
Received February 7, 2022, accepted March 11, 2022, date of publication March 22, 2022, date of current version April 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3161470

A Comparison of Promethee and TOPSIS
Techniques Based on Bipolar Soft
Covering-Based Rough Sets
FAIZA TUFAIL 1, MUHAMMAD SHABIR1, AND EL-SAYED A. ABO-TABL2,3
1Department of Mathematics, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
2Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
3Department of Mathematics, College of Science and Arts, Qassim University, Buridah 51931, Saudi Arabia

Corresponding author: Faiza Tufail (faizatufail85@gmail.com)

ABSTRACT The uncertainty in the data is an obstacle in decision-making problems. In order to solve
problems with a variety of uncertainties a number of useful mathematical approaches together with fuzzy
sets, rough sets, soft sets, bipolar soft sets have been developed. The rough set theory is an effective technique
to study the uncertainty in data, while bipolar soft sets have the ability to handle the vagueness, as well as
bipolarity of the data in a variety of situations. This study develops a new methodology, which we call
the theory of Bipolar soft covering-based rough sets (BSCB-RSs), which will be used to propose a new
technique to solve decision-making problems. The idea introduced in this study has never been discussed
earlier. Furthermore, this concept has been explored by means of a detailed study of the structural properties.
By combining the BSCB-RSs model with two traditional decision-making methods (the PROMETHE-II
method and the TOPSIS method), we introduce a novel method for addressing multi-criteria group decision-
making (MCGDM) problems. We give an application in multi-criteria group decision making (MCGDM)
to show that the proposed technique can be successfully applied to some real world problems including
uncertainty, namely, the selection of site for renewable energy pro ject (Earth Dam). The effectiveness of
the proposed method is validated by comparing it with existing methods. The showed techniques exhibit
the practicability, feasibility and sustainability of Site selection. Both MCGDM methods give one Site as
conclusion.

INDEX TERMS Approximation operator, bipolar soft neighborhood, bipolar soft covering, bipolar soft
covering-based rough set, decision-making application.

I. INTRODUCTION
Many complicated problems in business, social sciences,
engineering, management sciences, military, medical sci-
ences, economics and many other fields involve uncer-
tain data. These problems cannot be solved using classical
mathematical methods. The classical mathematical model is
rational model of decision making which is based on the
assumption that managers have access to complete informa-
tion and are capable to an optimal decision by weighting
every alternatives. Because of that, the mathematical model
is too complex, the exact solution cannot be found.

To overcome this difficulty, a number of researchers are
attempting to determine some appropriate approaches and a
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number of mathematical theories to cope with uncertainty in
data, such as Fuzzy Set Theory, Rough Set Theory, Inter-
val Mathematical Theory, Vague Set Theory, Graph Theory,
Automata Theory, Decision-Making Theory etc., are formu-
lated to solve such problems, and have been found only par-
tially successful. These theories reduced the distance between
the classical mathematical designs and the vague real-world
data.

In 1965, fuzzy set theory [84] was suggested to model
fuzzy data by Zadeh. However, in this theory, determining
of membership function is rather difficult sometimes. There-
fore, in 1999, Molodtsov [46] proposed the notion of soft
set as a completely new approach for modelling uncertainty,
free from this difficulty. Unlike classical mathematics, where
exact solution of a mathematical model is required, soft set
theory instead requires an approximate description of an
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object as its initial point. The choice of adequate parameteri-
zation tools such as words, real number, functions etc., make
soft set theory very convenient and easy to apply in practice.
Many interesting applications of soft set theory can be seen
in [5], [8], [17], [51].

The rough set theory [58], [59], is another successful
mathematical tool for dealing uncertainties. In this theory,
uncertainty is represented by a boundary region of a set.
Pawlak used the upper and lower approximations of a col-
lection of objects to investigate how close the objects are to
the information attached to them. Feng et al. [27], [28], pro-
posed the relationships among soft sets, rough sets and fuzzy
sets, obtaining three types of hybrid models: rough soft sets,
soft rough sets, and soft-rough fuzzy sets. Shabir et al. [62]
redefined a version of soft rough set known as modified soft
rough set (MRS-set).

