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ABSTRACT This paper studies the issue of the adaptive neural security controller design for uncertain
networked singular systems in the presence of deception attacks. Considering that the attack signal is
unknown, the neural networks technique is exploited to approximate the attack signal, which eliminates
the assumption that the attack signal has a known upper bound. By combining the state feedback with
the estimated information of the attack, the impact of the attack is effectively compensated. Furthermore,
a novel Lyapunov function, including the decomposed state vector and the weight matrix estimation error,
is established to evaluate the bounded area of the system state. Finally, a numerical example substantiates
the validity of the theoretical results.

INDEX TERMS Networked singular systems, neural networks, security control, deception attacks.

I. INTRODUCTION
Singular systems, also widely called descriptor systems, can
be transformed into a differential equation and an alge-
braic equation through matrix transformation to describe
the dynamic and static characteristics of the system respec-
tively [1]. Normal system equations only contain dynamic
characteristics and do not involve static responses between
variables. Therefore, from a certain perspective, the singu-
lar system model can describe the working process of the
practical physical system more concretely and vividly than
the normal system model. When considering and analyzing
singular systems, this also makes the problems faced more
complicated than normal systems [2], [3]. With the develop-
ment of wireless communication technology, the transmis-
sion of signal commands between system components has
gradually tended to communicate through network channels.
Combining it with the field of control, networked singular
systems have been widely used in industrial processes [4],
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electric power grids [5] and other fields [6]–[10]. How-
ever, the introduction of wireless networks also brings new
challenges to the analysis and synthesis of networked sys-
tems [11]. In particular, the detection and defense of net-
worked attacks in networked systems have attracted extensive
research interest from scholars in recent years.

Generally speaking, cyber-attacks will adversely affect
the stability of networked systems. From the perspective of
attackers, network channels are most prone to two attack
modes: denial of service (DoS) attacks [12], [13] and decep-
tion attacks [14], [15]. The impact of DoS attacks is mainly
reflected in the blocking of the communication channel and
suspending signal transmission, which will cause the system
to be in an out-of-control scenario for a long time, and even
seriously affect people’s normal life and cause significant
economic losses [16]–[18]. For deception attacks, its main
purpose is to tamper with the real signal while injecting
false signals. Affected by it, the system will deviate from the
stable state and eventually lead to the paralysis of the entire
system or server. Usually, deception attacks have more subtle
characteristics to destroy the performance of the system [19].
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As a result, security control has become an important defense
method to resist the impact of attacks on networked sys-
tems. The reference [20] considered the guaranteed cost
security control of discrete-time stochastic nonlinear sys-
tems under deception attacks. The reference [21] proposed
an adaptive control method to defend against the impact
of attacks, which is different from the above-mentioned
method of dealing with attacks in [20]. In the network-
induced problems, there are not only security threats, but
also network bandwidth limitations [22]–[24]. For this rea-
son, the problem of event-triggered path tracking control for
autonomous vehicles under deception attacks was studied
in [24]. A learning-based event-triggered control strategy
was proposed to improve resource utilization efficiency and
achieve tracking performance under deception attacks.

All the references discussed above assume that deception
attacks are bounded or known, which limits the scope of
application of the proposed method [25], [26]. According
to the characteristics of deception attack, it can be regarded
as an unknown nonlinear function related to the state.
A mature technique-neural networks [27], [28] can be used
to approximate an unknown nonlinear function and the adap-
tive technique is utilized to estimate unknown parameters.
Some remarkable results have been reported in [29]–[34].
In [29], for an uncertain networked nonlinear systems,
the model-based adaptive event-triggered controller was
designed to solve the stabilization problem and save commu-
nication resources. For uncertain switched nonstrict-feedback
nonlinear systems, the authors in [30] addressed the adaptive
asymptotic tracking control problem by using backstepping
approach and common Lyapunov function strategy. In prac-
tice, the state of the system is not completely measurable.
To this end, taking switched systems under quantized mea-
surements into consideration, [31] focused on the adaptive
neural network unknown input observer design problem.
By adaptively adjusting the controller parameters, the track-
ing error of the second-order strictly nonlinear system can
reach an arbitrarily small range [32]–[34]. Based on these
existing results, a natural idea is to use these techniques
to deal with deception attacks. Specially, in the controller
design, the approximated signal can be used as an input
to compensate for the impact of the attack. Some previ-
ous results have used neural networks technique to deal
with deception attack signals. The reference [35] has stud-
ied the neural networks-based security control problem for
stochastic system under mixed attacks. The reference [36]
has developed neural networks distributed security filters
for networked switching systems in the presence of decep-
tion attacks. As we can see, neural networks-based secu-
rity control issues have paid little attention to discrete-time
networked singular systems under deception attacks, which
inspires our interest.

