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ABSTRACT The microstructure of superalloy materials has a decisive impact on its service performance.
When preparing the material and photographing the microstructure, different depths of metallography
perpendicular to the cut plane appear in the microstructure image. These metallographic features are
major factors causing inaccurate segmentation. Aiming at the problems of traditional image processing
methods, such as large noise and poor robustness of the edge extraction, the deep learning method is
introduced. The receptive field of the traditional convolutional neural network method is too local to
obtain remote dependencies, and dense feature extraction also brings problems such as excessive noise.
To address the problem of non-tangential metallographic information in microstructure images that is not
easily distinguishable. We consider how to combine and utilize the feature maps of the intermediate process
as effectively as possible, and find that reusing affinity matrices from different angles and stacking them can
improve the overall effect, and can solve the problem of inaccurate segmentation of metallographic images
at different depths. We propose to improve and optimize the non-local attention module and further combine
the module with the UNet network to form a new improved SNL-Unet image segmentation structure,
which significantly raises the accuracy and efficiency of image segmentation, Additionally, we measure
the characteristic parameters such as volume fraction, average thickness and the degree of rafting. The code
for this paper will be available at github.com/ustbjdl1021/improved-snl-unet.

INDEX TERMS Characteristic parameter measuremen, deep learning, image segmentation, self-attention,

superalloy.

I. INTRODUCTION

The microstructure is the key to determining the properties
of superalloy materials. Microstructure analysis is mainly
based on the shape, distribution, and other characteris-
tics of different tissues in microscopic images. Manual
analysis methods have problems such as the influence of
subjective factors, excessive time consumption, high cost,
limited local statistics, and low accuracy. Therefore, seeking
more advanced microstructure image analysis methods for
superalloys and improving the calculation speed and accuracy
of microstructure features have become the key to the
metallographic analysis.
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When measuring and calculating characterization param-
eters such as volume fractions, more accurate information
on the metallic phases in the same cutting plane is required.
However, when preparing materials and taking pictures of
microstructures, due to the limitations of on-site process
conditions and errors in manual slicing operations, different
depths of metallography perpendicular to the tangent plane
will be present in the microstructural image. These image
information that is not in the same cutting plane are not in the
scope of characterization parametric measurement, so they
need to be accurately rejected during image segmentation.

Therefore, in order to employ the information in
microstructure images more efficiently, it is necessary to
improve the network’s ability to utilize image features and
cope with the problem of identifying depth information.
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We propose an improved nonlocal bolck, which can better
segment deep and shallow information in effect. Further,
we combine the improved non-local attention module and
UNet network to form an improved SNL-UNet network
structure, which significantly improves the accuracy and
efficiency of image segmentation.

Experimentally, the segmentation result of this method is
better than that of other network structures, and the ability
to recognize the depth information of the image is also
significantly improved. Additionally, based on more accurate
segmentation results, the microstructure characterization
parameters such as volume fraction, rafting degree of y’
phase and thickness of y’ phase are measured.

A. RELATED WORK

Some studies [1]-[3] show that the distribution of the y’ phase
have an important influence on the mechanical properties
and hardness of superalloys. Recent years, more and more
attention has been paid to the study of y-phase [4], [5].
Hou et al. [6] find that the yield strength and deformation
mechanism are temperature-dependent. Sun et al. [7] find
that morphology and size of secondary y’ are sensitive to
temperature and strain rate.

There are some feature representation methods that
combine imaging techniques and algorithms. Payton et al. [8]
study that backscatter electron imaging of specimens in
which the y’ phase has been selectively etched yields images
that can be more readily segmented with image processing
algorithms than other imaging techniques. Tiley et al. [9]
measure y’ precipitates in a nickel-based superalloy using
energy-filtered transmission electron microscopy coupled
with automated segmenting techniques.

