of GRU network at the moment of ¢.

The traditional GRU network transmits information along
single direction of the time series, and can only obtain histor-
ical moment information, ignore future moment information.
Therefore, the BiGRU bidirectional network is adopted. The
number of GRU network units is 200, which fully considers
the historical and future moment information of the vehicle
vibration response data. The structure of the BiGRU network
is shown in Fig. 4. Here, GRU! represents a forward GRU,
and GRU? represents a reverse GRU. The hidden layer state
h; of BiGRU at the moment of ¢ is jointly determined by the
forward hidden layer output ht1 and the reverse hidden layer
output /2.

D. FULLY CONNECTER LAYER

The fully connected neural network does not require the
dimensions of the input data, and has high reliability and
low latency. It is the simplest and most basic neural network.
Therefore, the fully connected neural network is used to
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FIGURE 5. The structure of the fully connected neural network.

synthesize the feature information extracted by the BiGRU
network to classify the road roughness level. The structure of
the fully connected neural network is shown in Fig. 5. The
output of the BiGRU network is used as the input of the fully
connected neural network, and the number of output neurons
is the same as the number of road level categories.

E. OUTPUT LAYER

In order to generate the recognition rate of each level of road,
the Softmax function is selected in the output layer. The Soft-
max function can be continuously and differentiable, which
ensure that the neural network always maintains a continuous
state of convergence, avoid the occurrence of local optimal
problems. It is suitable for dealing with multi-classification
problems. The output vector of the fully connected layer is
inputted into the Softmax function and mapped to the range of
(0,1) to generate the probability of the road level categories,
namely, class A road, class B road, class C road, and class D
road. The output result is a 4-dimensional column vector. The
Softmax function is shown in (6).

i

ey
>k e

where y' is the output vector of the fully connected layer, and
7' is the recognition rate.

7' = softmax(y’) =

Q)

IIl. ACQUISITION OF VEHICLE VIBRATION RESPONSES
Deep learning requires a large amount of data for network
training, and it is difficult to obtain a large amount of com-
plete data for vehicle measurement. Therefore, the filtered
white noise is used to generate different road roughness sig-
nals, and the network is trained by the vertical acceleration
responses of the body and wheels obtained from the simula-
tion of the suspension model.

A. RANDOM INPUT ROAD MODEL

Generally, the height change of road surface relative to refer-
ence plane and road direction are defined as the road rough-
ness function [23]. The road roughness function is a random
function. It is often considered that its mean value is zero and
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FIGURE 6. The two-degree-of-freedom vehicle vibration model.

obeys a normal distribution. In addition, the power spectrum
density is usually used to express its characteristics. The
expression is:

%w=@w%%) %)

where 7 is the spatial frequency(m~!); w is the frequency
index, usually w = 2; ng is the reference spatial frequency,
the value is 0.1m~!; G4(np) is the road roughness coefficient
shown in Table 1 [24].

In this paper, the filtered white noise method is used to
generate the road model in the time domain. The equation
of road surface input is as follow:

zr(t) = =2mfozr (1) + 27/ Govw(t) ®)

where fy is low cut-off frequency, the value is approximately
0.01 Hz; Gy is the road roughness coefficient; w(z) is a filtered
white noise.

B. TWO-DEGREE-OF-FREEDOM VEHICLE
VIBRATION MODEL
The two-degree-of-freedom vehicle vibration model has a
simple structure and is widely used in the vertical dynamics of
the suspension. The structure of the model is shown in Fig. 6:
Here, mg, my, ks, cs, ki, Zs, Zu, 2 are the body mass, wheel
mass, suspension stiffness, suspension damping, tire stiff-
ness, body vertical displacement, wheel vertical displace-
ment, and road input displacement.
According to Newton’s second law of motion, the dynamic
differential equation is as follow:

mgZs + ¢5 (Zs — Zu) + ke(zs —24) =0 9
myZy — Cs (Zs — Zu) — ks(zs — zu)+ki (zu—2,) =0 (10)

The state vector, output vector and state space equation are as
follows:

X = [ZS_ZIMZS’ Zu _Zr’iu]T (11)
Y = (s 25 — 2ur 2u — 21 (12)
{X(t) = AX(t) + Bw(t) 13

Y(@)=CX(t)
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TABLE 1. Classification of Different Types of Roads.

