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ABSTRACT Load scheduling, battery energy storage control, and improving user comfort are critical
energy optimization problems in smart grid. However, system inputs like renewable energy generation
process, conventional grid generation process, battery charging/discharging process, dynamic price signals,
and load arrival process comprise controller performance to accurately optimize real-time battery energy
storage scheduling, load scheduling, energy generation, and user comfort. Thus, in this work, the
virtual queue stability based Lyapunov optimization technique (LOT) is adopted to investigate real-time
energy optimization in a grid-connected sustainable smart home with a heating, ventilation, and air
conditioning (HVAC) load considering unknown system inputs dynamics. The main goal is to minimize
overall time average energy cost and thermal discomfort cost in a long time horizon for sustainable smart
home accounting for changes in home occupancy state, the most comfortable temperature setting, electrical
consumption, renewable generation output, outdoor temperature, and the electricity costs. The employed
algorithm creates and regulates four queues for indoor temperature, electric vehicle (EV) charging, and
energy storage system (ESS). Extensive simulations are conducted to validate the employed algorithm.
Simulation results illustrate that the proposed algorithm performs real-time energy optimization and reduces
the time average energy cost of 20.15% while meeting the user’s energy and comfort requirement.

INDEX TERMS Real-time, optimization, convex optimization, dynamic pricing, renewable energy
generation, scheduling, energy storage, user comfort.

NOMENCLATURE
Abbreviations Explanation
AI Artificial intelligence.
ACO Ant colony optimization.
ABC Artificial bee colony.
AEP Annual energy production.
BES Battery energy storage.
DR Demand response.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alexander Micallef .

EMS Energy management system.
ESS Energy storage system.
EV Electric vehicle.
GA Genetic algorithm.
HEMS Home energy management system.
HVAC Heating, ventilation, and air conditioning.
GA–PSO Genetic algorithm particle swarm optimiza-

tion.
LCoE Levelized cost of energy.
LOT Lyapunov optimization technique.
MINLP Mixed integer non linear programming.
MILP Mixed integer linear programming.
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NRFNA Normalised reasoning-based fuzzy neural
adaptive.

NMPC Non-linear model predictive controller.
PAR Peak to average ratio.
PV Photovoltaic.
PSO Particle swarm optimization.
PCC Point of common coupling.
PHEVs Plugin hybrid electric vehicles.
PG Peaker generator.
RES Renewable energy sources.
RT Real time.
TCLs Thermostatically controlled loads.
Constants Explanation
A Thermal conductivity in general (kW/◦F).
Cpv PV panels’ total irradiance area (m2).
Dmax Qt max queueing delay (hour).
emax HVAC system power (kW ).
ε Inertia factor.
N The total amount of time slots available.
η Efficiency of thermal-conversion (heating).
R EV charging tolerant delay (hour).
Tmin Comfort range’s lower bound (◦C).
Tmax Comfort range’s upper bound (◦C).
T out min Outdoor minimum temperature (◦C).
T out max Outdoor maximum temperature (◦C).
τ Time slot duration (hour).
ucmax ESS max charge power (kW ).
ud max ESS max discharge power (kW ).
vmax EV max charge power (kW ).
ω System time-constant (hour).
θpv The efficacy of PV generation.
γ Thermal cost-coefficient (RMB/(◦F)2).
Indices Explanation
t Single time slot index.
Variables used
at Qt queue arrival rate (kW ).
Bt Electricity buying cost (RMB/kWh).
et HVAC input power at slot t (kW ).
Gt ESS stored energy level (kWh).
gt Buying/selling energy relating smarthome

(kW ).
Ht Indoor temperature virtual queue (◦F).
Kt ESS control virtual queue (kWh).
Lt Lyapunov function.
pwtt Wind generation output (MW ).
ρt Intensity of solar irradiance (W/m2).
Qt Energy queue for EV (kW ).
rt PV panels’ generation output (kW ).
St Electricity selling cost (RMB/kWh).
Tt Indoor temperature (◦C).
T outt Outdoor temperature (◦C).
T reft+1 The foremost comfortable temperature

(◦C).
xt Qt queue service rate (kW ).
yt ESS Charge/discharge power (kW ).
Zt EV charging delay virtual queue (slots).

5t+1 Home occupancy state at slot t + 1.
81,t Cost of energy (RMB).
82,t Cost of thermal discomfort at slot t+1 (RMB).

I. INTRODUCTION
Due to budget and technological constraints, the main power
grid cannot electrify the remote regions across the world.
Thus, electrification of remote regions becomes possible
with a microgrid’s emergence. A microgrid is an integrated
framework linking distributed generators, distributed energy
storage, and controllable load within a limited and clearly
defined region operating independently [1]. With the emer-
gence of information and communication technology, the
microgrid can be operated in two modes: grid-connected
and standalone to solve energy balancing problems. On the
record, residential sector consumers 31%−41% of the overall
energy, which is major consumption. Thus, for effective
energy balancing/energy optimization, an optimal controller
infrastructure is required for charging/discharging activities
scheduling, flexible load scheduling, energy flow control
between microgrid and power grid [2]–[4].

On this note, in the literature, diverse research work
has been conducted for real-time energy optimization in
smart grids integrated with renewable energy sources and
energy storage systems. For instance, in [5], a novel energy
management framework with smart control and automation
is introduced for household energy management. Similarly,
many works are conducted for energy balancing either in
grid-connected or stand-alone modes in both aspects like
user-centric and utility-centric. The utility-centric energy
optimization function is constrained to user commitment,
spinning reserve, energy storage, renewable energy genera-
tion, power grid operation, demand response, etc. In contrast,
the user-centric energy optimization function is constrained
to appliances scheduling delay, battery storage management,
energy cost reduction [6]–[9]. The particular discussion of
related work is presented in section II, where challenges in
the existing works are highlighted.

In this study, we emphasize on scheduling the load in a
smart home that includes HVAC and EV charging because
HVAC systems account for roughly half of a smart home’s
power usage, and EV charging falls under the flexible load’s
category. Consequently, the variation in price over time may
be used to save money on energy. In particular, the smart
home takes into account distributed generators and ESS.
The goal of this research study is to reduce the overall
cost of electricity-related to smart home appliances and
thermal discomfort costs associated with residents over a long
time horizon by taking into account variations in electricity
costs, outdoor temperature, RES generating output, electrical
demand, the foremost comfortable temperature level, and
home occupancy state. To accomplish the goal mentioned
above, we first solve the challenge of lowering the average
projected total cost for a home equipped with an HVAC
load. As time-coupled limitations and the prospective system
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characteristics are uncertain, solving the specified problem is
complex.

A time average optimization problem may usually be
solved using the framework of LOT [10], and an online
energy management method may be constructed as in [11]
and [12]. Current Lyapunov-based energy management
algorithms aim to queue flexible load facility demand
requests when the price of electric power is high and
provided when the price of electric power is low. Unlike
an EV load, the power consumption of an HVAC system
is unknown at any given time and is impacted by a variety
of factors, including the most comfortable temperature
level, the lowest and highest internal temperature bounds,
house occupancy state, and outdoor temperature. Also, the
conventional Lyapunov based energy management methods
do not apply to our scenario due to inherent limitations.
Thus, a Lyapunov based energy management framework is
developed that caters all virtual queues related to indoor
temperature, EV charging, and ESS without predicting
any parameter values or knowing HVAC power usage.
In addition, the proposed method function utilizing LOT
framework by establishing an interior temperature virtual
queue without knowing the amount of HVAC power required
at any particular for real-time energy optimization. The
novel technical contributions of this work are highlighted
as follows.
• A mechanism is established to reduce the estimated
time-averaged total cost for a home equipped with
HVAC load that accounts for variations in energy costs,
environment temperature, RES output power, energy
demand, the comfortable temperature setting, and home
occupancy state.

• A real-time energy management technique is developed
based on the LOT framework that without anticipation
any system characteristics or knowing the HVAC power
need perform optimal online energy. Also, a study
is conducted which ensures viability and performance
guarantee of the proposed framework.

• Extensive simulation results show that the proposed
algorithm may efficiently decrease energy expenditures
while sacrificing little in terms of thermal comfort,
according to extensive simulation findings based on
factual footprints.

The rest of this work is organized in the following manner.
The related work is included in Section II. Proposed system
model is discussed in Section III while problem statement
and problem formulation are described in Section IV
and Section V, respectively. The proposed algorithm is
presented in Section VI. We do comprehensive simulations
in Section VII. Section X concludes with findings and
recommendations for further work.

II. RELATED WORK
Before performing energy management, renewable energy
generation and load forecasting are of prime importance,

which is catered in [13]–[15]. A lot of research work has been
conducted in real-time scheduling for optimal energy opti-
mization in smart grid. To better understand the existing liter-
ature regarding energy optimization in smart grid. The related
work is classified into three categories: first-class demon-
strate energy optimization microgrid centric techniques in
grid-connected mode, the second class presents energy opti-
mization microgrid centric techniques in islanded mode, and
the third class investigates energy optimization user-centric
techniques in islanded mode. Each category is given below
in detail.

