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ABSTRACT Mobile crowdsensing has been widely applied as a kind of perception paradigm, and task
allocation is a fundamental research issue in mobile crowdsensing. Existing task allocation algorithms under
differential privacy are not suitable for preference protection scenarios as they may inject too much noise.
To this end, in this paper, we propose a differentially private task allocation algorithm with preference
protection, referred to as SLEPT. In SLEPT, we divide privacy budget into three parts. Specifically, we first
use one part of privacy budget to perturb the location of each worker. Then we use another part of privacy
budget to perturb the preference information of him. In particular, to relieve the problem that perturbation
may lead to that tasks will not be allocated, we propose a two-phase preference collection mechanism called
TPC. Finally, we propose a task allocation sequential updatingmechanismTASUusing the remaining privacy
budget. It aims to reduce the travel distance of workers and improve the success rate of task allocation.
Theoretical analysis shows that SLEPT satisfies differential privacy. Time complexity analysis shows that
it is linearly related to the number of tasks. The results on two public datasets verify the effectiveness of
SLEPT. It is worth noting that although SLEPT is proposed for task allocation, its idea is also applicable to
other crowdsensing scenarios, such as high-dimensional data collection.

INDEX TERMS Crowdsensing, differential privacy, geo-indistinguishability, preference protection, task
allocation.

I. INTRODUCTION
Mobile crowdsensing is a kind of perception paradigm with
excellent application prospects. It makes full use of the
processing power of smartphones with multiple sensors.
It enables ordinary people to complete tasks that had to be
done by professionals in the past [1]. Due to the advantages
of crowdsensing, it has attracted extensive attention from the
academia and the industry. It has a wide range of applications
in the real world, such as environmental monitoring [2] and
intelligent transportation [3]. As a typical example, WAZE,
an application for traffic monitoring and route navigation, has
obtained more than 100 million downloads on Google Play,
with a user score of 4.6 (5 grades in total) [4].

The running process of a typical crowdsensing system
is as follows. First, participants are registered as candidate
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workers. When a new task arrives, each worker first selects
the task he wants to do and submits his location to the
server. Then the platform selects an appropriate subset of
candidate workers to complete the task. Finally, theseworkers
go to the target location to complete the task and submit
the perceived result values to the initiator of crowdsensing.
The task allocation [5] from the process is a core step and
the basis of crowdsensing. In particular, the travel distance
of workers to the task location and the number of tasks
successfully allocated are essential issues to be considered in
task allocation. If the travel distance is too long, a worker may
not be willing to perform the task. It needs the consumption of
lots of material resources. For the initiators of crowdsensing,
increasing travel distance will reduce their stickiness to the
crowdsensing platform, such as high salary expenditure and
large delay of sensing results. Moreover, a low number of
successful task allocations will lead to the initiators of crowd-
sensing being unwilling to allocate tasks on the platform
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again. Therefore, according to the previous work, we use
travel distance and the number of successfully assigned tasks
as the utility measures of task allocation.

Suppose the platform knows the location of the candidate
workers. In that case, directly allocating tasks to nearbywork-
ers can minimize the travel distance. However, the leakage
of workers’ locations often leads to the leakage of home
addresses, work units and other information, which leads to
workers’ unwillingness to participate in the crowdsensing
system. Moreover, the preference information of workers
(that is, the set of tasks that workers want to do) will also
reveal the location information of workers from the side.
The reason is that workers may first choose the tasks as the
candidate task whose locations are close to their homes or
work unit [6]–[8].

The existing privacy protection technology based on
Cloaking [9] is often vulnerable to background knowledge
attacks. For example, suppose the adversary foresees that the
user is a student. Then he can safely infer that the user is in
the school area when the Cloaking area includes schools and
government offices. Furthermore, some existing solutions
need the participation of users and crowdsensing platforms,
and the support of additional trusted platforms, which make
them challenging to deploy. For example, the cellular service
provider which needs workers plays an important coordi-
nating role between the user and the crowdsensing platform
to protect privacy. However, in practice, the cellular service
provider may lack the motivation to participate. In addition,
there is no scheme to protect workers’ preferences [10].

