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ABSTRACT The use of metallographic images to predict the mechanical properties of materials and their
corrosion behavior is helpful in achieving nondestructive detection and quality control. However, after
a long-term attempt, the traditional methods cannot accurately correlate the mechanical properties and
corrosion behavior of materials with the corresponding microstructure images. In this study, we propose a
deep learning strategy to predict the mechanical property and corrosion behavior of large-scale extruded
aluminum profiles using surface optical microstructure images. The proposed models with remarkable
properties were established through experimental dataset collection, dataset preprocessing, deep learning
network modification, and key parameter screening. Taking extruded Al-Zn-Mg alloys with different surface
microstructures as example materials, 4,800 sets of “‘metallographic image — hardness (HV) — corrosion
potential (E¢orr)”” data were experimentally collected to establish the HV and Eq models with prediction
accuracies of 90% and 82%, respectively. The proposed HV and E . models exhibit great generalization
ability with mean average errors of 1.8 HV and 7.0 mV on experimental validation sets, respectively. The
proposed model can accurately correlate the metallographic images, mechanical property, and corrosion
behavior, which can provide theoretical support for intelligent and nondestructive testing methods to further

prevent unexpected material failure.

INDEX TERMS Deep learning, aluminum extrusion, mechanical property, corrosion behavior.

I. INTRODUCTION

Extruded aluminum alloys are one of the most widely used
structural materials in the construction of high-speed rail
systems owing to their high strength [1], low density [2],
and other outstanding properties [3]. Extrusion is a complex
deformation process involving a highly uneven strain and
temperature distribution [4], which induces a heterogeneous
microstructure in aluminum profiles [5]. Furthermore, alter-
ation of alloy properties by the microstructure significantly
affects the long-term durability of the key load-bearing
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component of high-speed trains and becomes a significant
problem [6], [7].

The inhomogeneous microstructure of the extruded alu-
minum is attributed to the degree of completeness of
recrystallization from the center to the surface region of the
profiles during the extrusion process [8]-[10]. Sun et al.
reported that recrystallization should satisfy the critical
conditions of high temperatures (450-550 °C) and large strain
(>1)[11]. Geertruyden et al. summarized that the strain of the
aluminum extrusion surface could reach 6 during hot defor-
mation, which completely satisfies the critical conditions for
recrystallization [12]. Therefore, recrystallization of the sur-
face region of the extruded aluminum alloy commonly occurs
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and is hardly avoided [13]-[16]. Even so, researchers are
still attempting to control the microstructure of extrusion via
efficient changes in the extrusion parameters and aluminum
compositions [17]-[19]. However, the quality and stability of
the extruded products cannot be fully guaranteed owing to
the narrow process window and various influencing factors
in the production cycle [20]. Moreover, the mechanical and
corrosive property changes induced by recrystallization have
been studied by many researchers. The mechanical properties
of the profiles were significantly deteriorated by surface
recrystallization [21]-[23]. However, Ye et al. indicated that
the softening effect no longer exists when the thickness of
the surface recrystallization layer is less than 200 pm [24].
In addition, Zhang et al. indicated that the recrystallized
region of aluminum alloys exhibits low corrosion susceptivity
than other region [25]. Wloka er al. demonstrated that
a 30 pum thick recrystallized surface layer of Al-Zn-Mg
alloy showed better exfoliation corrosion resistance than
the matrix [26]. Our previous work also indicated that the
25 pum thick surface recrystallization layer reduced the stress
corrosion cracking (SCC) susceptibility of Al-Zn-Mg alloy
extrusion without sacrificing mechanical properties [27].
The surface recrystallization is often appearing as coarse
or fine equiaxed grain which different from the deformed
region of materials. It is noteworthy that the correlation
of microstructure and properties is commonly described by
data statistics methods in the literature and many similar
studies [28], such as correlating the properties and average
grain size [29]. However, these statistical results cannot
comprehensively represent the grain structure characteristics
of materials, especially deformed grain structures. To address
these limitations, computer vision techniques, particularly
deep learning methods, have been employed to compensate
for this deficiency.