Road roughness level Road type

Paved

expressways, etc., roads are flat and less

roads, including high-speed
Class A road

curved.

Paved road, winding mountain road, flat,
Class B road K X

with a little gravel.

Dirt road, gravel, continuous winding
Class C road mountain road, slope 10°, and grade 2
road covered with snow and ice.
More 10cm bumps, stones, 10cm deep
long-distance dirt roads, unpaved roads
Class D road with a slope of less than 18°, soft sandy
ground and grade 3 road covered with

ice and snow.

where w(t) is white noise signal input, and the individual
parameter matrices are as follows:

0 1 0 -1

ks Cs Cs 0
_ 2 _Z 0 = 0
mg mg mg . _ .
A=l 0" 0o 0o 1 |P B=|l
koo ko _o 0
m, My m, my
ke g6
mg Mg mg
C=| 1 _Soo
mg
0 0 10

C. RANDOM INPUT ROAD MODEL SIMULATION

Since vehicles running on different level of road will
produce different vibration responses, the two-degree-of-
freedom vehicle vibration model and random road model
built above are used for software simulation based on
MATLAB/Simulink.

According to the difference of road roughness coefficient,
the road grade can be divided into 8 levels from A to H [25].
With the development of road construction in China, the
domestic road levels are within the range of A, B, and C of the
national standard. According to the actual road conditions,
this paper selects four levels of roads A, B, C and D for
research. The classification of different types of roads is
shown in Table 1. The road roughness classification standard
is shown in Table 2.

The parameters of vehicle come from Santana 3000,
as shown in Table 3. The ride comfort simulation experiment
is carried out on four types of roads, class A, B, C, and D.
The driving speed is 20km/h, the simulation time is 60s, and
the sampling frequency is 100Hz. The responses of vehicle
on class B road are shown in Figure 7.

The root-mean-square values of vehicle vibration response
under different grades of roads are shown in Table 4. It can
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TABLE 2. Road Roughness Classification Standard.

G (n,)/(10°m*)(n,=0.1m™)
Road roughness level o 0

Geometric mean

Class A road 16
Class B road 64
Class C road 256
Class D road 1024

TABLE 3. Vehicle Model Parameters.

Vehicle parameters Unit Value
Body mass kg 305
Suspension stiffness N/m 21000
Suspension damping N/(m/s) 2000
Wheel mass kg 45
Tire stiffness N/m 200000
0.06 : T "
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g—u.oz i
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FIGURE 7. Vehicle responses on class B road.

be seen from it that as the road roughness level increases,
the root-mean-square values of body acceleration and wheel
acceleration increases, and the vibration amplitude increases.

IV. SIMULATION ANALYSIS

A. VEHICLE VIBRATION RESPONSE DATA SET

In the reverse identification of the road roughness level based
on the vehicle responses, if features are extracted directly
from the vehicle response signals, the resulting features will
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TABLE 4. Vehicle Vibration Response Signals and Statistics.

root-mean-square values

Road roughness level

body acceleration ~ Wheel acceleration

Class A road 0.0074 0.0503
Class B road 0.0149 0.1007
Class C road 0.0333 0.2251
Class D road 0.0744 0.5033

TABLE 5. The Structure of The Vehicle Vibration Response Data Set.

Sample label Road roughness level Data segment
1 Class A road 119
2 Class B road 119
3 Class C road 119
4 Class D road 119
total 476

be too large and inconvenient to calculate. Therefore, in this
paper the sliding window as 1s is used to adopted, which inter-
cepts the vehicle response data as an equal length sequence of
100. In order to preserve the continuity of the signal, there is
a50% overlap between the two time periods. The constructed
vehicle vibration response data set is randomly divided into
two groups, 80% of which is selected as the training set
and the rest is selected as the test set. The former is used
for model training and the latter is used for model testing.
The data segment of the vehicle vibration response is shown
in Table 5.