To this end, differential privacy (DP) [11] has emerged as
the gold standard for privacy protection recently. Compared
with the traditional Cloaking-based technology, it provides
a quantifiable privacy protection effect that has nothing
to do with background knowledge. Primarily, local dif-
ferential privacy (LDP) [12] and Geo-Indistinguishability
(Geo-I) [13] are used to protect workers’ preference infor-
mation and location privacy. Both of them do not need
trusted server settings. They can provide users with quan-
tifiable privacy protection strength as the same as DP.
Typical LDP and Geo-I implementation mechanisms are ran-
dom response (RR) [14] and Planar Laplacian (PL) [13],
respectively.

Data are perturbed locally before the system uploads
them to the server, fundamentally protecting user privacy.
At present, the LDP model has been used in many soft-
ware to provide privacy protection, such as Google’s Chrome
Browser [14], Apple’s iOS [15], and Microsoft’s Windows
Insiders [16]. Geo-I model has been applied to many software
to provide location privacy protection, such as LP-Guardian
[17] and LP-Doctor [18]. Therefore, this paper will use Geo-I
and LDP to protect workers’ location privacy and preference
privacy.

However, the direct adoption of LDP and Geo-I to task
allocation under preference protection will face two technical
obstacles:

1) Perturbing whether a task is in a worker’s preference
set requires a lot of privacy budget segmentation. For
example, suppose that the system allocates 100 tasks,
and a worker u has 60 tasks left after eliminating the
tasks he can’t do. Then, to protect u’s preference infor-
mation, the privacy budget ε needs to be divided into
60 parts. Then using the existing LDP implementation
mechanism, such as RR, may make the collected tasks
in preference not required by u.

2) Suppose that a task t is only in the preference sets
of workers u1 and u2. After protecting workers’ pref-
erences, it may not be in the preference set of any
workers. Then the system will never allocate the task t.

To overcome these two obstacles, we propose SLEPT (taSk
aLlocation prEference ProTection) algorithm. In SLEPT,
we divide the privacy budget into three parts: ε1, ε2, and
ε3. First, the PL and the part ε1 are used to perturb the
position of each worker. Then, the part ε2 is used to collect
the distribution of preference information of each worker.
Next, each worker uses the part ε3 to perturb his preference
set. Finally, the system allocates the tasks according to the
perturbed preference sets and location information.

In summary, the main contributions of this paper are as
follows:

1) A novel differentially private task allocation algorithm
SLEPT is proposed. We formally give its privacy and
complexity. The main idea is that the server adaptively
allocates the privacy budget, collects the preference
set information of each worker. And then, it needs to
assign tasks serially and more to ensure that the travel
distance is as small as possible. SLEPT is not only
suitable for task allocation but also high-dimensional
data collection.

2) In SLEPT, we design a two-phase preference collection
(TPC). In TPC, the server adaptively allocates the pri-
vacy budget according to the number of times each task
appears in the preference set.

3) In SLEPT, we develop a mechanism of task alloca-
tion updating serially (TASU). In TASU, each worker
chooses the nearest task until the system assigns all
tasks or traverses all workers.

4) Privacy analysis shows that the proposed SLEPT algo-
rithm satisfies differential privacy. Experimental results
on two real datasets demonstrate the effectiveness of
the proposed scheme.

The other parts of this paper are arranged as follows.
Section 2 describes the related work involved in this paper.
Section 3 analyzes the details of SLEPT. Section 4 verifies
the effectiveness. We summarize this paper in Section 5.

II. RELATED WORK
A. GEO-INDISTINGUISHABILITY
Husain et al. [12] extended the traditional differential privacy
for processing numerical data to location protection scenarios
and proposed Geo-Indistinguishability (Geo-I). In particular,
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they implemented Geo-I using planar Laplacian (PL). Bor-
denabe et al. [19] explored constructing a mechanism to
minimize the loss of service quality. They used linear pro-
gramming technology to obtain the optimal noise function.
Yu et al. [20] considered Geo-I and expected reasoning error
to be two complementary concepts of location privacy and
conducted formal research on them. Oya et al. [21] studied
other aspects of privacy to avoid ‘‘error’’ choices. They fur-
ther proposed a new mechanism and proved its effectiveness,
which is optimal in terms of comparing adversaries’ average
errors.