Since AlexNet was first presented in the ImageNet Large-
Scale Visual Recognition Competition (ILSVRC) [30], more
deep neural networks have been proposed, and innovations
in deep learning continue to result in breakthroughs across
multiple fields. Dong et al. first proposed the use of deep
convolutional neural networks (CNNs) to learn the end-to-
end mapping relationship between low- and high-resolution
images for image recognition [31]. Deep learning has since
been successfully used in the field of image recognition.
More recently, literature has emerged that suggests the
accurate diagnosis of diseases, particularly breast cancer,
chronic kidney disease, and dermatosis, with the assistance of
deep learning networks such as the Visual Geometry Group
network (VGG Net) [32], GoogLeNet [33], deep residual
network (ResNet) [34], faster R-CNN network [35], densely
connected networks (DenseNet) [36], generative adversarial
networks (GANs) [37], and Inception-ResNet networks [38].
In addition, deep learning has been applied in materials
science and has achieved favorable results [39], [40].
Ma et al. developed a novel transfer learning strategy to
address the problems of small or insufficient microstructure
data using a GAN framework [41]. Na et al. proposed
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FIGURE 1. (a) Quantity of literatures in topic of different network from
web of science in recent 5 years (2020-2016); (b) Top-1 accuracy of each
network in ILSVRC.

a deep-learning-based method that can refocus low-quality
scanning electron microscopy (SEM) images and perform
the task discriminately [42]. Fig. 1(a) summarizes the
quantity of literature on AlexNet, VGGNet, GooglLeNet,
ResNet, and Inception networks in the last five years
(2020-2016). ResNet and Inception are the most popular
networks in published literature. Fig. 1(b) summarizes the
top-1 accuracy of the above-mentioned networks on the
ImageNet database [43]-[47]. Inception-V4 and Inception-
ResNet-V2 networks exhibited better performance than the
others.

In this study, we address the topic of correlation between
microstructure and properties for a model Al-Zn-Mg alloy
extrusion and propose a deep learning framework that can
accurately predict the mechanical property and corrosion
performance of aluminum extrusion via surface metallo-
graphic images. The microstructure differences, correspond-
ing mechanical property, and corrosion behavior were studied
using electron backscatter diffraction (EBSD), SEM, trans-
mission electron microscopy (TEM), hardness testing, and
electrochemical tests. Furthermore, a deep learning model
was established using efficient training and appropriate
parameters. The results could potentially provide theoretical
support for nondestructive testing of large-scale extruded
profiles.

Il. METHODS

A. IMAGE-PERFORMANCE PREDICTION FRAMEWORK

In this study, the prediction strategy of ‘“‘data collection —
data preprocessing — deep learning modeling — cor-
relation model accomplishment” was used to rationally
and efficiently compensate for the direct correlation of
metallographic images, mechanical property, and corrosion
behavior of large-scale extruded sections. The flowchart of
the framework is shown in Fig. 2.

1) DATA COLLECTION

We collected the “metallographic image — hardness (HV) —
corrosion potential (Ecorr)” data of different extruded alu-
minum surface through experimental measurements. The
data collection process is illustrated in Fig. 3. Three-meter
length hollow aluminum profiles with different surface
conditions were chosen for this study, as shown in Fig. 3(a).
To comprehensively obtain the surface characteristics, the
samples used for data collection were taken from the
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FIGURE 3. The technological process of dataset collection (a) large-scale extruded aluminum;
(b) HV and Ecorr data collection; (c) metallographic image collection.

head, middle, and tail of the extruded profile. The input
images (323 x 242 pixels) represented the surface optical
microstructure of each extruded profile. The steps are shown
in Fig. 3(c). The outputs were the surface HV and E;qy.
The microstructure and the corresponding HV and Ecqp
showed a strict one-to-one correlation. Finally, 4,800 sets of
“metallographic image — HV — E.oy” data were collected
through experiments.

2) DATA PREPROCESSING

To prevent overfitting, the input metallographic image data
were preprocessed using particular operations, including mir-
roring, rotation, Gaussian noise, and size changes at random.
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The output HV and E; data were normalized to accelerate
the optimization process of the deep learning model.