In this paper, we provide a design strategy of the neural
networks-based security controller for uncertain networked
singular systems under deception attacks. The main contri-
bution of this paper is concluded as follows:

a. The state decomposition approach is used to construct a
novel Lyapunov function with fewer decision variables.

b. Different from the existing works for resisting deception
attacks [37], [38], neural networks method is applied
to approximate unknown attack signals, which will deal
with the impact of attacks more intelligently.

c. Some feasible matrix inequality conditions are proposed
to ensure that networked singular systems are regular,
impulse-free and bounded.

The reminder of this paper is given as follows: The problem
formulation including system description and the framework
of the considered control strategy is given in Section II. The
main results on how to design the adaptive neural security
controller are presented in Section III and the effectiveness
of the designed control strategy is estimated using simulation
studies in Section IV. Finally, authors conclude this paper
in Section V.

Notations: The notations Rn×m and Rn denote the space
of all n × m-dimensional real matrices and n-dimensional
Euclidean space, respectively. In and 0n×m stand for the
n×n-dimensional identity matrix and the n×m-dimensional
zero matrix, respectively. P > 0 (< 0) means that P is a
real positive (negative)-definite matrix. The symbols ‖ ·‖ and
‖ · ‖F represent the Euclidean vector norm and Frobenius
norm, respectively.

II. PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
Consider the following networked singular system:

Ex(k + 1) = (A+1A(k))x(k)+ (B+1B(k))u(k), (1)

where x(k) ∈ Rn and u(t) ∈ Rm are the system state vector
and the control input, respectively. System matrices A and B
are known. Singular matrix E ∈ Rn×n satisfies rank(E) =
r < n. 1A(k) and 1B(k) are unknown matrices and satisfy

[1A(k) 1B(k)] = J1G(k) [J2 J3] , (2)

where J1 ∈ Rn×p, J2 ∈ Rq×n, J3 ∈ Rq×m are known
matrices, and the time-varying matrix G(k) is assumed as
GT (k)G(k) ≤ I . In the following analysis, in order to simplify
the notation, we use1A and1B instead of1A(k) and1B(k),
respectively.

Due to rank(E) = r < n, there are nonsingular matrices
M and N such that

M(E,A,1A,B,1B)N

=

([
Ir 0
∗ 0

]
,

[
A1
A2

]
,

[
1A1
1A2

]
,

[
B1
B2

]
,

[
1B1
1B2

])
,

where

A1 = [A11 A12], [1Ai 1Bi] = J i1G(k)[J2 J3],

A2 = [A21 A22], i = 1, 2,

1A1 = [1A11 1A12], J11 ∈ Rr×p,

1A2 = [1A21 1A22], J21 ∈ R(n−r)×p.
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Let N−1x(k) = [ηT1 (k) η
T
2 (k)]

T , we rewrite system (1) as{
η1(k + 1) = (A1 +1A1)η(k)+ (B1 +1B1)u(k)
0 = (A2 +1A2)η(k)+ (B2 +1B2)u(k).

(3)

B. CONTROLLER UNDER DECEPTION ATTACKS
In this paper, the information transmission channel between
the controller and the actuator relies on the network medium,
which is susceptible to the influence of deception attacks,
specificallymanifested as tamperingwith data and destroying
the authenticity of data. The framework of the control strategy
under deception attacks is shown in Fig. 1. Under deception
attacks, the actuator input can be described as

u(k) = ū(k)+ f (η(k)),

where f (η(k)) denotes the malicious signal injected by the
adversary and is the unknown nonlinear function, and ū(k)
stands for the control signal.