Pyrgelis et al. [22] evaluated the impact of releasing
aggregate location time-series on the privacy of individuals
contributing to the aggregation. Chatzikokolakis et al. [23]
studied these methods to improve the utility of location
obfuscation. They provided such solutions for both infi-
nite (continuous or discrete) and large but finite domains
of locations, using a Bayesian remapping procedure as a
key ingredient. ElSalamouny and Gambs [24] proposed the
noise functions to satisfy a generic location privacy notion,
obfuscating a user’s location. Wang et al. [25] proposed
a method to protect the location in mobile crowd sensing
using local differential privacy preference. Takagi et al. [26]
found the additional privacy loss of Geo-I for LBSs over road
networks. They further proposed a new privacy concept to
protect location privacy and designed a graph index mecha-
nism. Oya et al. [27] provided an alternative formulation of
Geo-I as an adversary error. They used it to show the tradeoff
between privacy and utility.

B. LOCAL DIFFERENTIAL PRIVACY
In recent years, the research on local differential privacy has
received great attention. Duchi et al. [28] proposed a data
collection framework that satisfied the local differential pri-
vacy (LDP)mean calculation and statistical riskminimization
based on information theory. Erlingsson et al. [14] proposed
the RAPPORmechanism based on randomized response, col-
lecting binary attribute values by LDP. Based on RAPPOR,
Fanti et al. [29] extended it to more complex statistical tasks
based on expectation-maximization algorithm, such as joint
distribution statistics and association testing. They expanded
the scope of RAPPOR to classification attributes containing
a large number of unknown values (such as the homepage
data of user’s browser). However, when the data dimension
is high, the mechanism has high time complexity and slow
convergence speed. Kairouz et al. [30] proposed an LDP
mechanism for frequency estimation of binary single attribute
data and proved that it is optimal in the case of low privacy.
After that, they further studied how to deal with categorical
data with any number of values [31]. Bassily and Smith [32]
proposed an asymptotically optimal privacy scheme, which
can construct a concise histogram of classification attributes
under the condition of LDP.

Nguyên et al. [33] proposed a data collectionmethod called
Harmony. In particular, for each piece of high-dimensional
data, the way randomly selects a dimension of the data. If the

dimension corresponds to continuous data, the collection
method is based on continuous value. If the dimension cor-
responds to discrete data, it is collected based on the discrete
collection method. To obtain the frequent items of multidi-
mensional data, Qin et al. [34] proposed a two-phase data
collection method called LDP Miner. In the first phase, the
candidate space of frequent items is initially determined from
noise data based on a concise histogram mechanism. In the
second phase, the method obtains accurate frequent items
based on RAPPOR mechanism. Wang et al. [35] proposed
an optimized LDP implementation mechanism for collecting
numerical single attribute data, and gave their multi-attribute
extension schemes.

C. TASK ALLOCATION BASED ON DIFFERENTIAL PRIVACY
To et al. [36] introduced a private framework of differential
privacy to enable workers to participate without compromis-
ing their location privacy. In particular, they proposed an
analysis model to measure the probability of task comple-
tion. They found the appropriate partition to ensure a high
success rate task allocation in the case of uncertain worker
location. Wang et al. [37] used the Geo-I method to protect
the location and privacy of workers and mixed integer non-
linear programming to minimize the expected travel distance
of selected workers. Wang et al. [38] provided a person-
alized probabilistic winner selection mechanism consider-
ing the number of workers with different protection needs.
It assigned each task to a maximum probability with the
closest task location. Wang et al. [39] proposed a method
to maximize the work efficiency of mobile workers and a
future location coverage protection scheme under location
privacy guarantee. To et al. [40] proposed a three-stage frame-
work to compromise the location privacy of staff and tasks.
They designed three techniques to quantify the probability
of realizability between tasks and workers. Gong et al. [41]
proposed a new framework to achieve high task coverage
through evaluation. In addition, there was an incentive pric-
ing mechanism to guide workers to collect sensing data in
low worker density areas. For the first time, Tao et al. [42]
tried to carry out differential private online task alloca-
tion competition ratio under the premise of ensuring secu-
rity. Song et al. [43] used the SAT model to solve the task
assignment problem requiring multiple skilled workers. The
task assignment result had the shortest worker travel dis-
tance and the least cost of employing workers, and proposed
two greedy algorithms for task allocation. Béziaud et al. [44]
solved the problem of privacy protection in a task assignment
scenario requiring workers with different skills. Perturbing
the worker’s skill vector was in the way of satisfying dif-
ferential privacy, so that the crowdsourcing platform could
assign tasks without knowing the exact skill points of
workers.