A. ENERGY OPTIMIZATION MICROGRID CENTRIC
TECHNIQUES IN GRID-CONNECTED MODE
Several research studies have been conducted to solve the
energy optimization problem in smart grids using microgrid-
centric techniques in grid-connected mode. For example,
in [16] proposed a bilevel strategy to address the issues of
energy optimization using demand response (DR) programs
for microgrids in grid-connected mode. This framework
successfully simulates users’ behavior and dissatisfaction
at the initial optimization level to produce the optimum
DR program for each user energy optimization. At the
second level, grid restrictions are taken into account to
prevent voltage and current deviations from their regu-
latory limitations. In [17], a game-theoretic methodology
is proposed for optimizing power usage of power plants
by scheduling individual thermostatically controlled loads
(TCLs). The authors in [18] proposed a methodology for
real-time energy optimization of the microgrid in islanded
mode. The problem after modification and transformation
is employed to utilize the LOT framework. The paper [19]
proposed an optimum energy storage control strategy to
optimize microgrid operation. A replacement methodology
that mixes three completely different artificial intelligence
techniques for energy demand optimization in a smart home is
proposed in [20]. A control-based network model to arrange
transmission and storage resources effectively in the presence
of unpredictable energy sources is proposed in [21]. Authors
in [22] proposed a linear and quadratic model for smart
home energy management in grid-connected mode. The
developed model uses a smart metering system with wireless
connectivity to optimally control energy flow. In [23], a linear
programming basedmechanism is introduced for energy opti-
mization of the microgrid in grid-connected. In [24], a game-
theoretic method is proposed for energymanagement in smart
grid. A hierarchical system model is developed for energy
optimization, where numerous providers and prosumers work
together to define the simplest pricing value and requests. The
work in [25] uses a compromise programming technique to
reduce the cost of cyber web power by considering energy
sharing across many interconnected microgrids. In [26],
artificial intelligence based strategy is introduced to resolve
the energy management issue using RES plus battery storage
in smart gird.
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B. ENERGY OPTIMIZATION USER CENTRIC TECHNIQUES
IN GRID-CONNECTED MODE
The research studies have been conducted in the literature
on user-centric techniques to solve the energy optimization
problem in grid-connectedmode. For instance, authors in [27]
proposed an IoT-based strategy in smart grid to perform
energy optimization for the purpose of meeting the long-
term energy demands of users. In [28], artificial intelligence
is adapted to significantly increase the potency, reliability,
and safety of electric cars in grid-connected mode. The paper
in [29] investigated the use of an alternate directionmethod of
multipliers in conjunction with a convex optimization strat-
egy for smart grid load energy distribution. Authors in [30]
developed mixed-integer nonlinear programming (MINLP)
to overcome self-scheduling drawbacks. In [31], heuristic
optimization methods like a genetic algorithm (GA), ant
colony optimization (ACO) algorithm, and particle swarm
optimization (PSO) algorithm to tackle the energy man-
agement issue in the presence of that in the availability
of PV generating resources and BES. In [32], a hybrid
genetic algorithm particle swarm optimization (hybrid GA–
PSO) approach is developed to minimize the energy cost
by matching generation and load demand. Authors in [33]
proposed an energy scheduler and distributed storage strategy
to increase user satisfaction level while lowering consumer
energy consumption. A dynamic energymanagement method
based on a set of thresholds that take into account RES
and storage is proposed in [34] for energy optimization in
grid-connected mode. To achieve a better match between
renewable generation and demand, a prediction model is
also included in the home energy management system. The
paper [35] introduced a fuzzy analytical hierarchy process
technique for handling the energy management problem
in user-centric grid-connected mode. A blockchain-based
predictive energy mercantilism framework is developed
in [36] for distributed energy resource period support, day-
ahead dominance, and generation planning. The purpose is
to support user-centric energy optimization in grid-connected
mode. In [37], dispersed divisions with a time period
stratified charging/discharging approach are developed to
provide coordination of charging/discharging between EVS
and power grid.

C. ENERGY OPTIMIZATION MICROGRID CENTRIC
TECHNIQUES FOR ISLANDED MODE
The literature research studies have been conducted to solve
the energy optimization problem using microgrid-centric
techniques in islanded mode. For example, authors [38]
proposed unique normalized reasoning fuzzy neural adap-
tive (NRFNA) management technique for a double-stage
grid-coupled PV system. In [39], a hybrid genetic ant colony
optimization (HGACO) algorithm is developed to resolve
the programming model for three scenarios: without PV
system, with a PV system, and with PV/BES system. The
paper [40] developed an energy optimization model by the

combination of the genetic algorithm with game theory-
based fuzzy logic. The purpose is to maximize profit by
forecasting future power demands. An energy management
model based on mixed-integer linear programming (MILP) is
developed in [41] to optimize the operation of smart buildings
for peak shaving. In [42], a novel optimization method
known as bat algorithm to tackle the energy management
problem of a microgrid in islanded mode. The paper [43]
implements a multi-objective cuckoo search algorithm to
evaluate the effects of utilizing BES on optimal performance
of power system. Authors in [44] proposed a self-tuning
controller based on fuzzy logic to address traditional con-
troller parameter uncertainties, such as operating conditions,
microgrid operational purpose modifications, and microgrid
modeling uncertainty. The paper [45] proposed a technique
for regulating active and reactive power flow in a renewable
generating system operating in the islanded mode for point
of common connection (PCC). In [46], an artificial neural
network based model is developed for maintaining a better
voltage profile with balanced reactive power levels across the
grid network. A two-stage random p-robust optimum energy
mercantilism management model is developed in [47] for
microgrids that include PVs, wind turbines, diesel engines,
and microturbines.

D. ENERGY OPTIMIZATION USER CENTRIC TECHNIQUES
IN ISLANDED MODE
An extensive part of the literature is investigated the
energy management problem using user-centric techniques
in islanded mode. For example, in [48] a microgrid energy
management system supported by a stochastic MILP based
on input from random processes that characterize uncertain
parameters is developed. The paper [49] proposed an
adaptive optimum fuzzy logic scheme to build suitable day
ahead fuzzy rules to solve energy management and energy
dispatch problems. Authors in [50] proposed an artificial bee
colony (ABC) algorithm for the calculation and scheduling
of individual electrical load. A real-time energy optimization
solution for EV coordinated microgrids is developed using
the Lyapunov stochastic optimization technique in [51].
In [52], a non-linear model predictive controller (NMPC)
technique for coordinating the operation of linked multi-node
microgrids with energy storage capabilities is introduced.
A hybrid model is developed for series-parallel plugin
hybrid electric vehicles (PHEVs) energy optimization in
islanded mode, using a rule-based genetic algorithm (GA).
In [54], IoT and cloud computing based energy management
framework is developed for energy optimization in islanded
mode. A stochastic energy management algorithm that
minimizes the overall cost value and identifies the optimal
size of different parts like battery, electrolyzer, fuel cell,
microturbine, PV unit, and WT.

The research works mentioned above are efficient in terms
of energy optimization for all three discussed classes, which
is summarized in Table 1 and also existing models are
compared with our proposed model. Our work proposes
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to minimize energy consumption by processing appliance
facility demand requests so that requests are queued when
the price of electric power is high and provided when the
price of electric power is low. In contrast, to the EV load, the
HVAC load has an unknown power consumption at any given
slot and is impacted by several factors, including temperature
bounds like lowest and highest indoor temperature bounds,
the state of the home, and the outside temperature. Although,
the Lyapunov optimization methodology has previously been
utilized to build an online energy management plan for a
home having HVAC system, our research also addresses the
following aspects.
• The energy storage system, the random home occupancy
state, and the buying and selling of power are all
considered.

• The algorithmic feasibility factors impacting system
management are calculated explicitly.

• Our suggested method functions by establishing an
indoor temperature virtual queue despite not knowing
the amount of HVAC power required at any particular
slot.

• The loss in energy value and the increase in thermal
discomfort are considered.

III. SYSTEM MODEL
The smart home studied in this work is depicted in Figure 1.
As can be seen, there is a bi-directional link between home
and power grid. The smart house and the traditional grid can
both access real-time electricity pricing and overall power
consumption thanks to this two-way link. The smart home can
both buy and sell electric power from the conventional grid in
this way. In our smart housemodel, the following components
are connected to DC/AC low voltage bus bar for exchanging
energy.
• RES (PV + wind).
• ESS.
• HEMS.
• Loads (HVAC + EV)

The HEMS serves as the smart home’s core controller,
managing energy generation, storage, and consumption. The
HEMS can gather system data (cost of electricity, electrical
demand, home occupancy state, outdoor temperature, and
RES generating output) and deliver commands to controlled
systems via two-way communication. For loads, we have
considered inflexible loads such as HVAC and flexible loads
such as EV, while other home appliances are not considered
in our work; however, their demand will be fulfilled by
HEMS. The HEMSworks in slotted time, which is defined as
t ∈ [0,T ], with T being the time slots total number. For the
comparable use of power and energy, the time slot duration τ
is considered unity.

A. RES MODEL
Two different energy sources are considered for our proposed
renewable energy model, i.e., the PV and wind energy
models.

1) PV ENERGY MODEL
The renewable energy generated is taken from a rooftop PV
system. The maximum allowable output of a PV system
is assumed to be rt at time slot t . Where rt might be
calculated using the [56] model, which is demonstrated in
equation (1).

rt = θpvCpvρt , ∀t, (1)

Both the actual PV’s and the power electronic inverter
are simplified in the aforementioned equation. Where θpv
denotes PV generation efficacy, Cpv denotes the area of PV
panel available for irradiance (in m2), and ρt indicates solar
irradiance (inW/m2).