Soft set theory [46] and Rough set theory [58] are regarded
as effective mathematical approaches to address uncertainty.
In 2011, Feng et al. [28] established a relationship among
these two theories and introduced the concept of a new hybrid
version of the soft rough sets (SRSs), that can give better
approximations over Pawlak’s RS theory in some cases ( [28],
Example 4.7). This approach can be viewed as a generaliza-
tion of RS theory.

The idea of covering based rough sets was proposed by
Zakowski [85]. Then Pomykala [60] introduced several addi-
tional approximation operators by using coverings, inclu-
sive of two pairs of dual approximations. Some researchers
researched the covering based rough sets and the general
covering based rough sets in [77], [103], [106]. Yao [81] in
particular examined the two pairs of dual operators by using
coverings induced by binary relations. Couso andDubois [15]
studied the two pairs in the framework of incomplete infor-
mation. In particular in 1998, Bonikowski et al. [11] put forth
a covering based rough set model based on the notion of
minimal description. Likewise Zhu [105] proposed several
covering based rough set models and discussed their rela-
tionships. Tsang et al. [66] and Xu and Zhang [77] proposed
additional covering based rough set models. Liu and Sai [40]
compared Zhu’s covering based rough set models and Xu
and Zhang’s covering based rough set models. Some recent
important properties of covering based rough set models
have appeared in [43], [82], [107]. An expanded overview
of the advances about covering based rough sets appeared in
some recently published articles like Yao and Yao [82] and
D’eer et al. [19], [20].

In numerous sorts of data analysis, the bipolarity of the
data is a key component to be taken into consideration while
developing mathematical models for some issues. Bipolar-
ity discusses the positive and negative aspects of the data.
The positive data addresses what is assumed to be possible,
while the negative data addresses what is not possible or
certainly false. The concept that lies behind the presence
of bipolar information is that a wide assortment of human
decision-making depends on bipolar judgemental thinking.
For example, sweetness and sourness of food, participation

and rivalry, friendship and hostility, effects and side effects
of drugs are the two different aspects of information in
decision-making and coordination. The soft sets, the fuzzy
sets, and the rough sets are not appropriate tools to handle this
bipolarity.

Based on the need of presenting both positive and negative
sides of data, notion of bipolar soft set and its operations
such as union, intersection and complement were first defined
by Shabir and Naz [65]. After this research, BSSs have
become increasingly popular with researchers. Karaaslan and
Karatas [32] redefined bipolar soft sets with a new approxi-
mation providing opportunity to study on topological struc-
tures of bipolar soft sets. Also Naz and Shabir [54] proposed
the concept of fuzzy bipolar soft sets and investigated their
algebraic structures. Bipolar soft rough sets were firstly intro-
duced by Karaaslan and Cagman [31] to handle roughness
of bipolar soft set, which is a combination of RS theory and
BSSs. They also provide applications of BSRSs in decision
making. Malik and Shabir [53] introduced the idea of rough
fuzzy bipolar soft sets in 2019.

Multi-criteria decision-making (MCDM) method is
referred as a method used for scoring or ranking a finite num-
ber of alternatives by considering multiple criteria attached
to the alternatives. MCDM concerns with evaluating and
selecting alternatives that fit with the goals and necessity.
The preference ranking organization method for enrich-
ment evaluation (PROMETHEE) and the techniques for
the order of preference by similarity to positive ideal solu-
tion (TOPSIS) are the two most known techniques devel-
oped to handle multi-criteria decision making problems.
The biggest difference between PROMETHEE and other
MCDM methods is the inner relationship of PROMETHEE
during the decision-making process [50]. It is well adapted
to the decision problems where a finite set of alternatives
is to be outranked subjected to multiple conflicting crite-
ria [6], [10], [67]. The PROMETHEE method is based on
pairwise comparisons of alternatives with respect to each
criterion. According to [70], the PROMETHEE has at least
three advantages. The first advantage is its user-friendly
outranking method. The second advantage is the success of
PROMETHEE in applications to real-life planning problems.
Another advantage of PROMETHEE lies on completeness of
ranking. The PROMETHEE I and PROMETHEE II allow
partial and complete ranking of alternatives, respectively.
The PROMETHEE I is used to obtain partial ranking while
PROMETHEE II is used for complete ranking. These two
methods were developed in [9], [12]. On the other hand,
the main TOPSIS concept measures the distance between
each alternative and ideal solution. Hwang and Yoon [26]
implemented the multiple criteria decision making method
and applications. Such methods were based on crisp knowl-
edge and could not accommodate information that was
imprecise. In 2000, fuzzy version of TOPSIS method was
suggested in Chen’s [14] research work. Several TOPSIS
related approaches have since been suggested and applied to
various multiple criteria decisionmaking problems. Chen and
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FIGURE 1. Relationship among the generalized rough set models.