3) DEEP LEARNING MODELING

This study used Google’s Inception-ResNet-V2 network
with 152 convolution layers to establish the deep learning
prediction model, which yielded an excellent performance.
The network architecture is shown in Fig. 4. The aim of this
work was to model a regression problem. Therefore, the last
fully connected layer was altered to one node to accomplish
the regression task. The CNN layers were applied using
the ReLLU activation function. Mean squared error (MSE)
loss was used as an objective function for the regression

VOLUME 10, 2022
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FIGURE 4. Architecture of Inception-ResNet V2.

tasks to predict continuous values. Training of the models
was performed in batches of 16 images for 30 epochs with
different learning rates. The training was performed using
the Adam optimizer, with a weight decay of 10~*. The
dropout rate was set at 0.5. The models were implemented
using PyCharm software. No samples overlapped between the
training and testing sets.

B. EVALUATION METRICS OF MODEL

In this study, prediction accuracy and mean average
error (MAE) were employed to evaluate the applicability
and superiority of the framework. Fig. 5 shows the HV and
Ecorr data distributions of each extruded profile. For idealized
materials with uniform microstructures, HV and E.; do not
change with the testing locations. The datasets used in this
study comprised experimental data of engineering materials
that went through the entire production cycle. Hence, the
databases were heavily affected by experimental noise,
testing equipment errors, and heterogeneity of materials.
In most practical applications and published literature, the
HV and E.,+ were determined within an error range.
To address this, thresholds must be set to define the
acceptable deviation ranges. Thus far, many researchers have
manually determined the appropriate tolerance parameters
for their specific dataset [48]. Samples A, B, and C possess
average hardness of 104.5 £+ 3.2 HV, 108.1 + 2.3 HV,
and 113.0 &+ 4.7 HV, respectively, and average corrosion
potentials of —830.13 £ 11.86 mV, —843.98 + 6.32 mV,
and —877.49 + 10.40 mV, respectively. Hence, error bounds
of £3 HV for HV predictions and £10 mV for Egor
predictions were set for the prediction accuracy calculation.
The prediction accuracy expresses the fraction of images
that are correctly predicted from all images in the dataset.
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The corresponding equations are as follows:

Prediction accuracy = Meorrect x 100% (D
n

where mcorrect Tepresents the quantity of images that are
correctly predicted, and 7 is the quantity of all images in the
dataset.

The MAE was calculated using the following equation:

1
MAE = 0 Z |(xexp eriment — xprediction)| )

where Xprediction TEpresents the predicted properties, Xexperiment
denotes the measured properties, and 7 is the quantity of data
in the dataset.

C. EXPERIMENTAL PROCEDURES

This study employed extruded Al-Zn-Mg alloys in the
TS5 condition. The chemical compositions of these alloys
are listed in Table 1. Owing to the different extrusion
parameters, the surfaces of the extruded profiles exhibited
different microstructural characteristics. The samples for the
microstructure analysis, hardness test, and electrochemical
measurements were cut from the outermost surface of each
extruded aluminum profile.

TABLE 1. Chemical composition of the employed Al-Zn-Mg alloys.

Element Al Zn Mg Mn Cr Fe Cu Si
Content  po1 - 438 104 037 023 008 016 007
(Wt.%)

Metallurgical microscope (Carl Zeiss Axio Scope Al)
was used to analyze the optical microstructures of the
tested samples and capture the metallographic images of
dataset. The conventional polished samples were corroded
by aqueous acid solutions (2.5% HNOs and 1.5% HCI,
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FIGURE 5. Data distribution (a) HV; (b) Ecorr-

1% HF, and 95% H,O by volume fraction) for 20 s and
cleaned by ethanol solution for microstructure analyses.
EBSD (Tescan mira 3 LMH) measurements were employed
to obtain the microstructure characteristic of the tested
samples. The EBSD samples were mechanically polished
and then electropolished at a DC voltage of 18 V for 30 s.
SEM (S-3400N, Hitachi, Japan) and energy-dispersive X-ray
spectroscopy (EDS) were performed on mechanical polished
surface to analyze the morphology and chemical composition
of the tested samples. TEM (FEI Tecnai G20) samples were
cut and polished to a size of &3 mm x 30 pm, and finally ion
beam thinned. A Vickers hardness tester was used to calculate
the hardness value for extruded aluminum with a load of
0.98 N held for 30 s.