Traditional image processing methods mainly focus on
image texture, gray difference, and other single features
for segmentation, such as Otsu [10] method threshold
segmentation, Canny [11] edge detection operator, Sobel [12]
edge operator, etc. These methods have problems in edge
extraction of material microstructure, such as blurred edges,
low precision, and many noises.

There are methods based on traditional algorithms
that perform well in segmenting microstructure images.
Cao et al. [13] develop a new Multichannel Edge-Weighted
Centroidal Voronoi Tessellation (MCEWCVT) algorithm to
automatically segment all the 3D grains from microscopic
images of a super-alloy sample. Chuang et al. [14] study
the combination of a region merging segmentation method
called the stabilized inverse diffusion equation (SIDE),
and a stochastic segmentation method, the expectation-
maximization/maximization of the posterior marginals
(EM/MPM) algorithm. Ewees et al. [15] presents a
hybrid meta-heuristic approach for multi-level thresholding
image segmentation by integrating both the artificial bee
colony (ABC) algorithm and the sine-cosine algorithm
(SCA). Alwerfali et al. [16] develope an alternative MTI
segmentation method by using a modified version of the salp
swarm algorithm (SSA).
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In recent years, the continuous improvement of the
computing power of computer hardware equipment has
provided the possibility for the employment of deep learning
in many fields. Deep learning [17]-[19] methods can learn
from intensive material data to quickly find new materials
with target property.

Convolutional neural network (CNN), as a classic appli-
cation structure of deep learning, can automatically extract
features from massive data and has good generalization capa-
bilities. Long et al. [20] proposed a fully convolutional neural
network (FCN) based on semantic segmentation, replacing
the fully connected layer in CNN with a convolutional
layer. Ronneberger et al. [21] proposed a symmetrical U-Net
network based on the idea of encoder-decoder structure
based on FCN and flexibly used the jump connection
between deep and shallow networks, thus overcoming the
fact that FCN cannot retain part of the pixel spatial
position information. Moreover, context information leads
to the shortcomings of loss of local features and global
features. Zhou et al. [22] proposed the U-Net++ network,
rethinking the down-sampling and up-sampling times of
the UNet network, redesigning the multi-scale connection
nodes in the original network, adding in-depth supervision
to pruning different segmentation tasks to the appropriate
network, Achieving a good segmentation effect. Mehta and
Sivaswamy [23] proposed an M-Net network based on U-Net
for brain magnetic resonance imaging image segmentation,
three times faster than random forest and 2D CNN in
volume segmentation. At present, the U-Net network and
a series of derivative network structures [24] have become
one of the most popular image semantic segmentation
methods.

Although the UNet network and its series of derivative
network structures perform well in image segmentation [25],
[26], they are limited by a large number of intensive
use of convolution operators, obtaining the interdependence
between remote information is inefficient, and the receptive
field of image feature extraction is excessively localized.
Stacking more layers of convolution operators does not
always increase the effective receptive field, so convolution
operators still lack a mechanism for modeling remote
dependency information.

There are many works on fusing multi-scale features.
Hu et al. [27] propose a joint feature pyramid (JFP) module,
and built a spatial detail extraction (SDE) module, design
a bilateral feature fusion (BFF) module, making full use
of the correspondence between high-level features and low-
level features. Benvcevic et al. [28] propose training a neural
network on polar transformations of the original dataset,
such that the polar origin for the transformation is the
center point of the object. Mohamed et al. [29] propose
a hybrid SI based approach that combines the features
of two SI methods, marine predators algorithm (MPA)
and moth flame optimization (MFO). Liu et al. [30] The
author proposes an improved Itti model and an improved
GrabCut image segmentation algorithm for PET images that
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are low-resolution grayscale images to solve the problems
existing in the original algorithm in grayscale images.