Tsao [16] suggested interval valued fuzzy set based method
of TOPSIS.

A. MOTIVATION
Based on the above descriptions for MCDM and the basic
principle of bipolar soft rough sets, this paper attempts to pro-
pose a novel approach to multi-criteria group decision mak-
ing (MCGDM) problems by combining the bipolar soft cov-
ering based rough set with two traditional decision-making
methods. In particular, a summary ofmotivations of this paper
is provided as follows:

(1) If we recap all of the preceding arguments, we can
see that bipolar soft sets can deal with the bipolarity of
information about specific objects using two mappings. The
positivity of the information is handled by one mapping,
while the negative is measured by the other. Given the link
between rough sets and bipolar soft sets, one attempts to
investigate the roughness of bipolar soft sets has been made:
by Karaaslan and Caman [31]. This is the primary motivation
for us to present and investigate a novel approach to bipolar
soft set roughness using Bipolar soft covering-based rough
sets (BSCB-RSs), as well as to discuss their application in
the decision-making and able to describe the best and worst
side in decision making. Fig A shows how our new rough set
model is generalization of some existing models.

(2) To address the issue of data processing in decision-
making, the superior performance of rough set theory
has been demonstrated. Liang et al. [37] investigated a
decision-making approach that combines the TOPSISmethod
with a decision-theoretic rough set. Zhang et al. [101]
recently applied covering based fuzzy rough set models to
solve the issue of company recruitment decision-making.
In addition, several MCDM approaches focused on covering
based fuzzy rough set theory have been investigated in the
literature [99], [102]. This paper extends the PROMETHEE
and TOPSIS approaches using covering based bipolar soft
rough sets and applies it to the optimal earth dam power plant
site selection problem in order to widen the application ranges
of covering based fuzzy rough set theory in MCDM.

(3) The proposed method not only considers the opinions
of key decision-makers but also incorporates the past experi-
ences by CB-BSR-approximations in actual scenarios.

B. AIM OF THE PROPOSED STUDY
The main goal of this study is to present another interesting
and novel version of bipolar soft rough sets by utilizing
BSCB-RSs.

We highlight the article by the following pioneering work:
• A novel concept known as BSCB-RSs is proposed.
• Some important structural properties of BSCB-RSs are

investigated in detail.
• Two comprehensive MCGDM methods in the frame-

work of BSCB-RSs is introduced and the validity of these
approaches is also verified by a practical example.
• The effectiveness of the proposed method is validated by

comparing it with existing methods.

C. OUTLINE OF THE PAPER
The article has been organized in the following manner.
Section 2 gives an overview of some basic ideas, which are
required for the understanding of our research work. Sec-
tion 3 starts by characterizing some bipolar soft covering-
based bipolar soft operators. Further, we discuss the relation-
ship between these operators and their properties. Moreover,
based upon these operators, we proposed the notion of BSCB-
RSs. The notion is further investigated by considering its
important structural properties in detail. Section 4 proposes
a new decision-making method to MCGDM problems based
on the PROMETHEEmethod and the TOPSIS method. After
that, we give an illustrative example of the proposed deci-
sion making technique to show that the technique can be
effectively applied to some real-life problems in section 5.
In section 6, a comparison analysis is made between the
proposed model and some other well-known decision making
techniques. At the last, section 7 concludes with a summary
of the present work and a suggestion for further research.

II. PERLIMINARIES
In this section, we recall some essential notions related to
rough set, soft set, soft rough set, bipolar soft set, bipolar soft
rough sets and Soft covering based soft rough sets that would
be accommodating in the upcoming discussion. Throughout
this paper, we will use = for an initial universe, Ê for set of
parameters, C for a non-empty subset of the parameters set Ê
and P(=) for the power set of =, unless stated otherwise.
Definition 1 [58]: Let = be a non-empty finite universe,

and R be an equivalence relation over =. Then the pair (=;R)
is said to be Pawlak approximation space.