In order to effectively resist the impact of attacks on the
system, the key issue is how to identify unknown decep-
tion attacks. Here, we use the neural networks method to
approximate the unknown nonlinear function, and then use
the approximate information to effectively compensate for the
impact of the attack. Then, a controller is constructed as

ū(k) = Kη(k)− f̂ (η(k)), (4)

where K = [K1 K2] is the controller gain to be designed
and f̂ (η(k)) is the estimation of f (η(k)). The known nonlinear
function f (η(k)) is approximately as follows:

f (k) = W T S(η(k))+ δ(η(k)), η(k) ∈ � ⊂ Rn, (5)

where � is a compact set, W ∈ Rl×m is the ideal weights of
the hidden-to-output layer, Z ∈ Rn×l is the ideal weights of
input-to-hidden layer, and l is the number of neural networks
nodes. And

S(η(k)) = [S1(η(k)), . . . , Sl(η(k))]T ∈ Rl

is the basis function satisfying ||S(·)|| ≤ Smax, where Smax is
a positive constant, and the form of Si(θ ) is given as follows:

Si(η(k)) = exp
(
−
‖η(k)− vi‖2

ς

)
,

where ς is width of function Si(η(k)) and vi =

[vi1, . . . , vin]T ∈ Rn is the center of function Si(η(k)). δ(η(k))
represents the approximation error with ||δ(η(k))|| ≤ δ̄.

Based on the above description, the neural networks esti-
mation of the unknown function f (x(k)) is designed as

f̂ (k) = Ŵ T (k)S(η(k)), (6)

where Ŵ (k) ∈ Rl×m is the estimation of W . For the needs
of subsequent analysis, we design the dynamic response of
Ŵ (k) as follows:

Ŵ (k + 1) = −αŴ (k)+ Ŵ (k)− σρ(k)ηT (k)RT , (7)

FIGURE 1. The framework of a networked singular system under
deception attacks.

where σ > 0 and α > 0 are two scalar parameters, the matrix
R ∈ Rn×m is an adjustment parameter and

ρ(k) = S(η(k))/(1+ ||S(η(k))||2||Rη(k)||2).

Let the estimated error be W̃ (k) = Ŵ (k) − W . Then the
dynamic equation of the error can be obtained

W̃ (k + 1) = −αŴ (k)+ W̃ (k)− σρ(k)ηT (k)RT . (8)

Remark 1: Different form the existing works on deception
attacks [37], [38], a neural networks method is employed to
estimate the unknown attack signal rather than restricting it
to be bounded. With the powerful approximation capabilities
of neural networks, the estimated information of the attack
signal can be effectively used to resist the impact of the attack.

Under deception attacks, the augmented system consisting
of system (3), controller (4) and neural networks (5) and (6)
is formed as follows:{
η1(k + 1) = Ā1η(k)+ B̄1W̃ T (k)S(η(k))+ B̄1δ(η(k))
0 = Ā2η(k)+ B̄2W̃ T (k)S(η(k))+ B̄2δ(η(k))

(9)

where

Ā1 = A1 +1A1 + B̄1K , B̄1 = B1 +1B1,

Ā2 = A2 +1A2 + B̄2K , B̄2 = B2 +1B2.

Before proceeding, a lemma and a definition are needed to
obtain the main results.
Lemma 1 [39]: Given matrices U = UT , J̄1, J̄2 and G(k)

satisfying (2). The inequality

U + He{J̄1G(k)J̄2} < 0

holds if and only if there exists a matrix 3 > 0 such that

U + J̄13J̄T1 + J̄
T
2 3
−1J̄2 < 0.

Definition 1 [40]: If det(sE − A) is not identically 0, and

deg(det(sE − A)) = rank(E)

holds, then pair (E,A) is said to be regular and causal.
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III. MAIN RESULTS
In this section, two theorems will give sufficient conditions
for the system (9) to be uniform and ultimately bounded under
the presence of deception attacks. Based on the results of
Theorem 1, Theorem 2 gives a design scheme for the control
gain.
Theorem 1: For given a constant α > 0, if there exist

constants ε > 0, λ > 0, υ > 0, and matrices P > 0,
H1,H2 ∈ Rr×r , H3,H4 ∈ Rr×(n−r), H5 ∈ R(n−r)×(n−r), the
following inequalities satisfy