Potentiodynamic polarization measurements were mea-
sured in a 3.5 wt.% NaCl solution by a three-electrode elec-
trochemical (CS electrochemical workstation). A platinum
plate and saturated calomel electrode (SCE) were functioned
as the counter electrode and reference electrode, respectively.
The working electrode was the tested samples (10 mm x
10 mm x 3 mm) that was connected to a copper wire
via welding and subsequently embedded in an epoxy resin.
The samples were then polished to a mirror finish and
cleaned using distilled water and ethanol. The air-formed
oxide film on the samples were removed by polarization.
All tested samples were immersed in the 3.5 wt.% NaCl
solution to reach the steady open circuit potential (OCP). The
potentiodynamic polarization measurements were conducted
at a scanning rate of 0.1667 mV/s. All measurements were
performed at room temperature (25 °C £ 2 °C).

IIl. RESULTS

A. DATASET CHARACTER

The “metallographic image — HV — Eoy” data of three
extruded aluminum with different surface microstructures
were collected through experimental measurements. The
surface microstructure characteristics of each profile and
quantity of data are listed in Table 2. To inspect samples in
a fast, nondestructive, and easy-to-execute manner, optical
microstructures were chosen as the input parameters. The
clear grain size characteristics obtained from the optical
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TABLE 2. The surface microstructure character of each aluminum profiles
and the number of samples in dataset.

Sample code A B C
Average grain size (um
gee . (k) 123 x 116 16 x 21 15 %61
(length x width)
Quantity (set) 1600 1600 1600

microstructure indicated a significant difference in the grain
size of the extruded aluminum. Therefore, we established a
dataset with 4,800 sets of data, that is, 1,600 sets of data for
each sample.

B. KEY PARAMETERS SETTING AND MODELING
Based on the surface microstructure characteristics of the
extruded aluminum and the corresponding HV and E gy,
a prediction model was established to correlate the met-
allographic images and properties with the assistance of
the Inception-ResNet-V2 network. The HV data represent
the mechanical property of the extruded aluminum. The
Ecorr data from potentiodynamic polarization represent the
corrosion behavior. The total loss was used as an indicator
to evaluate the convergence and fitting effects of the training
processes. The total loss is a non-negative real-value function
used to estimate the inconsistency between the predicted and
real values of the model. The smaller the loss function, the
greater is the robustness of the model. First, the models were
trained using 0.00001, 0.000001, and dynamic learning rates.
Fig. 6 shows the loss function alteration of the prediction
model with the different learning rates. The training loss
was stable and converged after 3,000 training iterations. The
ranking in terms of total loss, from the lowest to highest,
was the dynamic learning rate, 0.000001 learning rate, and
0.00001 learning rate. The prediction accuracy of each model
stabilized after 4,000 iterations, and the MAE stabilized in the
last 1,000 iterations. The dynamic learning rate outperformed
the other learning rates in the training dataset, exhibiting the
highest prediction accuracy and lowest MAE for both the HV
and Eqr models.

The prediction accuracy of the established model for
different training datasets is shown in Fig. 7. With the
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M. Ao et al.: Image Deep Learning Assisted Prediction of Mechanical and Corrosion Behavior

IEEE Access

(a) = (b)
ok Learning rate: 0.00001 012 F
Learning rate: 0.000001
Learning rate: steps
0.10 2 P 010k
2 Z
Z o8t £ 008 |
=0 =4
£ £
£
£ 006 | £ 006 |
B £
004 | d 004 |
. I
‘o WH:“\\\ iy y
N Loy i
ozl L.h.,.k;[ﬁﬁ“}:‘gi‘“dn LR R RN 002
' ST VeV O
0.00 L— L L L L L L L 0.00 L— L L L L L L s
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Iterations Iterations
100 40 00 16
(©) (d
PPDDDTPOUDOTUUN
Jareres
80 436 20k
93 T > s
S 5 859 X
2 80% S22 £ 1.
Z - 432 g -
g 60 > E 60 <
8 o g
< - O R -0000-00 0000, 18 & 5 <
£ 00O 000000 = 2 wt =
S : 3
5 . 3 48
£ 124 £
20 2 ; 20
2817 2.65 7
S /420
ol L L L L L L L ol s L L L s s s
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Iterations Iterations

FIGURE 6. The performance of prediction model with different learning rate (a) the training loss
of HV model; (b) the training loss of Ecorr model; (c) the training performance of HV model;

(d) the training performance of Ecorr model.