If A ⊆ =, then A may or may not be written as a union
of some equivalence classes of =. If A is written as a union
of some equivalence classes, then A is called R−definable;
otherwise it is called R−undefinable. If A is R−undefinable
then, it can be approximated with the help of the following
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two definable subsets:

R(A) = {a ∈ = | [a]R ⊆ A}, (1)

R(A) = {a ∈ = | [a]R ∩ A 6= ∅}. (2)

Equations (1) and (2) are called lower and upper approx-
imations of A with respect to the equivalence relation R,
respectively, where the equivalence class [a]R of an element
a ∈ = is the set consists of all objects b ∈ = such that (a, b) ∈
R, that is,

[a]R = {b ∈ = | (a, b) ∈ R}.

Moreover, the boundary region (area of uncertainty) of
rough set is defined as:

BndR(A) = R(A)− R(A).
Definition 2 [46]: Let = be a set of objects called the

universe, C be a non-empty subset of parameters (attributes).
Then a pair (F̂,C) is said to be a soft set over =, where F̂ is
a mapping given by F̂ : C −→ P(=).

Thus, a soft set over = gives a parameterized family of
subsets of the universe =. For ε̃ ∈ C , F̂ (̃ε) is considered to be
a set of ε̃-approximate elements of = by the soft set (F̂,C).
Thus

(F̂,C) = {F̂ (̃ε) ∈ P(=) | ε̃ ∈ C ⊆ Ê}.

Feng et al. established a link between soft set and rough set
and introduced the idea of a new hybrid model of “soft rough
set” based on a different granulation structure known as “soft
approximation space”.
Definition 3 [28]: Let P = (F̂,C) be a soft set over =.

Then the pair P∗ = (=, P) is called a soft approximation
space. The lower and upper soft rough approximations of any
set A ⊆ = is defined as follows,respectively:

apr
P∗
(A) =

⋃
ε̃∈C

{F̂ (̃ε) | F̂ (̃ε) ⊆ A},

aprP∗ (A) =
⋃
ε̃∈C

{F̂ (̃ε) | F̂ (̃ε) ∩ A 6= ∅}.

If SP∗ (A) = SP∗ (A), A is said to be soft P∗−definable;
otherwise A is called a soft P∗−rough set.
Definition 4 [47]: Let C be a set of parameters. Then,

NOT set of C , denoted by eC , is defined by eC = {ẽε : ε̃ ∈
C} where ẽε = not ε̃ for ε̃ ∈ C .
Definition 5 [65]: The triplet ψ = (F̂, Ĥ , C) is called a

bipolar soft set over a universe=, in which F̂, Ĥ aremappings
given by F̂ : C −→ P(=), Ĥ : eC −→ P(=) such that F̂ (̃ε)∩
Ĥ ( ẽε) = ∅.

Thus, a bipolar soft set over = gives two parameterized
families of subsets of the universe = and the condition F̂ (̃ε)∩
Ĥ (ẽε) = ∅, for all ε̃ ∈ C, ẽε ∈eC , is imposed as a
consistency constraint.

From now onward, set of all bipolar soft sets over the
universe = will be referred to by BS=

Definition 6 [65]: Let (F̂, Ĥ , C) ∈ BS=. Then, the com-
plement of (F̂, Ĥ , C), denoted by (F̂, Ĥ , C)c, is defined by

(F̂, Ĥ , C)c = (F̂c, Ĥ c, C) where F̂c and Ĥ c are mappings
given by F̂c (̃ε) = Ĥ (ẽε) and Ĥ c(ẽε) = F̂ (̃ε) for all ε̃ ∈ C .
Karaaslan and Çagman [31] presented the concept of bipo-

lar soft rough set, which is a combination of rough set and
bipolar soft set.
Definition 7 [31]: Let (F̂, Ĥ , C) ∈ BS=. Then ϕ =

(=, (F̂, Ĥ ,C)) is said to be a bipolar soft approximation
space. Based on ρ, the following four operators are defined
for any A ⊆ = :

apr
ρ+

(A)

= {t ∈ = : ∃̃ε ∈ C, [t ∈ F̂ (̃ε) ⊆ A]},

apr
ρ−

(A)

= {t ∈ = : ∃ẽε ∈eC, [t ∈ Ĥ (ẽε), Ĥ (ẽε) ∩ Ac 6= ∅]},

aprρ+ (A)

= {t ∈ = : ∃̃ε ∈ C, [t ∈ F̂ (̃ε), F̂ (̃ε) ∩ A 6= ∅]},

aprρ− (A)

= {t ∈ = : ∃ẽε ∈eC, [t ∈ Ĥ (ẽε) ⊆ Ac]}.