−λα +
λ

4ε
+ υS2max < 0, (10)[

81 82
∗ −Ip+m

]
< 0, (11)

where

81 = −eT1 Pe1 + e
T
2 Pe2 − υe

T
4 e4 + F

T
1 F1

+He
{[
eT1H1 + eT2H2

][
(A1 + B1K )E1 + B1e4 − e2

]
+
[
eT1H3 + eT2H4 + eT3H5

][
(A2 + B2K )E1 + B2e4

]}
,

E1 =
[
eT1 eT3

]T
, F1 = (J2 + J3K )E1 + J3e4,

M =
(
eT1H1 + eT2H2

)
J11 +

(
eT1H3 + eT2H4 + eT3H5

)
J21 ,

N =
(
eT1H1 + eT2H2

)
B1 +

(
eT1H3 + eT2H4 + eT3H5

)
B2,

e1 =
[
Ir 0r×r 0r×(n−r) 0r×m

]
, 82 = [

√
2M N ],

e2 =
[
0r×r Ir 0r×(n−r) 0r×m

]
,

e3 =
[
0(n−r)×r 0(n−r)×r In−r 0(n−r)×m

]
,

e4 =
[
0m×r 0m×r 0m×(n−r) Im

]
,

then the system in (9) under deception attacks is bounded.
Proof: It can be verified that system (9) are regular and

impulse-free. Based on 81 < 0 in (10), we have

He{H5(A22 + B2K2)} < 0,

which implies that (A22 + B2K2) is nonsingular. As a result,
system (9) is regular and impulse-free.

Now, we analyze that system (9) under deception attacks
is bounded. Construct the Lyapunov function as

V (k) = V1(k)+ λV2(k), (12)

with

V1(k) = ηT1 (k)Pη1(k), V2(k) = Tr{W̃ T (k)W̃ (k)}.

The difference of V1(k) along (9) can be derived as

1V1(k) = V1(k + 1)− V1(k)

= ηT1 (k + 1)Pη1(k + 1)− ηT1 (k)Pη1(k). (13)

Calculating the difference of V2(k) along (8), it follows that

1V2(k)

= V2(k + 1)− V2(k)

= Tr
{
W̃ T (k + 1)W̃ (k + 1)

}
− Tr

{
W̃ T (k)W̃ (k)

}

= Tr
{
α2Ŵ T (k)Ŵ (k)− 2αŴ T (k)W̃ (k)

+2ασ Ŵ T (k)ρ(k)Rη(k)− 2σ W̃ T (k)ρ(k)Rη(k)
}

+σ 2
||ρ(k)||2||Rη(k)||2, (14)

where ρ(k) is defined in (7). Note that

||ρ(k)||2||Rη(k)||2 ≤
1
4
.

With this, we have

Tr
{
2ασ Ŵ T (k)ρ(k)Rη(k)

}
≤ αTr

{
Ŵ T (k)Ŵ (k)

}
+
ασ 2

4
,

−Tr
{
2σ W̃ T (k)ρ(k)Rη(k)

}
≤

Tr
{
W̃ T (k)W̃ (k)

}
4ε

+ εσ 2.

(15)

Rewrite the term Tr{−2αŴ T (k)W̃ (k)} as

Tr
{
−2αŴ T (k)W̃ (k)

}
= Tr

{
αW TW − αW̃ T (k)W̃ (k)− αŴ T (k)Ŵ (k)

}
. (16)

With the help of (14)–(16), the difference of V2(k) can be
continued as

1V2(k) ≤ −(α −
1
4ε

)||W̃ (k)||2F + µ, (17)

where µ = α||W ||2F + (α+14 + ε)σ
2.

For any matrices Hj, j = 1, 2, . . . , 5, with appropriate
dimensions, we have

0 = 2
[
ηT1 (k)H1 + η

T
1 (k + 1)H2

][
− η1(k + 1)+ Ā1η(k)

+B̄1W̃ T (k)S(η(k))+ B̄1δ(η(k))
]

= 2ζ T (k)
[
eT1H1 + eT2H2

][
− e2 + Ā1E1 + B̄1e4

]
ζ (k)

+2ζ T (k)
[
eT1H1 + eT2H2

]
B̄1δ(η(k)), (18)

0 = 2
[
ηT1 (k)H3 + η

T
1 (k + 1)H4 + η

T
2 (k)H5

]
×

[
Ā2η(k)+ B̄2W̃ T (k)S(η(k))+ B̄2δ(η(k))

]
= 2ζ T (k)

[
eT1H3 + eT2H4 + eT3H5

][
Ā2E1 + B̄2e4

]
ζ (k)

+2ζ T (k)
[
eT1H3 + eT2H4 + eT3H5

]
B̄2δ(η(k)), (19)

where

ζ T (k) =
[
ηT1 (k) ηT1 (k + 1) ηT2 (k) ST (η(k))W̃ (k)

]T
.