To sum up, no existing researches can conduct task alloca-
tion with high utility while protecting workers’ locations and
preference information as they could inject too much noise
and result in many tasks cannot be assigned.

VOLUME 10, 2022 33061



J. Han, S. Cai: Differentially Private Task Allocation Algorithm Under Preference Protection

TABLE 1. Frequent notations.

III. PRELIMINARIES
Table 1 shows the frequent notations which may be used in
this paper.

A. TASK ALLOCATION
As shown in (1), given the worker set U and task set T ,
this paper needs to minimize the sum of the distances from
workers to tasks, where I indicates whether a task is allocated
to a worker. The first restrictive condition demonstrates that
a task can only be done by one worker. The second restrictive
condition shows that each worker can only do one task at
most. The third restrictive condition indicates that each task
is expected to be allocated as much as possible. Suppose the
server knows the actual location of each worker. In that case,
it knows the distance from eachworker to each task, sowe can
directly use the existing linear programming tools to solve the
problem.

min
I

∑
ui∈U

∑
tj∈T

I
(
ui, tj

)
d
(
ui, tj

)
s.t. I

(
ui, tj

)
∈ {0, 1}∑

tj∈T

I
(
ui, tj

)
≤ 1

∑
ui∈U

I
(
ui, tj

)
= 1. (1)

B. SYSTEM AND THREAT MODEL
Fig. 1 presents an overview of the system in this paper.
The sequence number represents the steps to be executed.
This system includes a worker set, a task set, and a server.
The server receives the information from the workers and
then allocates the tasks. In particular, the server first accepts
the task set and starts to allocate the tasks. Then the server
receives the candidate worker set and the related information
of the workers. Then the server allocates the tasks. Finally, the
server notifies the related workers to do their corresponding
tasks.

In this paper, we assume a semi-trusted environment and
entities. All entities will honestly execute the algorithm

FIGURE 1. System overview.

process, but will steal the privacy of workers during execu-
tion. The attackers of the system are workers and servers.
In addition, third-party attackers can observe the geographic
location information uploaded by workers to the server (by
packet capture methods in computer network, etc.). It mains
that it can obtain almost the same information as that obtained
by the server.

C. GEO-INDISTINGUISHABILITY
The formal definition of Geo-Indistinguishability (Geo-I) is
as follows:
Definition 3.1 (Geo-I): Suppose there is a random algo-

rithmM , it’s the domain of definition is X and range of value
is Z. If for any two position points l1 and l2, and any output
l∗ ∈ Z , the following inequality holds:

P
[
l∗ |l1

]
≤ eεr · P

[
l∗ |l2

]
, (2)

then the algorithmM satisfies ε -Geo-I, where ε is the privacy
protection parameter and d (l1, l2) ≤ r .

The typical Geo-I is implemented by Planar Laplacian
(PL), and the specific process is as follows:

The probability density function of the Planar Laplacian is
as follows:

D (l0) (l) =
ε2

2π
exp (−εd (l0, l)) , (3)

d(l0, l) represents the perturbation from the actual position l0
to the fuzzy position l. For the convenience of representation,
it is converted to the following polar coordinate form:

D (r, θ) =
ε2

2π
r exp (−εr) , (4)

where r and θ denote radius and angle, respectively.
We obtain the boundary integral for r and θ respectively by
calculation:

Dε,r (r) =

2π∫
0

D (r, θ) dθ = ε2re−εr ,

Dε,θ (θ) =

∞∫
0

D (r, θ) dr =
1
2π
. (5)
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Then the generation method of radius r is as follows:

r = C−1ε (p) = −
1
ε

(
W−1

(
p− 1
e

)
+ 1

)
, (6)

whereW−1 represents Lambert W function. Then the angle is
generated randomly within [0, 2π) . Finally, the noise adding
method is as follows:

l0′ = l0 + (r ∗ cos (θ) , r ∗ sin (θ)) . (7)

D. LOCAL DIFFERENTIAL PRIVACY
The formal definition of Local Differential Privacy (LDP) is
as follows:
Definition 3.2 (LDP): Suppose there is a random algorithm

M whose domain is Dom (M) and whose range is Ran (M).
For any two data records t , t ′ ∈ Dom (M), and any output
t∗ ∈ Ran (M), if the following inequality holds:

P
[
M (t) = t∗

]
≤ eε · P

[
M
(
t ′
)
= t∗

]
, (8)

then algorithm M satisfies ε -LDP, where ε is the privacy
protection parameter.