Which are called soft ρ-lower positive approximation, soft ρ -
lower negative approximation, soft ρ-upper positive approxi-
mation and soft ρ-upper negative approximation ofA, respec-
tively.
Definition 8 [83]: A soft set (F̂,C) over = is called a full

soft set if
⋃̃
ε∈C

F̂ (̃ε) = =.

Definition 9: A full soft set P = (F̂,C) over = is called a
covering soft set if F̂ (̃ε) 6= ∅, for all ε̃ ∈ C .

Yüksel et al. [83] proposed soft covering based rough sets,
which is a fusion of soft set and covering based rough set.
Definition 10 [83]: Let KP = (F̂,C) be a covering soft

set over =. Then the pair (=, KP) is called a soft covering
approximation space.
Definition 11 [83]: Let (=, KP) be a soft covering approx-

imation space and t ∈ =. Then the soft minimal description
of t is defined as follows:

Mdρ(t) = {F̂ (̃ε1) : ε̃1 ∈ C ∧ t ∈ F̂ (̃ε1)

∧(∀̃ε2 ∈ C ∧ t ∈ F̂ (̃ε2) ⊆ F̂ (̃ε1)

⇒ F̂ (̃ε1) = F̂ (̃ε2))}.

We only need the basic properties of an object to describe
it, not all of them. The goal of the minimal description notion
is to achieve this.
Definition 12 [83]: Let ρ = (=, KP) be a soft covering

approximation space. For a set A ⊆ =, soft covering lower
and upper approximations are, respectively, defined as:

Sρ(A) =
⋃
ε̃∈C

{F̂ (̃ε) : F̂ (̃ε) ⊆ A},

Sρ(A) =
⋃
{Mdρ(t) : t ∈ A}.

Moreover, the sets
PosS (A) = Sρ(A),
NegS (A) = =− Sρ(A),
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BndS (A) = Sρ(A) − Sρ(A) are called the soft covering
positive, negative, and boundary regions of A, respectively.
In addition, if Sρ(A) 6= Sρ(A), then A is said to be soft
covering based rough set; otherwise A is called soft covering
based definable.
Example 1: Let = = {t1, t2, t3, t4, t5} be universe and

(F̂,C) a covering soft set over =, where F̂ (̃ε1) = {t1, t2},
F̂ (̃ε2) = {t1, t2, t3, t4}, F̂ (̃ε3) = {t3, t4}, F̂ (̃ε4) =
{t2, t3, t4, t5}, F̂ (̃ε5) = {t1, t2, t4, t5}. Then ρ = (=, KP)
be a soft covering approximation space. For A1 = {t1, t2} ⊆
=, we have

Sρ(A1) =
⋃
ε̃∈C

{F̂ (̃ε) : F̂ (̃ε) ⊆ A1} = {t1, t2},

Sρ(A1) =
⋃
{Mdρ(t) : t ∈ A1} = {t1, t2}.

Thus, Sρ(A) = Sρ(A), so A1 is soft covering based definable.
For A2 = {t1, t2, t3} ⊆ =, we have

Sρ(A2) =
⋃
ε̃∈C

{F̂ (̃ε) : F̂ (̃ε) ⊆ A2} = {t1, t2},

Sρ(A2) =
⋃
{Mdρ(t) : t ∈ A2} = {t1, t2, t3, t4}.

Thus, Sρ(A) 6= Sρ(A), so A2 is soft covering based rough set.
The properties satisfied by soft covering lower and upper

approximations can be found in [83].

III. BIPOLAR SOFT COVERING BASED SOFT ROUGH SETS
From the concept of bipolar soft set, we know that a bipolar
soft set is determined by the two set-valued mappings, one
from a set of parameters to the power set of the universe and
the other from a not set of parameters to the power set of the
universe. In this section, we use a special kind of bipolar soft
covering with rough set and establish a bipolar soft covering
approximation space and present its basic properties.
Definition 13: A bipolar soft set (F̂, Ĥ ,C) over= is called

a full bipolar soft set if
⋃̃
ε∈C

F̂ (̃ε) = = and
⋂
ẽε∈eC

Ĥ (ẽε) = ∅.