(a) o (b)os
016 |
012 F
—— Datasets: 3840 sets 014}
0.10 f
2
2
2008
=0
£ &
£ Z 008 |
5 006 &
. 006 |
0.04 f
004 |
s 002
i st
0.00 L— L L L L L L L 0.00 L— L L n n n n n
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Iterations Iterations
(c)oe 34 (d) 1o 14

sof B

60 |

40 F

Prediction accuracy (%)

87%
86% » S

MAE (mV)

N R AR s Aot < rry
20} %) PP
I/, 6 90 x {6
oo 6.63 7 6 62 x
ol L L L L L L L 0 ol L L L s L L n
0 1000 2000 3000 4000  S000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Iterations Iterations

FIGURE 7. The performance of prediction model with different quantity of datasets (a) the
training loss of HV model; (b) the training loss of Ecorr model; (c) the training performance of
HV model; (d) the training performance of Ecorr model.

increase in the dataset quantity, the total loss of each
model decreased and became stable after 4,000 iterations.
The HV and E.oy models had higher prediction accuracy
and lower MAE when the training datasets included at
least 3,840 sets of data. Furthermore, 960 sets of testing
data were used to test the performance of each model,
as shown in Fig. 8. The results indicated that the HV and
Ecorr models performed well on the testing datasets. The
established HV and E.q;y models exhibited high prediction
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accuracies of 90% and 82%, respectively. The MAE values
of the HV and E..; models were 2.26 HV and 6.62 mV,
respectively.

C. EXPERIMENTAL VERIFICATION

To further verify the performance of the established model
and demonstrate its general applicability to other extruded
aluminum alloys, we collected 30 sets of data on the surface
of the extruded aluminum, and the results are displayed
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FIGURE 9. The representative metallographic image for model verification (a) sample «; (b) sample g;
(c) sample y.

TABLE 3. Surface microstructure character of verification aluminum
profiles and the number of samples.

Sample code o B Y
A Grain si 101 x 94 i
verage Grain s.me (um) (coarse gams) 24 %21 15 % 93
(length x width) 22 x 16 (fine grains)
Quantity (set) 10 10 10

in Fig. 9. Table 3 summarizes the grain size characteristics
of the samples used for verification. The average grain size
of sample o was mostly 100 um, and a minority had an
average grain size of 20 um. Fig. 9(a) shows that the smaller
grains are distributed like islands among the larger grains.
The average grain size of sample 8 was 23 um, and the
average width of the fiber grain in sample y was 15 um. The
microstructure images used for verification were different
from the established ‘‘metallographic image — HV — E¢qr”
dataset to verify the generalization ability of the proposed
model accurately.

The verification results are shown in Fig. 10. The results
showed that compared with the discrete characteristics
of the experimental value, the predicted value showed
convergence properties for each surface. The established
model can accurately predict the HV and Ego of each
sample from optical microstructure images. The predicted
values were mostly within the error bounds. The MAE values
of the HV and E.,; models were 1.8 HV and 7.0 mV,
respectively.

35626

IV. DISCUSSION

A. RELATIONSHIPS BETWEEN MICROSTRUCTURE AND
CORRESPONDING PROPERTIES

The surface morphology of the extruded aluminum was
strongly influenced by temperature and strain alteration
during the extrusion process. Furthermore, the surface
morphology significantly affected the mechanical properties
and corrosion behavior of the aluminum extrusion.
To comprehensively understand the relationship between
the microstructure and properties, the microstructural
characteristics of samples o, B, and y were studied in
detail. First, the surface microstructure of each extruded
aluminum sample was studied, as shown in the EBSD maps
(Fig. 11). The extrusion process has an apparent influence
on the grain size and morphology. It can be seen intuitively
that samples «, 8, and y possessed coarse equiaxed grains
with an average diameter of 100 £ 5 um, fine grains with
an average diameter of 15 = 5 um, and deformed grains
with an average width of 20 &+ 5 um, respectively. The
EBSD results also indicate that sample o was completely
recrystallized and released the residual stress. Sample 8 was
in an almost completely recrystallized state with less residual
stress, whereas sample y was in a deformed state with
high residual stress. The recrystallization process can release
the residual stress of materials induced by the deformation
process and further induce softening of the materials [49].
The microstructure features of extruded aluminum in
Fig. 11 are consistent with those in the relevant published
paper [50].
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FIGURE 11. The microstructure of each extruded Al-Zn-Mg alloy (a) sample «; (b) sample g;

(c) sample y.