Random Response (RR) is a classic implementation mech-
anism of LDP. It answers the true value with probability
p = eε

k−1+eε , and answers other values with probability
q = 1

k−1+eε , where k is the value range of the task. When
everyone sends the result of privacy protection to the server,
the server counts the number of the tag v as I . Then the
unbiased estimation of I is as follows:

Iv =
I − kq
p− q

. (9)

E. COMBINATORIAL PROPERTIES
For some complex privacy protection problems, the RR or PL
algorithm usually needs to be applied many times, and the
privacy budget needs to be allocated reasonably. Specifically,
we have the following theorems to guarantee these complex
algorithms also satisfy differential privacy [11]:
Theorem 1 (Sequential Compositionality): Suppose that

there are the random algorithms M1,M2, . . . ,Mn, whose
corresponding privacy parameters are ε1, ε2, . . . , εn. When
these random algorithms are used on the same data set, their
algorithms provide

(∑n
i=1 εi

)
-differential privacy.

Theorem 2 (Parallel Compositionality): Suppose that
the random algorithms M1,M2, . . . ,Mn satisfy differential
privacy, and their corresponding privacy parameters are
ε1, ε2, . . . , εn. When these random algorithms act on dis-
joint data sets D1,D2, . . . ,Dn, the composed algorithm
M (M1,M2, . . . ,Mn) provides max (εi)-differential privacy
for these sets.
Theorem 3 (Post-processing Property): Suppose that the

random algorithm MA satisfies differential privacy and ran-
dom algorithmMB working on the output ofMA, thenMB also
satisfies differential privacy with the same level of privacy
protection as MA.

FIGURE 2. Overview of SLEPT.

F. PROBLEM DEFINITION
Suppose there are N tasks T = { t1, t2, . . . . . . , tN } , and M
candidate workers participate in the task allocation of privacy
protection U = {u1, u2, . . . . . . , uM } . Each task has its two-
dimensional position coordinates (longitude and latitude).
Each worker has its position coordinates and preference task
set Si. Si is a collection of tasks that worker i want to do.
In particular, the location of tasks is open to the public, and
the workers’ locations and the set of preference tasks need to
be protected.

Moreover, we need to satisfy Geo-I for the location of
workers and LDP for the preference set of workers. The goal
of the server is to allocate all tasks on a minimal total travel
distance. We assume that each worker can only do one task,
and each task can only be selected by one worker.

IV. THE PROPOSED ALGORITHM
A. OVERVIEW OF SLEPT
Fig. 2 shows the overview of the SLEPT. As can be seen,
SLEPT includes the following five stages:
Stage 1: Each worker uses the privacy budget ε1 to call

Planar Laplacian (PL) to perturb his location and submit the
obfuscated location to the server;
Stage 2:Eachworker uses private budget ε2 to call Random

Response (RR) to perturb the tasks in his own preference set;
Stage 3: The server conveys statistics over the distribution

of tasks after perturbation and sends statistical information to
each worker (i.e., the dotted line in the figure indicates the
feedback information from the server);
Stage 4: Based on the statistical information, each worker

perturbs his own preference set unevenly by using privacy
budget ε3, and then selects a task nearest to him until all tasks
are allocated, or all workers are traversed;
Stage 5: The server informs the selected worker to go to

the task location to do the task.

B. TWO-PHASE PREFERENCE COLLECTION
To collect preference information of workers and facili-
tate the task allocation, we design a Two-phase Preference
Collection (TPC).

In the first phase of TPC, each worker uses privacy budget
ε2 to perturb the tasks in his preference set S through calling
the RR mechanism. For each task in S, the privacy budget
is ε2
|S| . After he perturbed preference set task is sent to the

server, the server invokes (9) to get the unbiased estimation
after perturbation. In this paper, Q is used to represent the
unbiased estimation array.
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TABLE 2. An example of preference set.