Remark 1: By using Definition 5 of the bipolar soft set,
we have F̂ (̃ε) ∩ Ĥ ( ẽε) = ∅. Which implies that F̂ (̃ε) ⊆
Ĥ c( ẽε), and

⋃̃
ε∈C

F̂ (̃ε) ⊆
⋃
ẽε∈eC

Ĥ c( ẽε). By definition 8,

we have = ⊆
⋃
ẽε∈eC

Ĥ c( ẽε).Now by taking complement both

side, (=)c ⊇ (
⋃
ẽε∈eC

Ĥ c( ẽε))c H⇒ ∅ ⊇
⋂
ẽε∈eC

Ĥ ( ẽε) and it is

obvious that ∅ ⊆
⋂
ẽε∈eC

Ĥ ( ẽε), so
⋂
ẽε∈eC

Ĥ (ẽε) = ∅. Thus for

full bipolar soft set it is sufficient that
⋃̃
ε∈C

F̂ (̃ε) = =.

Definition 14: A bipolar full soft set ℘ = (F̂, Ĥ , C) over
= is called a bipolar soft covering if F̂ (̃ε) 6= ∅ and Ĥ (ẽε) 6= =,
for all ε̃ ∈ C .
Example 2: As an illustration, let ℘ = (F̂, Ĥ , C) be a

full bipolar soft set over =, where = = {t1, t2, t3, t4, t5},
C = {̃ε1, ε̃2, ε̃3} and eC = {ẽε1, ẽε2, ẽε3}. The mappings
F̂ and Ĥ are given as below:

F̂ : C −→ P(=), Ĥ :eC −→ P(=)

ε̃ 7−→


{t1, t2} if ε̃ = ε̃1

{t3, t4} if ε̃ = ε̃2

{t5} if ε̃ = ε̃3

ẽε 7−→


{t4, t5} if ε̃ =ẽε1

{t2} if ε̃ =ẽε2

{t1} if ε̃ =ẽε3

Now, according to Definition 14, we can easily see that
bipolar full soft set ℘ is a bipolar soft covering over =.
Definition 15: Let K℘ = (F̂, Ĥ , C) be a bipolar soft

covering over =. Then the pair (=, K℘) is called a bipolar
soft covering approximation space.
Definition 16: Let ρ = (=, KP) be a bipolar soft covering

approximation space and t ∈ =. Then the bipolar soft minimal
description of t is defined as follows:

Mdρ+ (t) = {F̂ (̃ε1) : ε̃1 ∈ C ∧ t ∈ F̂ (̃ε1)

∧(∀̃ε2 ∈ C ∧ t ∈ F̂ (̃ε2) ⊆ F̂ (̃ε1)

⇒ F̂ (̃ε1) = F̂ (̃ε2))},

Mdρ− (t) = {Ĥ (ẽε1) :ẽε1 ∈eC ∧ t ∈ Ĥ (ẽε1)

∧(∀ẽε2 ∈eC ∧ t ∈ Ĥ (ẽε2) ⊆ Ĥ (ẽε1)

⇒ Ĥ (ẽε1) = Ĥ (ẽε2))}.
We only need the basic properties of an object to describe

it, not all of them. So we use the minimal description concept
for this purpose.
Definition 17: Let ρ = (=, K℘) be a bipolar soft covering

approximation space. For a set A ⊆ =, based on ρ, bipolar
soft covering lower and upper approximations are, respec-
tively, defined as:

BSρ+ (A) =
⋃
ε̃∈C

{F̂ (̃ε) : ε̃ ∈ C ∧ F̂ (̃ε) ⊆ A},

BSρ− (A) =
⋃
{Mdρ− (t) : t ∈ A

c
},

BSρ+ (A) =
⋃
{Mdρ+ (t) : t ∈ A},

BSρ− (A) =
⋃
ẽε∈eC

{Ĥ (ẽε) : Ĥ (ẽε) ⊆ Ac}.