B. EXPERIMENTS ON THE IDENTIFICATION OF ROAD
ROUGHNESS LEVEL
The software environment for this experiment includes
Python language and Keras deep learning framework. The
hardware environment include Intel Core i5-4210U processor
and graphics card AMD Radeon HD 8500M. Before the
experiment, in order to improve the convergence speed and
recognition accuracy, the vehicle vibration response data set
is normalized, and the expression is shown in (14).

X, = (Xt — Xtmin)

(Ktmax — Xtmin)
where max and min express respectively the maximum and
minimum values of scaling original data; Xy, and X,
express respectively the maximum and minimum values of
the vehicle response; x; is the original data values; X; is the
normalized data values.

In addition, the Adam (adaptive moment estimation) opti-
mizer is selected to optimize the model parameters. The
Adam optimizer replaces the traditional stochastic gradient
descent. It can update the network weight value based on the
training data to realize the error back propagation, so that
the loss function values are converged at the fastest speed.

(max — min) + min (14)
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In order to further improve the efficiency of the algorithm
and make the objective function converge smoothly, the mini-
batch gradient descent method is adopted, and only a part
of the mini-batch samples are selected for each training. The
cross-entropy loss function is selected, and its expression is
as follow:

5
loss = —é ZS: Zygln(yi) (15)

i=1

where y; is the true probability of a certain sample sequence
corresponding to the road roughness level category; y; is
the predicted probability of a certain sample sequence corre-
sponding to the road roughness level category; S is the batch
size, and the value is 32 during the experiment.

In the process of model training, the recognition accuracy
and loss function are important indicators to evaluate the
recognition effect of the model. The higher the recognition
accuracy and the smaller the loss function, the better the
model recognition effect and the higher the robustness. The
training process of the model is shown in Figure 8.

It can be observed from Fig. 8(a) that the loss function has
been showing a downward trend, and the decline speed is
relatively fast. As the number of iterations increases, the loss
function value approaches 0. Moreover, it can be observed
from Fig. 8(b) that the accuracy rate of the model appears
an upward trend as a whole, and the degree of shock is small.
It only takes less training time to reach a higher accuracy, and
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the accuracy approaches 100%,which shows that the model
has good training effects and high accuracy.

The algorithm model is trained to determine the mapping
relationship between the road level and the vehicle vibration
responses, and then the test set is used to evaluate. Because
the test set is completely separated from the model during the
training process, the results of test can be used to evaluate the
performance of the model. The result is shown in Fig. 9.

The confusion matrix of the test results is shown in Fig. 10.
It can be seen from Fig. 10 that the prediction category of
the road level by the identification model is very close to
the real category distribution, and the recognition errors are
mainly concentrated on the class A road and the class B
road. That’s probably because the vehicle vibration response
characteristics corresponding to the two levels of roads are
similar, which makes the model confuse them. As a result, the
road roughness level of a small part of the data is incorrectly
identified, which is consistent with the actual situation.

Table 6 shows the recognition accuracy of the road rough-
ness level identification model, and the overall recognition
rate is 95.83%. Experiments have proved that the model can
achieve accurate classification for different road roughness
levels.

C. THE IMPACT OF SPEED ON THE
IDENTIFICATION RESULT

When the vehicle is moving, the speed is not constant.
The above tests are accomplished at the speed of 20 km/h.
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TABLE 6. Accuracy of Road Roughness Level Identification Model.

Road roughness level Accuracy
Class A road 100%
Class B road 87.5%
Class C road 100%
Class D road 100%

Total recognition rate 95.83%

Accuracy(%)

20 ' . I L '
20 30 40 50 60 70 80

Speed(km/hy

FIGURE 11. The overall recognition accuracy with different speed.

(a)Signal acquisition equipment

(b) Experimental vehicle

FIGURE 12. Experimental equipment.

Therefore, it is necessary to compare and analyze the recogni-
tion effect of the road roughness level identification model at
other speeds. Another ride comfort simulation experiment is
carried out at the speed of 20km/h, 30km/h, 40km/h, 50km/h,
60km/h, 70km/h, and 80 km/h. The simulation time is 10s,
and the simulation frequency is 100 Hz. The data is sampled
through 1s sliding window to form a standardized data, and
the influence of speeds is analyzed. The overall recognition
accuracy with different speed is as shown in Figure 11.