FIGURE 3. Overview of TPC for phase 2.

For example, suppose there are four workers {u1, u2,
u3, u4} and four tasks { t1, t2, t3, t4} , and the preference infor-
mation of each worker is shown in Table 2. The privacy
budget of each worker for each task in the preference set is
ε2
2 . After calling the RR mechanism, the preference task of
u1 may become t2 and t3. In this way, each worker sends
the perturbed preference set to the server to get the count
information of each task. Such as Q = {2, 1, 3, 2}, it means
that task t1 appears in the preference set of two workers.
Then the server calls (9) for unbiased estimation and gets
Q = {2, 2, 2, 2}. And then, we normalize the array to get
F = {0.25, 0.25, 0.25, 0.25} (specific calculation method:

2
2+2+2+2 , where the numerator represents an element in

the data Q, and the denominator represents the sum of all
elements).

Fig. 3 is the schematic diagram of the second phase of TPC.
In addition to uneven privacy budget allocation, this paper
combines the task allocation sequential updating (TASU)
mechanism (introduced in the next part) to further avoid
the segmentation of privacy budget. In particular, if a task
has been allocated to the previous worker ui−1, then for
the following worker ui, if the allocated task is still in the
preference set of ui. We don’t split the privacy budget for this
task allocated. As shown in Fig.3, task t2 (indicated in red) is
not necessary to split the privacy budget.

In the second phase of TPC, we find that the fundamen-
tal reason why some tasks are not allocated is that they
become preference tasks less frequently. In order to protect
the preference, the perturbed preference tasks may not be in
any worker’s preference set, or a task may be in a worker’s
preference set who has been allocated to other tasks. As a
result, the task can never be allocated. Based on this obser-
vation, this paper proposes that when the preference set of
workers is perturbed, we can allocate a higher privacy budget
should be allocated to the tasks with a lower frequency to
avoid the above situation as far as possible. Therefore, this
paper allocates the privacy budget according to the F array.

FIGURE 4. Overview of TASU.

Pseudocode 1 describes the two-phase preference collec-
tion (TPC) approach.

Pseudocode 1. The Procedure of Two-phase Preference Col-
lection (TPC)
Input: Privacy budget ε2 and ε3; Worker set U ;

Preference set S;
Output: Normalized array F ;
1: for ui in U do
2: Worker i uses ε2 to call RR to distribute the task

sequence number in S;
3: Worker upload the perturbed task set to the server;
4: end
5: The unbiased estimation of each tag for each task is

calculated according to (9);
6: Calculate the normalized array F;
7: for ui in U do
8: Determine whether a task has been allocated to decide

whether to split ε3
9: end
10: return F ;

C. TASK ALLOCATION UPDATING
To further reduce the segmentation of privacy budget when
collecting preference sets, we develop the Task Allocation
Sequential Updating method (TASU).

In particular, as shown in Fig. 4, this paper traverses work-
ers one by one. Each worker first calls PL to perturb their
location using the privacy budget ε1. He needs to partition ε3
using the F array, perturb their preference set, and then selects
the task closest to their perturbed position. Particularly, sup-
pose task t1 has been allocated to u1. In that case, it does
not need to split the privacy budget for task t1 even if it is in
the preference set of u2. The traversal process continues until
all tasks are allocated, or all workers are traversed. Finally,
suppose some tasks are not allocated, and some workers are
not selected, then, they will be allocated to workers closest to
them in this paper. Pseudocode 2 describes the task allocation
sequential updating method (TASU).
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Pseudocode 2. The Method of Task Allocation Sequential
Updating (TASU)
Input: Privacy budgets ε1 and ε3; Worker set U ; Task set T ;

Preference set S; Normalized array F ;
Output: The result of task allocation R;
1: for ui in U do
2: Worker i uses ε1 to call PL to perturb his location;
3: The worker uploads the perturbed location to the server;
4: end
5: for ui in U do
6: for tj in Si do
7: If tj has been allocated, then no privacy budget

is split for it;
8: Workers choose the nearest task to do;
9: end
10: end
11: The server marks the non-allocated task set as TT;
12: The server marks the unselected worker set as UU;
13: for tj in TT do
14: for ui in UU do
15: If tj is in Si, then tj is allocated to ui;
16: Remove theworker who has been allocated fromUU;
17: end
18: end
19: return R;

D. PRIVACY ANALYSIS
Theorem 4: SLEPT satisfies ε-differential privacy.

Proof: In SLEPT, only Stage 1, Stage 2 and Stage 4
need to contact the original locations or preference informa-
tion.