By virtue of (2), it is obtained from (18) and (19) that

0 = ζ T (k)He
{[
eT1H1 + eT2H2

][
− e2 + (A1 + B1K )E1

+B1e4 + J11G(k)F1
]}
ζ (k)+ 2ζ T (k)

×
[
eT1H1 + eT2H2

][
B1 + J11G(t)J3

]
δ(η(k)), (20)

0 = 2ζ T (k)He
{[
eT1H3 + eT2H4 + eT3H5

][
(A2 + B2K )E1

+B2e4 + J21G(k)F1
]}
ζ (k)+ 2ζ T (k)

[
eT1H3

+eT2H4 + eT3H5
][
B2 + J21G(t)J3

]
δ(η(k)). (21)
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Notice that for any a constant υ > 0, it is clear that

−υST (η(k))W̃ (k)W̃ T (k)S(η(k))

+υS2maxTr
{
W̃ T (k)W̃ (k)

}
In ≥ 0. (22)

Applying Lemma 1 and combining (12), (13), (17) and
(20)–(22), we derive

1V (k) ≤ ζ T (k)[8+MTM + NTN

+He{MG(t)F1}]ζ (k)+ µ̄, (23)

where µ̄ = λµ + (1 + λmax(JT3 J3))δ̄. According to the
condition of the theorem and using Schur complement, there
exists a small scalar ν > 0, such that

1V (k) ≤ −νV (k)+ µ̄,

which means that system (9) is bounded. The proof is
completed. �

By Theorem 1, the following result is given to design the
controller.
Theorem 2: For given constants α > 0, β > 0 and χ > 0,

if there exist constants ε > 0, λ > 0, υ > 0, and matrices
P̄ > 0, Y = [Y1 Y2], Z = diag{Z1,Z2} ∈ Rn×n, L1,L2 ∈
Rr×(n−r), such that (10) and the following inequality hold:[

8̄1 8̄2
∗ −In̄

]
< 0 (24)

where

8̄1 = −eT1 P̄e1 + e
T
2 P̄e2 + He

{[
eT1 + βe

T
2
][
− Z1e2

+(A1ZE1 + B1YE1)+ B1e4
]
+ eT3 F̄3

}
− υeT4 e4,

8̄2 = [
√
2M̄ N̄ F̄T1 F̄2 F̄3],

F̄1 = (J2Z + J3Y )E1 + J3e4, F̄2 = χ (eT1 L1 + e
T
2 L2),

F̄T3 = χ
−1[(A2Z + B2Y )E1 + B2e4],

M̄ = (eT1 + βe
T
2 )J

1
1 + e

T
3 J

2
1 + (eT1 L1 + e

T
2 L2)J

2
1 ,

N̄ = (eT1 + βe
T
2 )B1 + e

T
3 B2 + (eT1 L1 + e

T
2 L2)B2,

n̄ = 2(n− r)+ p+ m+ q,

then the system in (9) under deception attacks is bounded and
the controller gain can be obtained by

K = YZ−1.

Proof: Let
Z = diag {Z1,Z2} = diag

{
H−T1 ,H−T5

}
,

L =
[
LT1 LT2

]T
= ZT1

[
HT
3 HT

4

]T
,

P̄ = ZT1 PZ1, H2 = βH1,

pre- and post-multiplying (11) with9T
= diag{ZT1 ,Z

T
1 ,Z

T
2 ,

I2m+p} and 9, respectively, yields[
8̃1 8̃2
∗ −Ip+m

]
< 0, (25)

where

8̃1 = −eT1 P̄e1 + e
T
2 P̄e2 − υe

T
4 e4 + F̃

T
1 F̃1

+He
{[
eT1 + βe

T
2
][
(A1 + B1K )ZE1 − Z1e2 + B1e4

]
+
[
eT1 Z

T
1 H3 + eT2 Z

T
1 H4 + eT3

][
(A2 + B2K )ZE1

+B2e4
]}
,

F̃1 = (J2 + J3K )ZE1 + J3e4, 8̃2 = [
√
2M̄ N̄ ].