2) WIND ENERGY MODEL
The wind energy profile was compiled by [57]. Vestas’ V120-
2.2 MW is based on more than 48 GW of 2 MW turbines
that have been successfully installed. The 2 MW turbine is
designed to produce greater energy in low to moderate wind
conditions, with annual energy production (AEP) gains of
up to 14%. The 2 MW turbine harvests more energy from
available wind and sets a new bar for park level simple
Levelized cost of energy (LCoE) performance because of its
19% greater swept area. The following criteria were taken
into account when creating our wind profile:

Maximum power output = 2 MW.
Wind cut-in speed = 4 m/s.
Wind rated wind speed = 12 m/s.
Wind cut-out wind speed = 25 m/s.
However, these parameters will only be met if the

following constraints are taken into account:

if vco < v ‖ v < vci, then, pwtt = 0 (2)

if v ≥ vci&& v ≤ vr , then, pwtt = [(2 ∗ 106) ∗ 4]/12 (3)

if v ≥ vr && v ≤ vco, then, pwtt = 2 ∗ 106 (4)

B. LOAD MODEL
We have considered two types of loads: an inflexible load
such as HVAC and a flexible load such as EV.

1) HVAC MODEL
There are two operational modes of the HVAC system:
heating and cooling. But in our work, we have only focused
on heating mode. It is taken into account the energy
consumption of an HVAC system that can automatically
adjust its power level to keep the indoor temperature within
a reasonable temperature range. Let et represent the HVAC
real-time power usage. The energy requirement of the HVAC
system fluctuates continuously according to (5),

0 ≤ et ≤ emax, ∀t, (5)

where emax is the HVAC maximum loading capacity [in
kW] and et is the HVAC current energy requirement at
time slot t [in kW]. It serves as an inverter in this system,
allowing the HVAC system to continually alter its input
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TABLE 1. Summary of existing literature: a comparison between existing and our proposed models. Abbreviations used in the Table are: RE=Renewable
Energy, PG=Peaker Generator, GE = Grid Energy, ESS=Energy Storage System, TES=Thermal Energy Storage.

power et , according to [58]. An HVAC system’s indoor
temperature dynamics may be calculated as follows (6)
from [59].

Tt+1 = εTt + (1− ε)(T outt + (η/A)et ), ∀t, (6)

where Tt and T outt signify the indoor and outdoor temper-
atures, respectively. Similarly, η denotes thermal efficiency
of conversion system, A denotes thermal conductivity ε =
e−τ/ω; measured in unit kW/◦F ; and ω denotes time constant

of system. When the indoor temperature of a smart home
changes within a range, such as 20◦C ∼ 25◦C , a person feels
comfortable. We use the following constraint (7) to achieve
this:

Tmin
≤ Tt ≤ Tmax, ∀t (7)

The high and low ranges of the comfort range are represented
by Tmin and Tmax.
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FIGURE 1. System model.

2) ELECTRIC VEHICLE MODEL
The EV is linked to the smart home through a DC/AC
bus. The EV will send charge requests to the HEMS as it
is connected. When the EV is connected in for charging,
three tuple charging requests (s, c,E) are sent to the HEMS
controller over the communication line, similar to [60]. For
the EV, a three tuple request is provided, which includes the
intended charging time s, the intended charge completion
time c, and the total energy E necessary to completely charge
the EV. To deal with the temporal variability of dynamic
pricing, EVs electricity demand should be met so that EVs
are charged when the price of electric power is low, and EVs
charging is postponed when the price of electric power is
high. To achieve this criterion without exceeding completion
time, we use the following queue relating energyQt is defined
in Eq. (8).

Qt+1 = max[Qt − xt , 0]+ at , ∀t (8)

where xt and at are the energy queue’s service and
arrival processes, respectively. As the Lyapunov optimization
technique framework could turn a long-term optimization
problem into multiple online subproblems via queue stability
management, the energy queue Qt was established, which
contributes to online EV charging scheduling as in [61]. xmax

defines the highest value of xt where xmax
≥ amax(amax

=

max xtat ) because it keeps the queue Qt steady. We have (9),
the following constraint demonstrates that not to provide
energy demand bigger than Qt .

0 ≤ xt ≤ min{xmax,Qt }, ∀t (9)

Since EV charging power is restricted, the EV will add the
most of vmax electricity demand to Qt , where vmax is EV’s
maximum charging power. Multiple time slots are required

when vmax < E to complete the submission of net electricity
demand E . EV delivers the electricity same as in [61],
according to the following equation (10):

at =


vmax, s ≤ t ≤ s+ k;
E − kvmax, t = s+ k;
0, otherwise,

(10)

where k = be/vmaxc. The following constraint (11) is used to
make the average length of Qt finite,

lim
T→∞

sup 1/T
∑T−1

t=0
E{Qt } <∞ (11)

We impose the following constraint (12) since (11) is
insufficient to assure that the charge completion time is not
exceeded.

Dmax
≤ R, (12)

where Dmax signifies the queue Qt maximal queueing
delay, and R signifies the tolerable EV charging service
delay (c−s− k).

C. ENERGY STORAGE SYSTEM MODEL
Let Gt represent the stored energy level in a smart home-
connected ESS. The battery’s accumulated energy level
fluctuates over time with the operation (i.e., charge and
discharge) according to the equation (13), ensuring that the
amount of charge within the device does not surpass its
capacity boundaries.

Gmin
≤ Gt ≤ Gmax, ∀t, (13)

whereGmax andGmin represent the ESSmaximum and lowest
capacities, respectively. ESS charge or discharge power at slot
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t is determined by yt defined in the constraint (14), which is
specified as follows.

−ud max
≤ yt ≤ ucmax, ∀t, (14)

where ucmax > 0 and ud max > 0 are the charge and discharge
maximum powers, respectively. The battery is charging when
yt > 0, dischargingwhen yt < 0, and idlingwhen yt = 0. The
dynamic of the energy stored in the battery may be simulated
in the same way as the ESS models in [62]–[64].

Gt+1 = Gt + yt, ∀t, (15)

where Gt is the stored energy of the ESS at time slot t .
We assumed that the battery’s vampire loss (power leakage) is
modest for the purpose of simplicity and so excluded it from
the battery dynamics.

D. POWER BALANCING
The power trade between the smart house and the conven-
tional grid is expected to be gt at time slot t . Energy will be
acquired from the grid when gt > 0, and sold to the grid when
gt < 0. The real-time energy balancing is formulated as:

pwtt + gt + rt = et + xt + yt , ∀t, (16)

IV. PROBLEM STATEMENT
Previously, several works have used either heuristic or meta-
heuristic methodologies to achieve the objective of energy
management in smart grids. Existing studies have been done
in islanded mode or grid-connected mode for microgrid
central or central consumer approaches, as described before
in the related work section. In the islanded mode, only the
integration of RES in the microgrid is considered, but in the
grid-connected mode, both the conventional grid and RES
are connected to achieve energy management goals. On the
other hand, the current works lack the flexibility to meet
many objectives at once. As an example, some works have
just met the cost-cutting goal without considering the level of
consumer comfort. While some have focused on voltage and
current regulation, others have focused on optimal charging-
discharging between the grid and the EV. Many studies have
been done on energymanagement techniques. However, none
have taken into account real-time online energy management
techniques. In our research, we used Lyapunov optimization,
which is based on the online convex optimization energy
management technique. Our research was conducted in a
grid-connected manner, which implies that we evaluated both
RES and the conventional grid as sources for our load in a
smart home and ESS as a storage medium. Similarly, our
work is predicated upon the reduction of the total cost, PAR
alleviation, thermal discomfort cost associated with HVAC
and EV load, optimizing the charging power of EV, and the
charge/discharge power of ESS. The load is scheduled in such
the simplest way to fulfill the energy demand of consumers.
And for that, we have taken the dynamic behavior of inputs
like uncertainties in cost of electricity, changing of outdoor
temperature, RES generating output, home occupancy state,

and energy consumption. To make it more clear different
scenarios are compared using a convex technique based
on Lyapunov optimization and without convex technique,
and the output results from both scenarios showed efficient
problem tackling capability of the proposed model with
dynamic inputs.

V. PROBLEM FORMULATION
According to the models discussed in system model section
the price of electric power related to buying and selling is
modeled as:

81,t =

(
Bt − St

2
|gt | +

Bt + St
2

gt

)
(17)

where Bt ∈
[
Bmin,Bmax

]
denotes the buying price of the

electric power at slot t and St ∈
[
Smin, Smax

]
denotes the

selling price of the electric power. It is assumed that for all
t the selling prices are or less than or equal to buying prices,
i.e., Bt ≥ St . This condition prevents the smart home from
greedily buying the electric power from the conventional grid
and then reselling to grid at higher prices. This condition has
already been considered by [63] and [65] in prior studies. And
it’s evident from (17) that simply the variable gt is needed
to represent the buying and selling of electric power. And
this will be more cleared by the following conditions that
when gt ≤ 0, then 81,t = Stgt while if gt > 0, then
81,t = Btgt . According to [66] the thermal discomfort cost
for the residents at slot t is given by equation (18):

82,t = γ5t+1(Tt+1 − T
ref
t+1)

2, (18)

where γ is the cost coefficient having the unit $/(◦F)2,
and it is related to the importance of discomfort cost; T reft+1
represents foremost comfortable level of residents at t +
1 which in our case is considered to be 22.5◦C . And5t+1 is
a binary variable which denotes the home occupancy state at
t + 1 (where 1 indicates occupancy and 0 indicates vacancy).
When 5t+1 = 0, this shows that there is no occupant at
home, then 82,t would also be zero as a result. The final
resident, who will depart the house at slot t , may decide
on the value of 5t+1. The criteria stated above were for
human interaction. However, without human interaction, the
smart devices with sensors particular settings applied, such
as to signal departing or entering the home, can be used
instead, according to [67]. To minimize the total energy and
thermal discomfort costs, we formulated the problem using
the models discussed above, and it is given as follows.