In Stage 1, workers’ operations satisfy ε1-Geo-I.
In Stage 2 and according to Theorem 1, worker’s operations
satisfy ε2-LDP. In Stage 4 and according to Theorem 1,
worker’s operations satisfy ε3-LDP.

According to Theorem 1, each worker’s operations satisfy
ε-differential privacy, where ε = ε1 + ε2 + ε3. Accord-
ing toTheorem 3, the server operations satisfy ε-differential
privacy.

According to Theorem 2, the overall system satisfies dif-
ferential privacy.

E. COMPLEXITY ANALYSIS
From the part of IV.A, we can see that the algorithm consists
of five stages in total. In Stage 1, each worker uses the
PL mechanism to add noise and consumes O (M) totally,
where M is the number of workers. In Stage 2, each worker
perturbs his preference set and consumes O (M |S|) totally,
where |S| represents the length of the preference set of
workers. In Stage 3, the server transmission of the statisti-
cal information of each task consumes O (N ), where N is
the number of tasks. In Stage 4, each worker perturbs his
preference set partially. Specifically, the first worker perturbs
|S| tasks, and the second worker perturbs |S| − 1 tasks,

and so on until the N -th worker perturbs the last one task.
The perturbation process consumes O

(
|S|(1+|S|)

2

)
in total.

Because in Stage 5 is that the corresponding workers carry
out their task, the server doesn’t consume time. To sum up, the
algorithm consumesO

(
(1+ |S|)

(
|S|
2 +M

)
+ N

)
. We can

see that SLEPT algorithm is linearly related to the number
of tasks through the time complexity.

V. EXPERIMENT
A. DATASET
We use two publicly available datasets collected from
Foursquare to assign tasks: New York (NYC), and Tokyo
(TKY). In particular, NYC contains 227428 check-in points
and TKY has 573708 check-in points. In this paper,
300 check-in points are randomly selected as task loca-
tions and 500 check-in points as workers’ positions for task
allocation.

B. EXPERIMENTAL SETUP
We generally use Average Travel Distance (ATD), and Unas-
signed Number of Tasks (UNT) to evaluate the utility of the
final noise task allocation results.

Equation (10) shows that it is ATD, and the experimental
results are expressed in km.

ATD =

∑
d (R)
|R|

. (10)

where |R| represents the number of tasks successfully allo-
cated, and d(R) represents the travel distance of the corre-
sponding task of a worker path in R.

As shown in (11), it is UNT,whereN represents the number
of tasks.

UNT = N − |R| . (11)

C. BASELINES
According to the analysis of related work, we find that the
existing schemes are inapplicable to solve the problem of this
paper. To verify the effectiveness of the proposed scheme,
we compare the SLEPT algorithm with the following design
scheme.

1) NoPriv: to verify the utility loss of privacy protection,
we give this comparative method. The server uses the
existing solving tools, combines with the actual infor-
mation of workers to solve the (1), and gets the final
task allocation result directly;

2) LPA (Linear Programming Approach) [38]: In this
method, each worker first uses half of his privacy bud-
get to perturb his preference information and send it to
the server. The server can get the task allocation result
by calling the algorithm in [38]. In particular, according
to the original author’s suggestion, the size of each grid
is set as 1km ∗ 1km;

3) PBA (Probability-based Approach) [41]: In this
method, each worker calls the method in [40] when cal-
culating the distance from the perturbation position to
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FIGURE 5. Performance comparison under different privacy parameter ε: (a) for the changes of ATD with the NYC, (b) for the changes of ATD with the TK,
(c) for the changes of UNT with the NYC, (d) for the changes of UNT with the TKY.

FIGURE 6. Effect of TPC: (a) for the changes of ATD with the NYC, (b) for the changes of ATD with the TKY, (c) for the changes of UNT with the NYC, (d) for
the changes of UNT with the TKY.