The Nonlocal block [31] can capture remote dependencies
more robustly and flexibly to help the deep network better
integrate Nonlocal information. Some Nonlocal network
modules currently proposed are NL [31], A2 [32], NS [33],
CC [34], CGNL [35], SNL [36], etc. Chen et al. [32]
propose the Double Attention block, which first collects
the features in the entire space and then assigns them
back to each location. Yue er al. [35] proposed a compact
generalized Nonlocal block to capture cross-channel cues,
which inevitably increases the noise of the attention map.
Huang et al. [34] proposed a lightweight Nonlocal block
called an interleaved attention block, which decomposes the
positional attention of NL into conterminously column-wise
and row-wise attention. In order to improve the stability of
the NL block, Tao et al. [33] proposed using the Laplacian of
the incidence matrix as an attention map, and the Nonlocal
stage (NS) module can follow the diffusion characteristics.
Zhu et al. [36] proposed The SNL (Spectral Nonlocal
Block) module, which symmetrically processes the attention
feature block. From the perspective of a new Chebyshev
approximation and graph filtering, it uniformly explains
the above five famous Nonlocal modules and provides a
theoretical explanation.

The Nonlocal operator in the SNL block is equivalent to
filtering the signal with a set of graph filters. This article
takes this feature as a starting point, considering that the use
of the SNL module for the incidence matrix is equivalent
to filtering in the form of row transformation and lack
of another corresponding form of column transformation
filtering, proposed an improved SNL block and combined
with the excellent performance of the image segmentation
field UNet network structure. Experimental results show
that the performance is state-of-the-art, improving mloU
significantly, and better than other segmentation networks
such as Unet.

In a nutshell, our contributions are threefold:

o This paper proposes an improved nonlocal bolck, which
can better segment deep and shallow information in
effect.

o This paper combines an improved non-local atten-
tion module and UNet network, which significantly
improves the accuracy and efficiency of image segmen-
tation.

o Based on more accurate segmentation results, the
microstructure characterization parameters such as vol-
ume fraction, rafting degree of y phase and thickness of
y phase are measured.

il. METHOD

This paper proposes an improved SNL block, combined with
the UNet network, to form an improved SNL-UNet network
structure. The network inserts an improved SNL module
after multiple downsampling to perform attention feature
transformation, which has significantly improved the depth
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information recognition ability of the image, and compared
with other network structure methods, it can more accurately
distinguish the target area y’ phase and background (non-y’
phase area) of the superalloy microstructure. Briefly mention
that, The y’ phase is the ideal area for the white part of the
image in Figure 3, and correspondingly, the y’ phase is the
ideal area for the black part.

A. NETWORK STRUCTURE

The method network in this paper is an encoder-decoder
structure as a whole, as shown in Fig. 1. The network consists
of encoders, decoders, jump connectors, and improved SNL
block.

The input image enters the encoder for image feature
extraction and reduces network parameters through multiple
maxpool downsampling to obtain a larger receptive field. The
encoder part specifically includes a structure combining four
repetitions of convolution and down-sampling. Each structure
module includes convolution, ReLLU activation function,
BN layer, and maxpool down-sampling.

The image features collected through the encoder structure
are sent to the improved SNL block. After passing through the
improved SNL block, the output image feature block is up-
sampled in the decoder part through linear interpolation and
then concatenates with the features of the corresponding layer
of the encoder on the channel. Then proceed to the traditional
convolution module. After the above steps are repeated many
times, the feature size is the same as the original image,
and then convolution is used to perform image pixel-level
classification and output feature map channels equal to the
number of pixel classification categories for subsequent loss
function calculation and network parameter training. In order
to achieve the purpose of segmenting the microstructure
image of the superalloy.

B. NONLOCAL BLOCK

The Nonlocal block [31] calculates a sum of a relationship
between each position’s characteristics. The nonlocal opera-
tor is defined:

Y (Xi X5) g (X5:)]
>f (X X))

J

F (X)) = )

where X € RVN*Cm ig the input feature map, i, j are the
position indexes in the feature map, f(-) is the affinity kernel
with a finite Frobenius norm, g(-) is a linear embedding that is
defined as g (Xj,.) = X;:Wz with Wz € RE*T Here N is
the total positions of each feature. Cp, and Cr are the numbers
of channels for the input features and the transferred features
implied by intermediate processes.