(P1) min lim
N→∞

sup
1

N − 1

N−2∑
t=0

E{81,t +82,t } (19a)

s.t. (2)− (6) , (8)− (13) , (19b)

Where E is the expectation operator that will act randomly
on buying and selling of electricity prices Bt /St , renewable
generation output rt /pwtt , outdoor temperatures Tt out , electri-
cal demand of EV at , the foremost comfortable temperature
level T reft+1, home occupancy state T reft+1; the decision variables
related to P1 are xt , et , gt and yt .
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VI. PROPOSED METHODS
In this section, the proposed method for online energy is
discussed. The detailed description is as follows.

A. PROPOSED ALGORITHM FOR REAL-TIME ENERGY
OPTIMIZATION
Two difficulties were encountered when attempting to solve
P1. To begin, the following constraints (6), (8), and (15) add
temporal couplings, implying that present decisions influence
future decisions. Second, future variables like the price of
electric power and outdoor temperature are unclear. Some
approaches, such as dynamic programming [68], is used to
address the problem of time reliance or temporal coupling.
However, they suffer from (the curse of dimensionality).
The LOT framework was frequently used to address the
issues mentioned above as in [69] and [70]. Suppose existing
Lyapunov-based energy management algorithms are taken
into account. In that case, it can be shown that they seek to
queue up power demand requests from appliances (e.g., EVs)
and service them when the price of electric power is low. The
energy/power requirement of an EV is predetermined, but the
energy/power requirement of an HVAC load is determined
by a variety of parameters, including home occupancy state,
indoor temperature, foremost comfortable temperature level,
and outdoor temperature. As a result, we must alter present
algorithms to cope with HVAC load. The following is a
summary of the suggested algorithm key idea:
• The virtual queues related to ESS, EV charging delay,
and indoor temperature are constructed.

• According to the LOT framework, the drift plus penalty
term is obtained.

• Upper bound of the right side of drift plus penalty term
is reduced.

A real-time energy management algorithm based on the
technique mentioned above without forecasting characteris-
tics or knowing the HVAC power demands for any system.
It is crucial to remember that virtual queues ensures that
constraints (7), (12), and (13) are all met. The suggested
approach will not violate the constraints ((7), (12) and (13)
if such queues are efficiently stabilised. Three minor
assumptions concerning system parameters are made to make
the system controlled, i.e.,

T out max
≤ Tmax, (20)

η

A
emax
+ T out min

≥ Tmin, (21)

Tmax
− Tmin > ψ, (22)

where T out ∈
[
T out min,T out max

]
, ψ = (1 − ε)(

T out max
− T out min

+
η
Ae

max
)
. Because the highest temper-

ature in winter is lower than the most pleasant temperature
levels, which is first assumption and commonly observed for
heating mode winter (e.g., Figure 8 indicates that T out max is
around 10◦C ,, whereas Tmax is around 25◦C). The second
assumption demonstrates that temperature decline may be
adjusted by infusing the HVAC system’s maximum power
(any HVAC system necessitates this). In practise, the final

assumption might be readily satisfied by setting parameters
as in [71], [72]. Tmax

= 23.5◦C , Tmin
= 20◦C , ε = 0.96,

T out max
− T out min

= 10◦C , η = 1, A = 0.14kW/◦F ,
emax
= 10kW , also ψ = 4.8571◦F < Tmax

−Tmin
= 6.3◦F .

In principle, the control parameter Vmax
1 the d > 0, according

to (22).

1) CONSTRUCTING VIRTUAL QUEUES
A virtual queue Ht , which is the altered form of indoor
temperature, is defined as follows to ensure the workability
of constraint (7):

Ht = Tt + 0, (23)

where 0 is constant term defined in Section VI - B. While
the dynamics of Ht may be calculated using the formula in
equation below,

Ht+1 = εHt + (1− ε)(0 + T out +
η

A
et ), (24)

The above equation is determined by integrating (6) and (23).
To meet the criteria of (12), the Zt is delay aware virtual
queue, which is mathematically modeled as:

Zt+1 =

{
[Zt − xt + ξ ]+, Qt > xt,
0, Qt ≤ xt,

(25)

Where [♦]+
1
= max{♦, 0}; ξ is the fixed parameter,

representing the virtual queue Zt arrival rate when Qt > xt,,
while xt is the service rate of queue Zt . As in [73],
equation (12) may be assured if the queues Zt and Qt have
finite upper limits. The maximum queueing is calculated as:
Dmax

= d(Qmax
+ Zmax)/ξe. The existence of upper bounds

will be demonstrated in the next section.
To ensure the functionality of (13), a virtual queue Kt ,

which is the shifted version of the ESS energy level Gt ,
is defined in (26):

Kt = Gt + α, (26)

where α is constant defined in Section VI - B). The Kt
dynamics are as follows:

Kt+1 = Kt + α, (27)

2) ACQUIRING DRIFT PLUS PENALTY TERM
The real energy queue Qt , as well as the other three virtual
queues, should be stabilized to meet (11). As a result,
a Lyapunov function is defined below:

Lt =
1
2
(Ht2 + Qt2 + Zt2 + Kt2) (28)

We can define 9t
1
= (Ht ,Qt ,Zt ,Kt) , and Lyapunov

drift in (29):

1t = E{Lt+1 − Lt |9t } (29)

All assumptions are based on the changing behavior of the
price of electric power, outdoor temperatures, renewable
generating output, electric vehicle charging demand, the
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foremost comfortable temperature setting, home occupancy
state, and control decisions. From (28) we have,

Lt+1 − Lt = (ϕH + ϕQ + ϕZ + ϕK ), (30)

Where ϕH = 1
2 (H

2
t+1 − Ht2), ϕQ = 1

2 (Q
2
t+1 − Qt

2), ϕZ =
1
2 (Z

2
t+1 − Zt2) and ϕK = 1

2 (K
2
t+1 − Kt2). And the upper

bounds of ϕH , ϕQ, ϕZ , ϕK are given as follows,

ϕH =
1
2
(H2

t+1−Ht2)<�0+ε(1−ε)Ht (0+Tt out+
η

A
et ),

(31)

ϕQ =
1
2
(Q2

t+1 − Qt
2) < �1 + Qt (at − xt ), (32)

ϕZ =
1
2
(Z2

t+1 − Zt2) < �2 + Zt (ξ − xt ), (33)

ϕK =
1
2
(K 2

t+1 − Kt2) < �3 + Ktyt , (34)

where�0 =
(1−ε)2

2 max
(
(0 + T out min)

2
, (0 + T out max

+ ,
η
Ae

max)2
)
, �1 =

(xmax)2+(amax)2

2 , �2 =
1
2 max(ξ2, (xmax)2),

�3 =
(max(ucmax,ud max))

2

2 . When the function of total projected
cost is added to (29), the drift plus penalty term is produced
as follows:

1Yt = 1t + VE{81,t +82,t |9t }

≤

4∑
l=1

�l + E{Ktyt − (Qt + Zt )xt |9t }

+E{ε(1− ε)Ht (0 + T outt +
η

A
et ) |9t }

+VE{81,t +82,t |9t } , (35)

where V is a weight parameter that balances queue stability
and net energy cost minimization.

3) UPPER BOUND MINIMIZATION
The Lyapunov based approach selects control actions to
reduce the upper limits of the drift plus penalty term’s right
hand side. Algorithm 1 describes the proposed algorithm. P2
is a four-variable convex optimization problem that can be
solved effectively using convex methods or tools. For clarity,
Tt+1|e t = 0 is used to indicate the value of Tt+1 with et = 0.
When the home is vacant, the HVAC power is zero in the
next time slot, and Tt+1|e t = 0 is still larger than Tmin,
saving energy costs without harming home occupants thermal
comfort.

The proposed algorithm can satisfy the constraints (6), (8),
(15) by updating Ht , Qt and Kt according to (24), (8), (27),
respectively. Additionally, (5), (9), (14), (16) are included
in P2. The remaining constraints (7), (11), (12), and (13)
are not taken into account by Algorithm 1. The viability of
the proposed algorithm for P1 will be demonstrated in the
next section by demonstrating the constraints (7), (11), (12),
and (13).

Algorithm 1 Smart Home Energy Management algorithm
For each time slot t do
At the initialization of slot t , check 9t , T outt , Bt , St , rt , at ,
T reft+1, 5t+1, pwtt
Take gt , et , xt , and yt as the solution to P2:

(P2) min Ktyt − (Qt + Zt )xt + ε(1− ε)Ht (0 + Tt out

+
η

A
et )+ V (81,t +82,t )

s.t. (3), (6), (10), (13)

If 5t+1 = 0 and Tt+1|et=0 ≥ T
min

then, et = 0, gt = xt + yt − rt − pwtt
End

Scenario 1:
Take output power of grid gt only.
min P2
gt = xt + yt
Scenario 2:
Take output power of PV and Wind rt and pwtt only.
min P2
rt + pwtt = xt + yt
Update Ht , Qt , Zt and Kt according to (24), (8), (25), (27);
End

B. FEASIBILITY OF THE PROPOSED ALGORITHM
Let (y∗t , x

∗
t , e
∗
t , andg

∗
t ) be the optimal solutions to P2. Now

lemmas and theorems will prove that the proposed algorithm
can satisfy constraints (7), (11), (12), and (13).
Lemma 1: The proposed algorithm has the following

features for optimal HVAC operation decision where,

bt = 2Vγ5t+1(1− ε)2η/A
(
T outt −

T reft+1−εTt
1−ε

)
, ct =

2Vγ5t+1(1− ε)2η/A
(
T outt +

η
Ae

max
−

T reft+1−εTt
1−ε

)
.

1) If VSmin
+ bt > −ε(1− ε)Ht

η
A , et = 0.

2) If VBmax
+ ct < −ε(1− ε)Ht

η
A , et = emax.