Denote K = YZ−1. Substituting it to (25) and using Schur
complement, (24) can ensure that (11) holds. The proof is
completed. �
Remark 2: In contrast to state feedback, the dual-channel

feedback, i.e. state feedback and the estimator-based state
feedback, is more helpful to compensate the impact of attacks
on system performance, which will be shown in the numerical
simulation.
Remark 3: This paper is different from the existing

results [35], [36] in the following two aspects:
1. The system models considered are different. Specifi-

cally, networked Markov jump systems were studied in [35]
and networked switched systems were investigated in [36].
However, in this paper, networked singular system is
considered.

2. The issues considered are different. The event-triggered
controller and distributed security filtering design issues were
discussed in [35], [36], respectively, however in the current
work, the robust controller design problem is addressed.

IV. SIMULATION STUDIES
In this section, a numerical example is provided to illustrate
the effectiveness of the adaptive neural security controller for
networked singular system under deception attacks.

Consider singular system (1) with

E =

 1 0 0
0 1 0
0 0 0

 , A =
 −1 1 0

0.3 −2.5 −4
−0.1 0.3 −3.8

 ,
B =

[
1.5 1 1

]T
,

and the uncertain parameters described as

J1 =
[
−0.1 0.1 0.1

]T
, J2 = 0.01

[
0.5 1 1

]
,

J3 = 0.02, G(k) = sin(0.1kπ ).

Based that the above information, we can obtain M = N =
I3, which means that x(k) = η(k). Other parameters are taken
as β = 1.8, υ = 80, and χ = 10. By using Theorem 2, the
controller gain is obtained

K =
[
−0.5790 3.2069 5.8619

]
.

Let the initial condition of system (1) is x(0) =

[0.5 0.4 0.2]T . We assume the malicious attack signal as

f (x(k)) = 0.8
√
x21 (k)+ x

2
2 (k)+ sin(x1(k)).

The neural networks for approximating f (x(k)) includes
81 nodes with the centers v1 and v2 evenly spaced in
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FIGURE 2. The states of the system with state feedback and deception attack.

FIGURE 3. The attack signal and its estimated signal.

[−5.5, 5.5]×[−5.5, 5.5] and width ς = 2. The initial weight
is set as Ŵ (0) = 081×1. The design parameters are taken as
α = 0.01, σ = 0.25 and R = [−1 1]. Under deception
attack, the state of the system with a state feedback Kx(k)
is given in Fig. 2. We can see that the feedback control fails

and the attack is severely causing the system to destabilize.
In order to resist the impact of the attack on the system, neural
networks method is used to approximate the attack signal.
Meanwhile, the approximate information is used to compen-
sate the impact of the attack on the system performance in
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FIGURE 4. The states of the system with controller (4) and deception attack.

the process of designing the controller. The attack signal and
its estimated signal are plotted in Fig. 3, from which we
can clearly see that after 50 seconds, the neural network can
better approximate the attack signal. This facilitates effective
resistance to the attack signal. The state of the system with
the controller (4) and deception attack are recorded in Fig. 4,
from which we can observe that that the state x(t) still remain
bounded.

V. CONCLUSION
This paper has studied the problem of adaptive neural security
control for networked singular systems with structure uncer-
tainties and deception attacks. For the sake of estimating the
deception attack signal, the neural networks technique has
been used to approximate the unknown nonlinear function.
With the help of the state decomposition method, the under-
lying system is decomposed into fast and slow subsystems to
construct an appropriate Lyapunov function. Then, sufficient
conditions have been provided to guarantee the closed-loop
system is regular, impulse free and bounded in the presence
of deception attacks. Furthermore, the control gain has been
designed by solving the linear matrix inequalities. Finally, the
effectiveness of the proposed method has been demonstrated
by simulation analysis. One possible future topic is to inves-
tigate the adaptive event-triggered-based neural security con-
trol problem for networked singular systems under multiple
cyber-attacks.
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