The NL block then adds a linear transformation with
weight matrix W € RC7*C» and a residual connection to
accommodate various network models:

Yi,: = Xi,: +F (Xi,:) W (2)
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FIGURE 1. Improve SNL-UNet network structure.
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FIGURE 2. Improved SNL Block.

C. IMPROVED SNL BLOCK
As shown in Fig. 2, this paper proposes an improved SNL
block based on the SNL block. This block is essentially a non-
local attention block. In view of the fact that the receptive
field of the convolutional network is too local, this block can
capture remote dependencies more robustly and flexibly to
help the deep network better integrate non-local information.
The input image features with the shape [C,W,H] are
reshaped into a feature map with the shape [WH,C] after the
1 x 1 Conv on the two branches, Then Reshape into a feature
map 7 with the shape [WH,C] and a feature map P with the
shape transposed [C,WH], multiply the two feature maps by
matrix. After symmetric normalization, the affinity matrix A
is obtained, and the formula is as follows:

1 1
N Zun 2 r T
A=D_MD.?, M_(M+M )/2 3)

In the above formula M =TP, Dy, is a diagonal matrix
containing the degree of each vertex of M. Symmetri-
cally processed M is composed of pairwise similarities
between pixels,the affinity matrix A normalized from M
in Figure 2 represented by a feature block att with the
shape [WH,WH]. The affinity matrix A is the attention
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block of image features, including the pairwise similarity
relationship between image pixels and non-local attention
information.

The input image features with the shape [C,WH] are
reshaped into a feature map with the shape [WH,C] after the
1 x 1 Conv on the other branch, Then Reshape into a feature
map K with the shape [WH,C] and a feature map G with
the shape transposed [C,WH], Feature map K and feature
map G perform matrix left multiplication and matrix right
multiplication with matrix A, respectively. Feature element-
wise added after passing through the matrices Wi and W5 in
the form of convolution, and then through the BN layer.On
this basis, the output feature block is added with the identity
element of the input feature block to form a residual jump
connection. The formula is as follows:

Y =X + fan (KAW, + AGW>) 4

The input feature map X passes through the entire module,
and the output is the feature map Y. Such a module is called
a stage, which can be selectively repeated several times
according to the processed data set and task requirements to
achieve the best feature attention extraction effect.
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IIl. RESULTS AND ANALYSIS OF EXPERIMENTS

A. DATESET

The image dataset for this task is the microstructure image of
the DZ125 directionally solidified superalloy blade material
obtained by the ZEISS SUPRA 55 field emission scanning
electron microscope. In DZ125’s microstructures, such as
carbides, grains, grain boundaries, dendritic core(DC) and
interdendritic(ID) region. A grain boundary is the interface
between two grains, or crystallites, in a polycrystalline
material. A dendrite in metallurgy is a characteristic tree-
like structure of crystals growing as molten metal solidifies,
interdendritic region is the alloy region corresponding to
the dendrite core. the y’ phase of dendrites is an important
strengthening phase of superalloys, and the volume of y’
phase particles directly affects the strengthening ability
of superalloys. It has the properties of uniform size and
shape that can sensitively reflect the difference in service
temperature and stress of blade materials. Therefore, this
article focuses on the study of the y’ phase of the DZ125
microstructure.