We came up with the following theorem 1 based on
lemma 1.
Theorem 1: If the initial temperature So ∈

[
Tmin,Tmax

]
,

and the fixed parameters of proposed algorithm are
V ∈

(
0,Vmax

1

]
and 0 ∈

[
0min, 0max

]
then it ensures that

Tt ∈
[
Tmin,Tmax

]
complete time horizon, where

Vmax
1 =

(1− ε) ηAd(
Bmax − Smin

)
+ f

, (36)

0min
=

VSmin
+ bmin

−ε (1− ε) ηA
+
h
ε
, (37)

0max
=

VBmax
+ cmax

−ε (1− ε) ηA
+
m
ε
. (38)

where in the above formulas,
d = Tmax

− Tmin
− (1− ε)

(
T out max

+
η
Ae

max
− T out min

)
,

f = 2γ (1− ε)2η
(
T out max

− T out min
+ emax

+
ε
(
Tmax
−Tmin)

+
(
T ref max

−T ref min)
1−ε

)
/A,
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FIGURE 2. Scenarios implementation flowchart.

h = (1− ε)
(
T out max

+
η
Ae

max
)
− Tmax, m =

(1− ε)T out min
− Tmin, bmin

= mint bt , cmax
= maxt ct ,

T ref max
= maxt T

ref
t , T ref min

= mint T
ref
t .

Lemma 2: The proposed algorithm has the following
properties for optimal EV charging decision:

1) If Qt + Zt < VSmin, x∗t = 0.
2) If Qt + Zt > VBmax, x∗t = min {xmax,Qt } .
We came up with the following theorem 2 based

on lemma 2.

Theorem 2: assume that xmax
≥ max [amax, ξ ] . If Qo =

Zo = 0, the proposed real-time algorithm has properties as
given below:

1)Qt is bounded byQmax
= VBmax

+ amax,Zt is bounded
by Zmax

= VBmax
+ ξ .

2)Maximumqueueing delay : Dmax
=

⌈
2VBmax

+amax
+ξ

ξ

⌉
.

Lemma 3: The following properties are considered
in optimal ESS decision of the proposed
algorithm:
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FIGURE 3. Flowchart presenting complete implementation.
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1) If Kt > VSmin, we have y∗t ≤ 0.
2) If Kt < −VBmax, we have y∗t ≥ 0.
We came up with the following theorem 3 based on

lemma 3.
Theorem 3: If we have the initial energy level

Go ∈
[
Gmin,Gmax

]
, the proposed algorithm with fixed

parameters V ∈
(
0,Vmax

2

]
and α ∈

[
αmin, αmax

]
would offer

the following guarantee, i.e.,Gt ∈
[
Gmin,Gmax

]
, for all slots,

where

Vmax
2 =

Gmax
− Gmin

−
(
ucmax

+ ud max
)(

Bmax − Smin
) , (39)

αmin
= −VSmin

+ ucmax
− Gmax, (40)

αmax
= −VBmax

− ud max
− Gmin, (41)

Theorems 1 − 3 shows that the constraints (7),(11),
(12), and (13) may be met under the proposed algorithm.
We may conclude that the proposed algorithm is workable
for the original problem P1 because other constraints are
explicitly considered in Algorithm 1. The efficacy of the
proposed algorithm will be tested in the next section using
real-world traces of outdoor temperature, cost of electric
power, and renewable generation.

C. PERFORMANCE GUARANTEE
Theorem 4 will look at the proposed algorithm’s performance
guarantee.
Theorem 4: If buying or selling of electricity costs Bt/St ,

PV energy output rt ,the wind energy output pwtt , out-
door temperatures Tt out , foremost comfortable temperature
level T ref t+1, electrical demand of EV at and the home
occupancy state T ref t+1 are independent and identically
distributed (i.i.d) over the slots then the following perfor-
mance guarantee is offered by the proposed algorithm, i.e.,

lim
N→∞

sup 1
N−1

N−2∑
t=0

E{81,t +82,t } ≤ y1+ 2
V , where y1 is the

optimal value of P1.
As 2 is a complex function of V , the aforementioned

optimality gap will not uniformly decrease as V rises. 2
becomes constant when ε = 1. If a greater value of V is
given at this moment, the proposed algorithm will perform
better.

VII. SIMULATION ANALYSIS
The performance of the suggested energy management
method is evaluated in this section using extensive numerical
simulations. CVX, a MATLAB package for disciplined
convex programming [74], is used to construct the model. All
simulations were performed in the MATLAB environment
on a computer system with an Intel Core m3 7th Generation
processor and 8 GB of RAM running Windows 10. First,
the input data is acquired, and the proposed model’s various
control parameters are outlined. Second, the method is
solved using the Lyapunov technique based on convex
optimization, and third, the convex optimization results are
obtained and compared with non-convex optimization to

compare optimized and un-optimized outcomes. The study’s
performance metrics include PAR alleviation, overall cost
minimization, and thermal discomfort cost for a smart
home with HVAC as an inflexible load and EV as a
flexible load, as well as optimizing EV charging power
and ESS charging and discharging power. Two simulation
scenarios have been created to demonstrate the clear
comparability of our suggested algorithm which are as
follows:
• With conventional grid only
• With RES and ESS only
The convex optimization saved cost by scheduling the

inflexible load (HVAC) and flexible load (EV) at a low-price
period, with positive values representing energy drawn from
the grid and negative values representing energy supplied to
the conventional grid from RES. We ran several simulations
to determine the best scheduling for inflexible (HVAC) and
flexible (EV) loads.

A. SIMULATION SETUP
Table 2 lists the key simulation parameters:

TABLE 2. Control parameters used in simulations.
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FIGURE 4. PV panels solar irradiance output.

B. SIMULATION RESULTS
Renewable energy is defined as a blend of solar and wind
energy. PV data is taken from Figure 4 [75], which shows the
hourly solar irradiance of Golden city of the USA, in January
2017. The solar irradiance is shown over 744 slots, as can
be seen readily. The intermittent nature of PV energy is
demonstrated by the changes in the shape of rising and falling
peaks in the Figure. The solar irradiance levels range from
0 − 0.7 kW/m2. The wind energy profile was compiled
by [57]. The 2 MW turbine is designed to produce greater
energy in low to medium wind conditions, with (AEP)
enhancements of up to 1414%. The 2 MW turbine harvests
more energy from available wind and sets a new bar for park
level simple Levelized cost of energy (LCoE) performance
because of its 19% greater swept area. The power curve of
a wind turbine with a given wind cut-in, wind rated, and
wind cut-out speeds are shown in Figure 5. The cut-in wind
speed is around 4 m/s, which is the speed at which the
turbine begins to function. The wind turbine is then run at
12 m/s of rated speed constantly until the wind cut-out speed,
which is 25 m/s, at which the turbine is commanded to shut
down. Figure 6 shows the wind speed in m/s for 744 slots,
along with power output generated by the turbine as the wind
speed changes. Variations can also be noted in the output
power generated, which is due to the wind energy source’s
intermittent nature. The electricity price of Nanjing, China is
shown in Figure 7 for 744-time slots in simulations. The price
signals fluctuate within the range of 0.35−0.55 over the same
time intervals, as seen in the graph. The outdoor changing
temperature data affiliated with Nanjing, China in January
of 2017 [76] for 744-time slots is represented in Figure 8.
Outdoor temperature varies slightly more over time. The
range in which the outdoor temperature changes can easily
be observed in Figure, and it lies between (−5)− (+15) ◦C .
Similarly, Figure 9 shows the home occupancy state, with
one (1) indicating that the home is occupied and zero (0)
indicating that the home is unoccupied. For home, occupancy
traces sports data related to step number January 2017 to

FIGURE 5. Wind turbine power curve.

FIGURE 6. Wind speed and wind turbine output.

estimate home occupancy states. If the total number of steps
in an hour exceeds the threshold, the house is presumed to
be unoccupied. Otherwise, the house is deemed occupied.
The threshold has been set at 1800, which is 2 seconds per
step [77]. When the EV is switched in for a charge, a three-
tuple charging request (s, c,E) is sent to the HEMS controller
through a telecommunication network. The EV proposes a
three tuple request that includes the intended charge start
time s, the intended charge completion time c, and the total
energy E necessary to completely charge the EV. Assume that
the EV’s daily energy demand (E) is evenly distributed with
parameters 4 and 18 and that energy demand (E) will have an
equal probability of taking on a value in 42:

4kWh ≤ E(t)t=s ≤ 18kWh (42)

This is shown in Figure 10. While Figure 11 illustrates
that EV charging starts at 7 pm every day and ends at
6 am the next morning, indicating that the EV is connected
to the HEMS for charging while t is between 7 pm and
6 am. R = 5 for a tolerable EV charging delay in one
hour.We determine the value of ξ= (2VBmax

+vmax)/(R− 1)
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FIGURE 7. Electricity price signals.

FIGURE 8. Outdoor temperature.

FIGURE 9. Home occupancy state.

using theorem 2. This results in a nominal charge time
of tEV ,scheduleEV= (24+ 6)− 18 = 12 slots (hours), where the
terms in brackets (24 + 6) shows the charge completion
time at 6 a.m. the next day after the charge process starts.
Since the EV’s max charge rate is vmax

= 3kW , the

FIGURE 10. Evenly distribution of EV charge demand.