It can be seen from Figure 11 that the overall recognition
accuracy of the model has been decreasing during the process
of changing the speed from 20km/h to 80km/h. When the
speed is within the range of 20km/h-40km/h, and the recog-
nition accuracy is above 80%, which indicate that the road
roughness level identification model has a good recognition
effect at these speed. However, when the speed is higher
than 40km/h, the recognition accuracy is reduced and the
recognition effect becomes worse. That’s because the road
roughness level identification model is trained with vehicle
vibration response data collected at a speed of 20km/h. When
the speed changes greatly, the acquired characteristic signal
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FIGURE 13. Installation position of the acceleration sensor.
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FIGURE 14. Experimental roads.
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varies greatly. Therefore, in practical engineering applica-
tions, only when the vehicle should keep the speed in the
range of 20km/h-40km/h, and the model has the best recog-
nition effect on road roughness levels.

V. VEHICLE EXPERIMENTS

A. COLLECTION OF EXPERIMENTAL DATA

In order to verify the feasibility of the road roughness level
identification model, vehicle experiments are carried out.
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FIGURE 16. Vehicle responses on brick road.

The experimental equipment used in this paper includes the
vehicle, two acceleration sensors, NI USB-4431 data acqui-
sition instrument, and computer, as shown in Figure 12.

The one of acceleration sensor is installed at the center of
body mass of metal chassis, and another acceleration sensor
is installed at the suspension arm of the right front wheel of
the vehicle. The specific position is shown in Fig. 13. The
selected roads include asphalt road and brick road, as shown
in Fig. 14. In the process of experiment, vehicle is drove on
the certain road at a constant speed of 20km/h for 10s every
time, and the sampling frequency is 100Hz. The acceleration
sensors are used to collect the electrical analog signals of
vehicle vibration, and then they are converted into digital
signals by data acquisition card, transmitted to the computer
for storage.

B. PROCESSING OF EXPERIMENTAL DATA

In the experiment, there are unavoidable interference signals
such as noise, so the experimental data need to be processed
for noise reduction. In this paper, the wavelet method is
used to process vehicle response signals [26], as shown in
Figure 15 and 16. Its advantage is that the response signals
can successfully reduce noise and retain the signal charac-
teristics. Therefore, its performance is better than traditional
noise reduction methods.

C. ANALYSIS OF RESULTS
The signals after noise reduction are used to form standard-
ized data samples by the sliding window, and inputted into the
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FIGURE 17. Recognition results of experimental road.

TABLE 7. Recognition accuracy of experimental roads.

Road type Reference Accuracy
Asphalt road Class B road 89.47%
Brick road Class C road 73.68%

road roughness level identification model after normalization
to classify and identify the experimental road level, as shown
in Figure 17.

The recognition accuracy of the experimental roads is
shown in Table 7. The recognition accuracy of asphalt road
is 89.47%, and the recognition accuracy of brick road is
slightly worse than that of asphalt road, which is 73.68%. The
reason is that the some sections of brick road are loose and
not in good condition, which leads to poor ride comfort of
the vehicle. Because of the increase of uncertain factors in
the practical driving environment, the recognition accuracy
of the model for the road roughness level under the vehicle
experiment is lower than that of the simulation data, which
is in line with the objective law. All of results show that
the road roughness level identification model based on the
BiGRU network can still effectively identify the level of
road roughness in practical applications, and has good anti-
interference, effectiveness.
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VI. CONCLUSION

In this thesis, the reverse analysis of the vehicle vibration
responses based on the BiGRU network is proposed to iden-
tify the level of road roughness. The recognition rate of the
vehicle identification model with two-degree-of-freedom is
as high as 95.83%. In order to verify the feasibility and practi-
cability of the model, the ride comfort experiments are carried
out on asphalt roads and brick roads, and the roughness levels
of the experimental roads are successfully recognized.

In fact, the vehicle may be drove on more severe and com-
plex roads, and the simulation data of the vehicle dynamics
model cannot fully consistent with the vibration response of
the vehicle on real roads. In the future, further researches
should develop a large number of road experiments to build
more integral data set, so that the road condition is more
abundant, and the error of the recognition result is reduced.
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