Due to the difficulty of obtaining electron microscope
images of this material, the long time to take microstructure
images, and the high cost, the data sets are all small samples.
The training set has a total of 200 images, and the image size
is 512 x 512 pixels. During the training process, 10% of the
images are randomly sampled as the verification set through
cross-validation. We selected about ten images with different
metallic morphology as the test set. Classification of the
data set based on the different morphological characteristics
exhibited by metallography and the different directional cut
planes used for image acquisition. The dataset is composed of
images of dendritic core(DC) and interdendritic(ID) region
mixed together to form a training set. On this basis, the
online method is adopted in the data set loading process,
the CPU is used to generate transformed images, horizontal
and vertical flipping, random mirroring and other data
enhancement methods are carried out to expand the amount of
data to reduce the risk of overfitting. Nevertheless, compared
with other image segmentation tasks, this dataset can be
described as a fairly small scale. The method in this paper still
solves the problem of semantic segmentation implemented
on small datasets of superalloy microstructure images. In the
field of deep learning, there are many difficulties in the
learning of small datasets, and most tasks require massive
data for learning. Therefore, the method in this paper is of
great significance for the realization of small dataset image
segmentation.

B. EXPERIMENT

Since the network structure in this article is used to segment
the microstructure image of superalloys, the purpose of the
task is not only to classify the category of a single-pixel
accurately but also to separate the phase structure of the image
as a whole, so the combination of cross-entropy and Dice loss
is adopted.
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TABLE 1. Training hyperparameters.

hyperparameters value
Initial learning rate 0.0001
Learning decay rate 1x 1078
Batch size 20
Transfer matrix channels 16

Epoch 100

The experiment is based on the PyTorchl.9.0 open-
source deep learning framework, and the training envi-
ronment is Anaconda2020.11, CUDA10.2, cuDNN7.6.5.
Training is performed on a server with GPU model
NVIDIA Tesla V100-SXM2. The training parameters are
as Table 1

C. SEGMENTATION RESULTS AND ANALYSIS

In order to verify the performance of the network structure
proposed in this paper in the image segmentation task,
it is compared with other semantic segmentation network
structures on the same superalloy microstructure image
data set. We conducted a comparison experiment with
the same hardware conditions, the same hyperparameter
configuration and the same number of image datasets.
A variety of evaluation indicators were compared. The pixel-
based evaluation methods mainly include pixel accuracy
and mean accuracy, and the evaluation methods based on
intra-class coincidence mainly include (Mean intersection
over union, MIoU), (Frequency weighted intersection over
union, FWIoU) and Dice score [37]. Cluster-based evaluation
methods mainly include Rand index (RI) [38], [39] and
Adjusted rand index (ARI) [40]. Table 2 shows the compari-
son of evaluation indexes corresponding to each segmentation
method and the time consumed per image prediction in
seconds.

The segmentation results show that for microscopic images
of superalloys, the grain boundaries are not obvious or
even difficult to distinguish with the naked eye due to
the unique properties of metallography. The traditional
threshold segmentation methods are not ideal. Although the
segmentation effects of deep learning segmentation methods
such as UNet, ResUnet [41] and the recently popular ViT [42]
have excellent performance, there are apparent segmentation
errors and unnecessary noise. As shown in Fig. 3, the
area in the red box is a non-target area. Non-target areas
refer to metallic phases that are not in the tangent plane
of the image acquisition and they are perpendicular to
the tangent plane. The segmentation effect of this method
is better than that of other network structures, and the
ability to recognize the depth information of the image is
also significantly improved.The segmentation effect of this
method is significantly better than other network structures,
and the depth information recognition ability of the image has
been significantly improved. Compared with other network
structure methods, it can be more accurate. The y’ phase
and the background (non-y’ phase area) of the target area of
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(b)Otsu

TABLE 3. Characterization parameters under different service time.

(c)UNet

(d)ResUNet

(e)ViT

(HSNL+UNet

(g)Ours

FIGURE 3. Comparison of image segmentation effects of different

methods.

TABLE 2. Comparison of segmentation results of different methods.