Which are called bipolar soft covering ρ-lower posi-
tive approximation, bipolar soft covering ρ-lower nega-
tive approximation, bipolar soft covering ρ-upper positive
approximation and bipolar soft covering ρ-upper negative
approximation of A, respectively. Generely, the two pairs
given as:

BSρ(A) = (Sρ+ (A), Sρ− (A)),

BSρ(A) = (Sρ+ (A), Sρ− (A))

are called bipolar soft covering rough approximations of A ⊆
= with respect to ρ. Moreover, if BSρ(A) 6= BSρ(A), then A
is called bipolar soft covering based bipolar soft rough set,
otherwise A is called bipolar soft ρ−definable. In addition,
bipolar soft covering positive region and negative region of A
is defined as, respectively:
BS Pos(A) = BSρ(A),
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BS Neg(A) = = − BSρ(A). Further, the boundary region
(or area of uncertainty) of bipolar soft covering based rough
set is defined as:
BS Bnd(A) = BSρ(A) − BSρ(A) = (Sρ+ (A) −

Sρ+ (A), Sρ− (A)− Sρ− (A)).
Example 3 (Continued From Example 2): As an illustra-

tion, according to Definition 17, For A1 = {t1, t3, t5} ⊆ =,
bipolar soft covering ρ-lower positive approximation, bipolar
soft covering ρ -lower negative approximation, bipolar soft
covering ρ-upper positive approximation and bipolar soft
covering ρ-upper negative approximation of A1, respectively,
can be calculated as:

BSρ+ (A1) = {t5},BSρ− (A1) = {t2, t4, t5},

BSρ+ (A1) = {t1, t2, t3, t4, t5},BSρ− (A1) = {t2}.

So, the lower and upper approximations of A1 given as:

BSρ(A1) = ({t5}, {t2, t4, t5}),

BSρ(A1) = ({t1, t2, t3, t4, t5}, {t2}).

Since BSρ(A1) 6= BSρ(A1), A1 is a bipolar soft covering
based bipolar soft rough set.

For A2 = {t1, t2} ⊆ =, we have

BSρ+ (A2) = {t1, t2},BSρ− (A2) = {t4, t5},

BSρ+ (A2) = {t1, t2},BSρ− (A2) = {t4, t5}.

So, the lower and upper approximations of A2 given as:

BSρ(A2) = ({t1, t2}, {t4, t5}),

BSρ(A2) = ({t1, t2}, {t4, t5}).

Since BSρ(A2) = BSρ(A2), A2 is a bipolar soft covering
based definable set.

Now, we investigate some properties of the bipolar soft
covering lower and upper approximations.
Theorem 1: Let ℘ = (F̂, Ĥ , C) be a bipolar soft covering

over =, ρ = (=, K℘) be a bipolar soft covering approxima-
tion space and A,B ⊆ =. Then the bipolar soft covering lower
and upper approximations have the following properties:
1) BSρ(=) = BSρ(=) = =
2) BSρ(∅) = BSρ(∅) = ∅
3) BSρ(A) ⊆ A ⊆ BSρ(A)
4) A ⊆ B⇒ BSρ(A) ⊆ BSρ(B),
Proof 1: From Definition 17, we can easily prove the

properties 1, 2 and 3.
4) Since A ⊆ B, for all t ∈ BSρ+ (A), there exists

ε̃ ∈ C such that t ∈ F̂ (̃ε) and F̂ (̃ε) ⊆ A ⊆ B.
According to Definition 17, F̂ (̃ε) ⊆ BSρ+ (B), so
t ∈ BSρ+ (B). Hence BSρ+ (A) ⊆ BSρ+ (B).
Since A ⊆ B, by Definition of complements,
we have Bc ⊆ Ac. By Definition 17, BSρ− (B) =⋃
{Mdρ− (t) : t ∈ Bc} ⊆

⋃
{Mdρ− (t) : t ∈ Ac} =

BSρ− (A). Therefore,
BSρ− (A) ⊇ BSρ− (B).
So, by using two inequalities BSρ+ (A) ⊆ BSρ+ (B)

and BSρ− (A) ⊇ BSρ− (B), we conclude that
BSρ(A) ⊆ BSρ(B).
Hence A ⊆ B⇒ BSρ(A) ⊆ BSρ(B).