FIGURE 7. Effect of TASU: (a) for the changes of ATD with the NYC, (b) for the changes of ATD with the TKY, (c) for the changes of UNT with the NYC, (d) for
the changes of UNT with the TKY.

the task position. When the probability of the distance
value obtained more than the distance threshold (such
as the distance from other tasks) is > 0.5, other tasks
are allocated to the worker;

4) TSA (Two-Server Approach) [37]: In this method, each
worker first uses half of his privacy budget to perturb
his preference information and send it to the server, and
then the server calls the algorithm in [36] to get the task
allocation result;

5) TBA (Tree-based Approach) [43]: In this method, each
worker first uses half of his privacy budget to perturb
the preference information and sends it to the server.
And then, the server calls the algorithm in [42] to get
the task allocation result.

D. PERFORMANCE COMPARISON
1) THE IMPACT OF ε
To test the effect of privacy protection ε on algorithm util-
ity, we set ε ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} to evaluate the

performance of SLEPT under different privacy parameters.
The experimental results are shown in Fig. 5. Fig. 5 (a) and
Fig. 5 (b) separately show the changes of ATD (Average
Travel Distance) corresponding to the NYC data set and the
TKY data set. Fig. 5 (c) and Fig. 5 (d) separately show the
changes of UNT (Unassigned Number of Tasks) correspond-
ing to the NYC data set and the TKY data set.

As can be seen from Fig. 5, the utility of all algorithms
become better with the increase of ε,. That is, ATD is
smaller and UNT is also smaller. This is because with the
increase of ε, the total noise in all algorithm examples
becomes to be reduced. In addition, the SLEPT algorithm
performs best. That’s because the two-phase preference col-
lection (TPC) algorithm and the task allocation sequential
updating method (TASU) in this paper can significantly
reduce the noise in the algorithm. As for LPA, PBA, TSA and
TBA algorithms, the improper collection of preference tasks
leads to many tasks being allocated to non-optimal workers.
So their ATD values are large. At the same time, incorrect
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collection of preference tasks will lead to amismatch between
the preference set and the worker’s preference. In such a case,
even if the server assigns them to such workers, they will
refuse to perform tasks in the final task execution stage.

2) THE EFFECTIVENESS OF TPC
To verify the effectiveness of the proposed TPC module,
we set this part of experiments. The experimental results are
shown in Fig. 6. The horizontal ordinate represents the total
privacy budget, and the vertical ordinate represents the ATD
or UNT. In addition, SLEPT+ is used to describe the method
when not executing the TPC module. That is to say, it uses
one-half of the privacy budget to perturb the locations of
workers. It uses the other half to collect the preference infor-
mation of each worker and then traverses each worker for task
allocation.

3) THE EFFECTIVENESS OF TASU
To verify the effectiveness of the TASU module, we set these
comparative experiments. The experimental results are shown
in Fig. 7. The horizontal ordinate represents the total privacy
budget, and the vertical ordinate represents the ATD or UNT.
SLEPT- is used to represent the method when not executing
the TASU module. That is, it uses ε1 to perturb the locations
of eachworker and adopts TPC to collect the preference infor-
mation. Then, the server performs the greedy task allocation
based on the locations and preference information.

As shown in Fig. 7, the SLEPT algorithm is significantly
better than SLEPT-. By sequential updating, we can allocate
the task to the corresponding worker who is really preferred
it. At the same time, greedy allocation will cause tasks not to
be allocated to the proper workers. In such cases, on the one
hand, if tasks are not allocated to the optimal workers, ATD
will increase. On the other hand, if there are no workers who
prefers to do the leaved tasks, UNT will increase.

VI. CONCLUSION
Focusing on the task allocation problem under preference
protection, we propose a task allocation algorithm SLEPT
while satisfying differential privacy. We show it satisfies
ε-differential privacy. In particular, to improve the success
rate of task allocation as much as possible, we design a
two-phase preference collection mechanism TPC. To reduce
the travel distance of workers and improve the success rate
of task allocation, we develop a task allocation sequential
updating mechanism TASU. Experimental results on two
public datasets verify the effectiveness of SLEPT. In addi-
tion, the idea of SLEPT can be used for other applica-
tions in the context of crowdsensing scenarios with privacy
protection.
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