Method Pixel acc  Mean acc mloU FwIloU
UNet 0.9595 0.9590 0.9209  0.9232
ResUNet 0.9594 0.9589 0.9203  0.9228
ViT 0.9285 0.9326 0.8671 0.8705
SNL+UNet 0.9602 0.9601 0.9220  0.9244
Ours 0.9713 0.9423 0.9320  0.9342
Method Dice RI ARI Time
UNet 0.9573  0.9302 0.8406 0.1381
ResUNet 0.9574 09318 0.8407 0.1820
ViT 0.9278 0.8763 0.7210 0.1403
SNL+UNet  0.9577 09337 0.8469 0.1851
Ours 0.9636 09375 0.8559 0.1296

the superalloy microstructure can be divided into the ideal
level division and more accurate grain boundaries, and the
evaluation indicators of the mIoU and the pixel accuracy are
also significantly improved. Table 2 shows the comparison
of evaluation indexes corresponding to each segmentation
method.

Based on more accurate segmentation results, the char-
acteristic parameters such as volume fraction, y’ phase
thickness, and rafting degree are measured and calculated.
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time [Inter]dendritic V¢ D Q
235h dendritic 0.5815 28.37 0.0373
interdendritic 0.5798  34.47 0.0373
357h dendritic 0.5115 30.20 0.0421
interdendritic 0.5301  34.89 0.0436
408h dendritic 0.5488 32.05 0.0561
interdendritic 0.5614 3449 0.0556
617h dendritic 0.5643 3493 0.0536
interdendritic 0.5935 47.05 0.0595
Time effect on rafting degree
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FIGURE 4. Schematic diagram of rafting degree and thickness change
with time.

The phase volume fraction is defined as follows:
Vi =P/Pr &)

where, P and Pr are the phase volume and total volume
respectively. The y’ phase rafting degree 2, which measures
the degree of deformation of a material under the influence
of temperature, stress, etc, is defined as follows:

1 /!
Stk ©
P+ P

where Py represents the number of crossings and interrup-
tions of the y’ raft-shaped tissue within a unit length in a
specified direction. 2 is a value between 0-1. When 2 is 0,
isometric organization. When €2 is 1, ideal raft organization.
The larger the Q2 value, the more perfect the raft shape. The
v’ phase thickness D is the average pixel thickness of the y’
phase under 20k magnification. P]f and P are two mutually
perpendicular Py, one of which is in the same direction as the
metallurgical growth.

As shown in Figure 4, it is easy to know from the
measurement results that as the service time increases, the
degree of rafting gradually increases. The statistical results
of the y phase volume fraction distribution within the same
service time are shown in Figure 5. The measured data
and statistical results show that the distribution phenomena
such as the increase of the raft with time and the increase
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Volume fraction distribution after 235h service

amount

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Volume fraction

FIGURE 5. Volume fraction distribution after 235h service.

of thickness with time are consistent with the objective
laws.

IV. CONCLUSION

In this paper, an improved module is proposed to solve
the problem of metallographic features of different tan-
gent planes that are difficult to accurately segment in
microstructure images. And further combine the module
with the UNet network to form a new improved SNL-Unet
image segmentation structure, based on the improved SNL-
Unet and conducts experimental verification with DZ125
alloy material microstructure images. The comparison with
other methods shows that this method can more accurately
distinguish the non-tangential metallographic phase that
is difficult to segment, not only can meet the needs of
complex image segmentation of superalloys, but also can
further improve the segmentation accuracy and robustness
of microstructure images of superalloys. In particular, the
extraction of depth information is more accurate, ensuring
the accuracy of the same plane tissue feature extraction and
calculation, and it is significantly improved under various
evaluation indicators. Based on more accurate segmentation
results, the microstructure characterization parameters such
as volume fraction, rafting degree of ¥’ phase and thickness
of ¥’ phase are measured. The measured data and statistical
results are consistent with the distribution of material
properties with time and under stress, i.e., phenomena such as
the increase in rafting with time and the increase in thickness
with time. However, there are still many problems that need
to be solved by follow-up research. For example, the data
set is more specific and unique, and the restrictions are
large, so the method is not general enough. The follow-up
work will continue to increase the image analysis research
work of different types of superalloy microstructure image
organization, and carry out more research on the relationship
between organization and performance in combination with
material properties.
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