FIGURE 11. EV charge start and end time.

amount of time slots (hours) required to fully charge an
EV when the battery is at its lowest point (i.e. when Et =
Emax) is tmax

EV ,ch arg e=E
max/vmax

= 18/3 = 6 time slots. Given
a maximum delay of Dmax

= 5 slots and a maximum
number of time slots required to charge the EV when it
is at its lowest point of tmax

EV ,ch arg e = 6 slots, the longest
possible time required to charge the depleted EV batteries
when delayed starting is allowed is tEV ,total = Dmax

+

tmax
EV ,ch arg e = 5+ 6 = 11 slots (hours). As previously stated,
the suggested model is developed utilizing the Lyapunov
methodology with convex optimization. CVX is a convex
programming tool in MATLAB. All of the constraints in a
convex optimization problem are convex functions, and the
objective function is said to be minimizing if it is also a
convex function. The following four constraints are subjected
to convex optimization in our work:

• Energy Demand of HVAC.
• Energy cost from the grid.
• Charging power of EV.
• Charge/Discharge power of EV.
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FIGURE 12. Indoor temperature.

FIGURE 13. ESS stored energy level.

The following baseline was used to determine the validity
of our proposed algorithm. Baseline-1 (B1): As used earlier
in [78], [79], our (B1) also maintain the foremost comfortable
temperature level T reft+1 for the customers by drawing the
power:

et = max(0,min(emax,A/η(((T reft+1 − εTt )/1− ε)− T
out
t )))

(43)

when the home is occupied. We set et = 0 when
5t+1 = 0 and Tt+1et=0 ≥ Tmin. Our baseline meets EV
charging demand quickly by ignoring ESS.

1) Algorithm feasibleness: We examine the usual ranges of
ESS energy level, EV charging delay and indoor temperature
using theorems 1-3 to ensure that our algorithm is practical.

Algorithm Feasibility: We can observe clearly from
Figures 12, 13, 14, and 15 that the indoor temperature and
ESS energy level under the proposed method constantly
fluctuate within typical limits. We can also observe that the
EV charging delay is less than R = 5. These criteria support
the applicability of the algorithm to the original problem P1.
When the home is occupied, (B1) preserves the temperature

FIGURE 14. EV charging delay.

FIGURE 15. EV delay duration.

FIGURE 16. Combined figure.

at the foremost comfortable level, whereas when the home is
unoccupied, (B1) turns off the HVAC system, but only if the
next time slot does not result in a temperature below Tmin.
The optimal results of EV energy demand (E), EV energy
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FIGURE 17. Total cost.

FIGURE 18. Power (kW).

queue (Q), the arrival rate of Q (a), generation output of
PV (r), generation output of wind pwtt , the rate of queue
Q (x), and stored energy level of ESS (G) are displayed for
744 slots in Figure 16. Figure 17 depicts a clear tradeoff
between the RES and the conventional grid, with positive
peaks indicating energy drawn from the conventional grid and
negative peaks indicating energy provided to the conventional
grid, lowering the total cost. The relationship between retail
electricity price and EV energy’s arrival and service rate is
depicted in Figure 18. The cost and EV charging demand are
compared in Figure 19. It can be observed that instantaneous
EV charging demand has a high-cost effect, such that it raises
the cost, but delayed EV charging lowers the cost. When
St = 0.9Bt , an analysis of power flow within HEMS is
performed.

Both the battery power in kW and the stored energy level
in KWH vary within typical ranges, as shown in Figure 20.
Figure 21 plots the four virtual queues versus the total number
of time slots. The virtual queues that were employed were:
• H (t) Shifted version of indoor temperature Tt .
• Z (t) Delay-aware virtual queue.

FIGURE 19. EV charging cost.

FIGURE 20. Battery power and stored energy level.

• K (t) Virtual queue related ESS energy level Gt .
• Q(t) Actual energy queue to keep three virtual queues
stable.

The plot of the Lyapunov function after all four virtual queues
have been provided to the function is shown in Figure 22.
A Lyapunov function is an aggregate summarising function
that, as the system grows, consistently lowers toward a
minimum value, providing a straightforward technique for
checking stability. This theory is based on the assumption that
if a system is not already at equilibrium, the energy inside it
will naturally tend to diminish until it does. The Lyapunov
function is a scalar assessment of overall network congestion
when applied to queueing systems. In the context of energy
queues in a smart home, the Lyapunov function measures the
amount of energy backlog or queued energy demand. The
graph shows that the Lyapunov function steadily decreases
towards the lowest value, indicating stability. Figure 23
depicts the achievement of the goal of lowering the peak to
average ratio. The PAR was around 24 when the Lyapunov
technique was not used, but it was lowered to 17 when the
Lyapunov approach was used. When St = 0.9Bt , the
study of power flow within HEMS is shown in Figure 24.
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FIGURE 21. Virtual queues.

FIGURE 22. Lyapunov function.

The diagram depicts the smart home’s power use and gives
a unique view into the underlying linkages. The technology
exports the majority of the electricity generated to the grid.
It’s also evident that when solar or wind power is poor, the
system prefers to charge the EV and operate the HVAC.

VIII. SCENARIO 1: WITH CONVENTIONAL GRID ONLY
We only analyzed the grid as a source for supplying the
loads in scenario 1, and no renewable energy sources
were examined. Only grid energy is utilized, as seen by
the positive peaks in the cost graph, indicating that only
buying takes place and no negative peaks, indicating that
no energy from renewable sources is utilized. Further,
we have applied two conditions, Lyapunov technique based
on convex optimization, and Lyapunov technique without
convex optimization explained as follows:

FIGURE 23. PAR comparison of load with and without Lyapunov.

FIGURE 24. Power usage (kW).

FIGURE 25. Scenario 1: Power usage with only grid with convex
optimization.

A. LYAPUNOV WITH CONVEX
Figures 25 and 26 show the results produced when the
method was run using the Lyapunov technique based on
online convex optimization. Figure 25 shows that the grid
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FIGURE 26. Scenario 1: Cost with only grid with convex optimization.

FIGURE 27. Scenario 1: Power usage with only grid without Convex.

generates 12 kW of energy, whereas our load, i.e., HVAC
and EV, consumes 8 kW and 3 kW, respectively. The battery
energy storage system, on the other hand, uses 1 KW of
power. We can see the greater cost in Figure 26 since we
have not included any renewable energy sources and the only
source supplying our demand is the conventional grid. As a
result, we may infer that this scenario is unfeasible owing to
the high cost, which is prohibitive for consumers.

B. LYAPUNOV WITHOUT CONVEX
In this condition, when we removed the online convex
optimization technique from the Lyapunov Optimization
technique, we got the following results represented in
Figure 27 and Figure 28.Whenwe removed the online convex
optimization technique from the Lyapunov optimization
technique in this case, we received the findings shown in
Figures 27 and 28. Figure 27 shows that when the convex
optimization was removed from e(t), g(t), x(t), and y(t),
the major variables responsible for the optimised results,
we received an unoptimized result for power consumption.
The entire supply and demand process is disrupted when

FIGURE 28. Scenario 1: cost with only grid without convex.

FIGURE 29. Scenario 2: Power usage with only RES and ESS.

the convex optimization is removed, resulting in a disrupted
demand and supply process. Because these variables are
likewise cost-dependent, removing them resulted in our
system having zero cost, as shown in Figure 28.

IX. SCENARIO 2: WITH RES AND ESS ONLY
Only RESs and ESSs are connected for supplying the
loads in scenario 2, and the grid is not included as a
source in this scenario. The power usage graph displays
the amount of energy utilized. The cost is represented
via a cost graph. Furthermore, we used two conditions:
the Lyapunov technique with convex optimization and the
Lyapunov technique without convex optimization, which are
described as follows:

A. LYAPUNOV WITH CONVEX
Figures 29 and 30 show the results produced when the
algorithm was run using the Lyapunov technique based
on online convex optimization. Figure 29 shows that the
energy generated by renewable sources is 4 kW, whereas
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FIGURE 30. Scenario 2: Cost with only RES and ESS.

FIGURE 31. Scenario 2: Power usage with only RES and ESS.

our load, i.e., HVAC and EV, consumes 8 kW and 3 kW,
respectively. The battery energy storage system consumes
1 kW of power. As a result, this conclusion specifies the
supply and demand dilemma, in which supply is less than
demand and loads suffer from a shortage of energy, rendering
this scenario unsustainable. We reached zero cost because
there was no conventional grid engaged, which implies there
was no buying or selling of energy involved, as shown in
Figure 30.

B. LYAPUNOV WITHOUT CONVEX
When we removed the online convex optimization technique
from the Lyapunov optimization technique in this case,
we received the results shown in Figures 31 and 32. We can
see from Figure 31 that when the convex optimization
was eliminated from e(t), g(t), x(t), and y(t), which were
the major variables responsible for the optimised results,
we received an unoptimized result for power consumption.
As a result, the supply and demand dynamics are disrupted
once more, rendering this situation untenable. Also, because

FIGURE 32. Scenario 2: Cost with only RES and ESS.

the convex optimization is not applied to the RES output,
just RES output is accessible. The RES output is isolated
power that loads may use within the smart home. In the
Figure, we can observe that just the RES output is shown.
Because these variables are likewise cost-dependent, remov-
ing them yielded a zero cost for our system, as shown
in Figure 32.

1) EFFECT OF T min

The suggested method dynamically changes the HVAC
power input based on current electricity prices and a
wider temperature range, lowering energy costs. Range of
temperatures (Tmax

− Tmin) decreases as the Tmin increases.
Similarly, as compared to (B1), the proposed algorithmmight
save 36.3% percent on energy costs while sacrificing just
a little amount of average temperature variation from the
foremost comfortable temperature range.

2) EFFECT OF ε
Our proposed algorithm achieves lower energy costs with a
greater value of ε because a greater ε results in less thermal
depreciation over the same timescale. When ε is> 0.98, the
energy cost rises since small V tends to a limited temperature
range.

3) EFFECT OF γ
When γ is between [0.002, 0.016], our recommended
approach has the lowest total cost. As thermal discomfort
cost of (B1) is the lowest and the corresponding energy
cost is constant when γ is > 0.02, (B1) obtains the best
performance.