The uneven strain and temperature distributions during
the extrusion process also have an obvious influence on the
intermetallic particles (IMPs) in the aluminum profiles [51].
First, micron-scale IMPs were studied, as shown in Fig. 12.
The SEM and EDS results of each sample showed that the
IMPs primarily consisted of Al, Si, Mn, and Fe, that is, the
AlFeMnSi phase. The IMPs in each sample exhibited obvious
differences in numbers, as shown in Fig. 12(d). The area
fractions of the IMPs in each sample were 0.49% =+ 0.03%,

VOLUME 10, 2022

0.61% =+ 0.11%, and 1.10% =+ 0.25%, respectively. During
the recrystallization process, the IMPs dissolved because
of the relatively high temperature and then re-precipitated
during the subsequent cooling process [52]. According to
Montheillet et al., the surface of extruded aluminum is more
susceptible to high temperatures and strain than the inner
region [53]. Hence, the number of IMPs decreased in the
thickness direction from the surface to the inner region of the
extruded aluminum.
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In addition, the nanoscale precipitates were influenced by localized corrosion, particularly in SCC susceptibility. The
recrystallization during extrusion. According to the literature, TEM results for the GBPs in each region of the extruded
grain boundary precipitations (GBPs) play a critical role in aluminum are displayed in Fig. 13. The grain boundaries
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in the different regions exhibited different characteristics.
From the surface to the inner region of the extruded
aluminum, the number of GBPs increased and the Cu content
of the GBPs decreased. In addition, the coarse grain region
has a precipitate-free zone (PFZ) that is approximately
200 nm wide, while the deformed grain region has an
approximately 80 nm wide PFZ, and the fine grain region
possesses a 120 nm wide PFZ. As mentioned in the previous
paragraph, the surface region always exhibited a higher
temperature than that of the inner region. High temperatures
could promote element diffusion [54], even for Cu with a
high diffusion coefficient [55]. Hence, the difference in the
number and Cu content of GBPs for each region in extruded
aluminum is attributed to the heterogeneous temperature
distribution during the extrusion process.

B. RELIABILITY OF THE PROPOSED MODELS

The deep learning model used in this study was based on
a rather large dataset from the experimental results. Our
results indicate that the optical microstructure of aluminum
can be directly linked to HV and Eoy. Furthermore, the
HV and E.; values of a given sample can be effectively
and accurately predicted using the metallographic image of
the testing surface. To verify the reliability of the proposed
model, the MAE between the prediction and experimental
values of each model was compared with the experimental
error in published literature, as shown in Fig. 14.

The experimental errors of our datasets are also presented
in Fig. 14. The results demonstrated that the MAE of
the HV model was lower than that of the literature and
experimental results in this study. The MAE of the Ecorr
model was lower than that of the experimental results and
most literature. These results demonstrate that the proposed
HV and E o models can predict the HV and Eoy values
of extruded aluminum using microstructural images with
acceptable accuracy.

V. CONCLUSION

In this work, the mechanical property and corrosion behavior
of large-scale extruded aluminum profiles were accurately
correlated with the surface optical microstructure images by
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deep learning. The relationship between the microstructure
and corresponding properties were explained by EBSD,
SEM, EDS and TEM analyses. The main conclusions can be
summarized as below:

« The proposed model identifies the optical microstructure
as the key feature that can accurately predict the HV
and Eqr of the extruded aluminum with relatively high
prediction accuracies of 90% and 82%, respectively.

o Based on the verification results, the MAE of the
established HV and E;; models could reach 1.8 HV and
7.0 mV, respectively.

o The main factor that affected the optical microstructure
of each extruded aluminum surface and further induced
the HV and E. differences was the recrystallization
during the extrusion process. Specifically, full recrys-
tallization of the surface layer softens the extruded
aluminum. In addition, the low-density of the IMPs
and the Cu-containing GBPs discontinuously distributed
induced by recrystallization improved the corrosion
resistance of extruded aluminum.
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