In conclusion, when a smart home resident is worried about
both energy costs and thermal comfort, the recommended
algorithm is an efficient way to operate the HVAC system.

X. CONCLUSION AND FUTURE WORK
This study looked at the energy management of a sustained
smart home with HVAC load and randomized occupation.
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Then, Without forecasting any system characteristics or
knowing the HVAC power requirement, we offer an online
energy management algorithm for the defined problem based
on the LOT framework that helps in reducing the time-
averaged estimated overall cost and thermal discomfort
cost. Unlike other Lyapunov-based energy management
algorithms, the proposed approach does not need to submit
unknown HVAC system power requests to an energy
queue. Comprehensive simulation findings based on factual
footprints demonstrate the proposed algorithm’s efficacy.
Also, different scenarios are created to compare the results.
We want to study online HVAC controls in a commercial
building in the future, such as distributing the airflow rate
within each zone or room in real-time while taking occupant
thermal comfort into account. Furthermore, we intend to
analyze the influence of HVAC load aggregate on end-
user comfort in a residential structure, such as reducing
the average thermal discomfort of these homes during a
demand response event while still meeting the total power
reduction/increase requirement.
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pp. 1–12, Jun. 2021.

[33] O. M. Longe, K. Ouahada, S. Rimer, A. N. Harutyunyan, and
H. C. Ferreira, ‘‘Distributed demand side management with battery storage
for smart home energy scheduling,’’ Sustainability, vol. 9, no. 1, pp. 1–13,
2017.

[34] O. Elma, A. Taşcikaraoğlu, A. T. Ince, and U. S. Selamoğullar,
‘‘Implementation of a dynamic energy management system using real time
pricing and local renewable energy generation forecasts,’’Energy, vol. 134,
pp. 206–220, Sep. 2017.

35518 VOLUME 10, 2022

http://dx.doi.org/10.1109/TSG.2016.2640453
http://dx.doi.org/10.1109/JIOT.2017.2668061
http://dx.doi.org/10.1109/JIOT.2017.2668061
http://dx.doi.org/10.1109/JSYST.2021.3066423
http://dx.doi.org/10.1016/j.matpr.2021.02.270


F. R. Albogamy et al.: RT Scheduling for Optimal Energy Optimization in Smart Grid

[35] R. M. Elavarasan, S. Leoponraj, J. Vishnupriyan, A. Dheeraj, and
G. G. Sundar, ‘‘Multi-criteria decision analysis for user satisfaction-
induced demand-side load management for an institutional building,’’
Renew. Energy, vol. 170, pp. 1396–1426, Jun. 2021.

[36] F. Jamil, N. Iqbal, S. Ahmad, and D. Kim, ‘‘Peer-to-peer energy
trading mechanism based on blockchain and machine learning for
sustainable electrical power supply in smart grid,’’ IEEE Access, vol. 9,
pp. 39193–39217, 2021.

[37] T. U. Solanke, V. K. Ramachandaramurthy, J. Y. Yong, J. Pasupuleti,
P. Kasinathan, and A. Rajagopalan, ‘‘A review of strategic charging–
discharging control of grid-connected electric vehicles,’’ J. Energy Storage,
vol. 28, Apr. 2020, Art. no. 101193.

[38] M. A. Baseer, I. Alsaduni, and M. Zubair, ‘‘Novel hybrid optimization
maximum power point tracking and normalized intelligent control
techniques for smart grid linked solar photovoltaic system,’’ Energy
Technol., vol. 9, no. 5, May 2021, Art. no. 2000980.

[39] S. Ali, I. Khan, S. Jan, and G. Hafeez, ‘‘An optimization based power usage
scheduling strategy using photovoltaic-battery system for demand-side
management in smart grid,’’ Energies, vol. 14, no. 8, p. 2201, Apr. 2021.

[40] S. Je and J. Huh, ‘‘Estimation of future power consumption level in
smart grid: Application of fuzzy logic and genetic algorithm on big data
platform,’’ Int. J. Commun. Syst., vol. 34, no. 2, Jan. 2021, Art. no. e4056.

[41] L. Chen, Q. Xu, Y. Yang, and J. Song, ‘‘Optimal energy management
of smart building for peak shaving considering multi-energy flexibility
measures,’’ Energy Buildings, vol. 241, Jun. 2021, Art. no. 110932.

[42] K. Esapour,M. Abbasian, and H. Saghafi, ‘‘Intelligent energymanagement
in hybrid microgrids considering tidal, wind, solar and battery,’’ Int. J.
Electr. Power Energy Syst., vol. 127, May 2021, Art. no. 106615.

[43] S. S. Taheri, S. Seyedshenava, V. Mohadesi, and R. Esmaeilzadeh,
‘‘Improving operation indices of a micro-grid by battery energy storage
using multi objective cuckoo search algorithm,’’ Int. J. Electr. Eng.
Informat., vol. 13, no. 1, pp. 132–151, Mar. 2021.

[44] A. Naderipour, Z. Abdul-Malek, I. F. Davoodkhani, H. Kamyab, and
R. R. Ali, ‘‘Load-frequency control in an islanded microgrid
PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy
controller,’’ Environ. Sci. Pollut. Res., pp. 1–12, 2021.

[45] I. Andrade, R. Pena, R. Blasco-Gimenez, J. Riedemann, W. Jara,
and C. Pesce, ‘‘An active/reactive power control strategy for renewable
generation systems,’’ Electronics, vol. 10, no. 9, p. 1061, Apr. 2021.

[46] K. Chandrasekaran, J. Selvaraj, C. R. Amaladoss, and L. Veerapan,
‘‘Hybrid renewable energy based smart grid system for reactive power
management and voltage profile enhancement using artificial neural
network,’’ Energy Sources, A, Recovery, Utilization, Environ. Effects,
vol. 43, no. 19, pp. 2419–2442, 2021.

[47] H. J. Kim, M. K. Kim, and J. W. Lee, ‘‘A two-stage stochastic p-robust
optimal energy trading management in microgrid operation considering
uncertainty with hybrid demand response,’’ Int. J. Electr. Power Energy
Syst., vol. 124, Jan. 2021, Art. no. 106422.

[48] I. L. R. Gomes, R. Melicio, and V. M. F. Mendes, ‘‘A novel microgrid
support management system based on stochastic mixed-integer linear
programming,’’ Energy, vol. 223, May 2021, Art. no. 120030.

[49] W. Dong, Q. Yang, X. Fang, and W. Ruan, ‘‘Adaptive optimal fuzzy
logic based energy management in multi-energy microgrid considering
operational uncertainties,’’ Appl. Soft Comput., vol. 98, Jan. 2021,
Art. no. 106882.

[50] S. Ghosh and D. Chatterjee, ‘‘Artificial bee colony optimization based non-
intrusive appliances load monitoring technique in a smart home,’’ IEEE
Trans. Consum. Electron., vol. 67, no. 1, pp. 77–86, Feb. 2021.

[51] Z. Shen, C. Wu, L. Wang, and G. Zhang, ‘‘Real-time energy management
for microgrid with EV station and CHP generation,’’ IEEE Trans. Netw.
Sci. Eng., vol. 8, no. 2, pp. 1492–1501, Apr. 2021.

[52] D. Trigkas, C. Ziogou, S. Voutetakis, and S. Papadopoulou, ‘‘Virtual
energy storage in RES-powered smart grids with nonlinear model
predictive control,’’ Energies, vol. 14, no. 4, p. 1082, Feb. 2021.

[53] N. Ding, K. Prasad, and T. T. Lie, ‘‘Design of a hybrid energy management
system using designed rule-based control strategy and genetic algorithm
for the series-parallel plug-in hybrid electric vehicle,’’ Int. J. Energy Res.,
vol. 45, no. 2, pp. 1627–1644, Feb. 2021.

[54] Ç. Iris and J. S. L. Lam, ‘‘Optimal energy management and operations
planning in seaports with smart grid while harnessing renewable energy
under uncertainty,’’ Omega, vol. 103, Sep. 2021, Art. no. 102445.

[55] A. Hasankhani and S. M. Hakimi, ‘‘Stochastic energy management of
smart microgrid with intermittent renewable energy resources in electricity
market,’’ Energy, vol. 219, Mar. 2021, Art. no. 119668.

[56] G. Li, D. Wu, J. Hu, Y. Li, M. S. Hossain, and A. Ghoneim, ‘‘HELOS:
Heterogeneous load scheduling for electric vehicle-integratedmicrogrids,’’
IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5785–5796, Jul. 2017, doi:
10.1109/TVT.2016.2636874.

[57] Wind Energy Systems. Accessed: Apr. 10, 2021. [Online]. Available:
https://www.vestas.com/en/products/2-mw-platform/V120-2-2-MW

[58] M. Song, C. Gao, H. Yan, and J. Yang, ‘‘Thermal battery modeling of
inverter air conditioning for demand response,’’ IEEE Trans. Smart Grid,
vol. 9, no. 6, pp. 5522–5534, Nov. 2018, doi: 10.1109/TSG.2017.2689820.

[59] A. A. Thatte and L. Xie, ‘‘Towards a unified operational value index of
energy storage in smart grid environment,’’ IEEE Trans. Smart Grid, vol. 3,
no. 3, pp. 1418–1426, Sep. 2012.

[60] L. Yu, T. Jiang, and Y. Zou, ‘‘Online energy management for a sustainable
smart home with an HVAC load and random occupancy,’’ IEEE Trans.
Smart Grid, vol. 10, no. 2, pp. 1646–1659, Mar. 2019.

[61] L. Yu, T. Jiang, and Y. Zou, ‘‘Distributed online energy management for
data centers and electric vehicles in smart grid,’’ IEEE Internet Things J.,
vol. 3, no. 6, pp. 1373–1384, Dec. 2016.

[62] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, ‘‘Decentralized
coordination of energy utilization for residential households in the smart
grid,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1341–1350, Sep. 2013.

[63] Y. Huang, S. Mao, and R. M. Nelms, ‘‘Adaptive electricity scheduling in
microgrids,’’ IEEETrans. Smart Grid, vol. 5, no. 1, pp. 270–281, Jan. 2014.

[64] X. Guan, Z. Xu, and Q.-S. Jia, ‘‘Energy-efficient buildings facilitated by
microgrid,’’ IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 243–252, Dec. 2010.

[65] Y. Zhang, N. Gatsis, and G. B. Giannakis, ‘‘Robust management of
distributed energy resources for microgrids with renewables,’’ IEEE Trans.
Sustain. Energy, vol. 4, no. 4, pp. 944–953, Oct. 2013.

[66] P. Constantopoulos, F. C. Schweppe, and R. C. Larson, ‘‘Estia: A real-
time consumer control scheme for space conditioning usage under spot
electricity pricing,’’ Comput. Oper. Res., vol. 18, no. 8, pp. 751–765,
Jan. 1991.

[67] S. Chen, T. Liu, F. Gao, J. Ji, Z. Xu, B. Qian, H. Wu, and X. Guan, ‘‘Butler,
not servant: A human-centric smart home energy management system,’’
IEEE Commun. Mag., vol. 55, no. 2, pp. 27–33, Feb. 2017.

[68] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA, USA: Athena Scientific, 2000.

[69] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, ‘‘Decentralized
coordination of energy utilization for residential households in the smart
grid,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1341–1350, Sep. 2013.

[70] W. Fan, N. Liu, and J. Zhang, ‘‘An event-triggered online energy
management algorithm of smart home: Lyapunov optimization approach,’’
Energies, vol. 9, no. 5, pp. 381–404, 2016.

[71] P. Constantopoulos, F. C. Schweppe, and R. C. Larson, ‘‘Estia: A real-
time consumer control scheme for space conditioning usage under spot
electricity pricing,’’ Comput. Oper. Res., vol. 18, no. 8, pp. 751–765,
Jan. 1991.

[72] R. Deng, Z. Zhang, J. Ren, and H. Liang, ‘‘Indoor temperature control of
cost-effective smart buildings via real-time smart grid communications,’’
in Proc. IEEE Globecom, Dec. 2016, pp. 1–6.

[73] L. Yu, T. Jiang, and Y. Zou, ‘‘Distributed real-time energy management
in data center microgrids,’’ IEEE Trans. Smart Grid, vol. 9, no. 4,
pp. 3748–3762, Jul. 2018, doi: 10.1109/TSG.2016.2640453.

[74] CVX. (2018). MATLAB Software for Disciplined Convex Programming,
CVX Research, Inc. Accessed: Apr. 25, 2018. [Online]. Available:
http://cvxr.com/cvx/

[75] NREL Solar Radiation Research Laboratory Baseline
Measurement System. Accessed: Apr. 5, 2021. [Online]. Available:
https://midcdmz.nrel.gov/apps/sitehome.pl?site=BMS

[76] Outdoor Changing Temperature. Accessed: Apr. 5, 2021. [Online].
Available: http://data.cma.cn/en

[77] L. Yu, T. Jiang, and Y. Zou, ‘‘Online energy management for a sustainable
smart home with an HVAC load and random occupancy,’’ IEEE Trans.
Smart Grid, vol. 10, no. 2, pp. 1646–1659, 2017.

[78] A. A. Thatte and L. Xie, ‘‘Towards a unified operational value index of
energy storage in smart grid environment,’’ IEEE Trans. Smart Grid, vol. 3,
no. 3, pp. 1418–1426, Sep. 2012.

[79] H. Hao, C. D. Corbin, K. Kalsi, and R. G. Pratt, ‘‘Transactive control of
commercial buildings for demand response,’’ IEEE Trans. Power Syst.,
vol. 32, no. 1, pp. 774–783, Jan. 2017.

[80] R. Deng, Z. Zhang, J. Ren, and H. Liang, ‘‘Indoor temperature control of
cost-effective smart buildings via real-time smart grid communications,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

VOLUME 10, 2022 35519

http://dx.doi.org/10.1109/TVT.2016.2636874
http://dx.doi.org/10.1109/TSG.2017.2689820
http://dx.doi.org/10.1109/TSG.2016.2640453


F. R. Albogamy et al.: RT Scheduling for Optimal Energy Optimization in Smart Grid

FAHAD R. ALBOGAMY received the B.Sc.
degree (Hons.) in information systems from King
Saud University, in 2003, and the M.Sc. and
Ph.D. degrees (Hons.) in computer sciences from
Manchester University, U.K., in 2010 and 2017,
respectively. He worked as a Consultant for
academics affairs at the University Vice Presi-
dency for Academic Affairs and Development,
Taif University. He was the first Dean of the
Applied Computer Sciences College, King Saud

University. He is currently an Associate Professor of computer sciences.
He is also an Advisor to the President of Saudi Electronic University. His
research interests include artificial intelligence, big data, machine learning,
NLP, digital image, signal processing, and smart energy.

MOHAMMAD YOUSAF ISHAQ PARACHA
received the B.Sc. degree in electrical engineering
from the University of Engineering & Technology,
Mardan. He has authored or coauthored over in
peer-reviewed research papers in reputed inter-
national journals and conferences. His research
interests include optimization, planning, energy
management, andmachine learning applications in
smart grids/microgrids.

GHULAM HAFEEZ received the B.Sc. degree
in electrical engineering from the University of
Engineering and Technology, Peshawar, Pakistan,
and the M.S. and Ph.D. degrees in electrical engi-
neering from COMSATS University Islamabad,
Islamabad, Pakistan. He is a Lifetime Charted
Engineer from Pakistan Engineering Council.
He is also working as a Lecturer with the Cen-
tre of Renewable Energy, Government Advance
Technical Training Centre, Hayatabad, Peshawar.

He is also a Visiting Researcher with the Open AI Laboratory, National
Yunlin University of Science and Technology, Douliu, Taiwan. Prior to this,
he was the Manager University-Industry Linkages/Research Operations &
Development in the Directorate of ORIC and a Lecturer with the Department
of Electrical Engineering, University of Engineering & Technology, Mardan.
He also worked as a Lecturer with the University of Wah, Wah Cantt,
Pakistan. He has also worked as a Research Associate with COMSATS Uni-
versity Islamabad, where his research focus was computational intelligence,
forecast process, energy management, operation of electricity market, and
electric vehicles in smart power grids. His industrial experience includes
working for Alcatel-Lucent and PTCL as an Optimization Engineer in
Islamabad. He has authored or coauthored in peer-reviewed research papers
in reputed international journals and conferences. His research interests
include sustainable and smart energy, cities and societies, smart grids,
applications of deep learning and blockchain in smart power grids, and
stochastic techniques for power usage optimization in smart power grids.

IMRAN KHAN (Senior Member, IEEE) received
the B.Sc. degree in electrical engineering from
the NWFP University of Engineering and Tech-
nology, Peshawar, Pakistan, in 2003, the M.Sc.
degree in telecommunication engineering from the
Asian Institute of Technology, Thailand, in 2007,
and the Ph.D. degree from the Department of
Telecommunications FOS, School of Engineering
and Technology, Asian Institute of Technology,
in 2010. He is currently working as a Professor

with the Electrical Engineering Department, University of Engineering &
Technology, Mardan. His research interests include performance analysis
of wireless communication systems, OFDM, OFDMA, MIMO, cooperative
networks, cognitive radio systems, and energymanagement in the smart grid.

SADIA MURAWWAT is currently working as an
Associate Professor with the Department of Elec-
trical Engineering, Lahore College for Women
University, Lahore, Pakistan. She has authored
or coauthored in peer-reviewed research papers
in reputed international journals and conferences.
Her research interests include performance anal-
ysis of wireless communication systems, OFDM,
OFDMA,MIMO, cooperative networks, cognitive
radio systems, and energy management in the
smart grid.

GUL RUKH received the B.Sc., M.S., and Ph.D.
degrees in electrical engineering with power as a
specialty from the University of Engineering and
Technology, Peshawar, Pakistan. She is currently
a Lifetime Charted Engineer from Pakistan Engi-
neering Council. She is also working as a Lecturer
with the Department of Electrical Engineering,
University of Engineering & Technology, Mardan.
She has authored or coauthored over seven peer-
reviewed research papers in reputed international

journals and conferences. Her research interests include electrical energy
storage devices, renewable energies, and compressed air energy systems.

SHERAZ KHAN received the Ph.D. degree in
the field of telecommunications from the School
of Engineering and Technology, Asian Institute
of Technology (AIT), Thailand. He is currently
working as an Assistant Professor with the Depart-
ment of Electrical Engineering, University of
Engineering & Technology (UET) Mardan. His
research interests include wireless regional area
networks (WRANs), communications TV white
spaces (TVWS) and smart grid communications,

and machine learning applications in wireless communications.

MOHAMMAD USMAN ALI KHAN received the
B.S. and M.Sc. degrees in electrical engineering
from the University of Engineering and Technol-
ogy, Peshawar, in 2004 and 2009, respectively,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering.
He is also a Lecturer with the Department of
Electrical Engineering, University of Engineering
and Technology, Peshawar. His current research
interests include wireless communications, visible

light communication, and heterogeneous networks.

35520 VOLUME 10, 2022