Theorem 2: Let ℘ = (F̂, Ĥ , C) be a bipolar soft covering
over =, ρ = (=, K℘) be a bipolar soft covering approxima-
tion space and A,B ⊆ =. Then the bipolar soft covering lower
and upper approximations have the following properties:

1) BSρ+ (A∩B) ⊆ BSρ+ (A)∩BSρ+ (B), BSρ− (A∩B) =
BSρ− (A) ∪ BSρ− (B)

2) BSρ+ (A∪B) ⊇ BSρ+ (A)∪BSρ+ (B), BSρ− (A∪B) ⊆
BSρ− (A) ∩ BSρ− (B)

3) BSρ+ (A∩B) ⊆ BSρ+ (A)∩BSρ+ (B), BSρ− (A∩B) ⊇
BSρ− (A) ∪ BSρ− (B)

4) BSρ+ (A∪B) = BSρ+ (A)∪BSρ+ (B), BSρ− (A∪B) =
BSρ− (A) ∩ BSρ− (B)

Proof 2:

1) Firstly we prove that BSρ+ (A ∩ B) ⊆ BSρ+ (A) ∩
BSρ+ (B). Let u ∈ BSρ+ (A∩B), by using Definition
of bipolar soft covering ρ-lower positive approxi-
mation, we have
u ∈

⋃̃
ε∈C
{F̂ (̃ε) : ε̃ ∈ C ∧ F̂ (̃ε) ⊆ A ∩ B}

⇒ u ∈
⋃̃
ε∈C
{F̂ (̃ε) : ε̃ ∈ C ∧ F̂ (̃ε) ⊆ A} ∩

⋃̃
ε∈C
{F̂ (̃ε) :

ε̃ ∈ C ∧ F̂ (̃ε) ⊆ B}
⇒ u ∈ BSρ+ (A)∩ BSρ+ (B)
Therefore, BSρ+ (A ∩ B) ⊆ BSρ+ (A) ∩ BSρ+ (B).
Next we prove that BSρ− (A ∩ B) = BSρ− (A) ∪
BSρ− (B), Let u ∈ BSρ− (A∩B), by using Definition
of bipolar soft covering ρ-lower negative approxi-
mation, we have
u ∈ BSρ− (A ∩ B) =

⋃
{Mdρ− (t) : t ∈ (A ∩ B)c}

⇐⇒ u ∈
⋃
{Mdρ− (t) : t ∈ Ac ∪ Bc}

⇐⇒ u ∈
⋃
{Mdρ− (t) : t ∈ Ac}∪u ∈

⋃
{Mdρ− (t) :

t ∈ Bc}
⇐⇒ u ∈ BSρ+ (A) ∪ BSρ+ (B)
BSρ− (A ∩ B) = BSρ− (A) ∪ BSρ− (B).

2) Firstly we prove that BSρ+ (A ∪ B) ⊆ BSρ+ (A) ∪
BSρ+ (B) and then give a counter example for
reverse inclusion. Let u ∈ BSρ+ (A) ∪ BSρ+ (B), by
using Definition of bipolar soft covering ρ-lower
positive approximation, we have
u ∈ BSρ+ (A) ∪ BSρ+ (B) =

⋃̃
ε∈C
{F̂ (̃ε) : ε̃ ∈

C ∧ F̂ (̃ε) ⊆ A} ∪
⋃̃
ε∈C
{F̂ (̃ε) : ε̃ ∈ C ∧ F̂ (̃ε) ⊆ B}

⇒ u ∈
⋃̃
ε∈C
{F̂ (̃ε) : ε̃ ∈ C ∧ F̂ (̃ε) ⊆ A ∪ B}

⇒ u ∈ BSρ+ (A ∪ B)
Therefore, BSρ+ (A ∪ B) ⊇ BSρ+ (A) ∪ BSρ+ (B).
Next we prove that BSρ− (A ∪ B) = BSρ− (A) ∩
BSρ− (B), Let u ∈ BSρ− (A∩B), by using Definition
of bipolar soft covering ρ-lower negative approxi-
mation, we have
u ∈ BSρ− (A ∪ B) =

⋃
{Mdρ− (t) : t ∈ (A ∪ B)c}

⇒ u ∈
⋃
{Mdρ− (t) : t ∈ Ac ∩ Bc}

⇒ u ∈
⋃
{Mdρ− (t) : t ∈ Ac} ∩ u ∈

⋃
{Mdρ− (t) :
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t ∈ Bc}
⇒ u ∈ BSρ+ (A) ∪ BSρ+ (B)
BSρ− (A ∪ B) ⊆ BSρ− (A) ∩ BSρ− (B).

3) The proof of this assertion is similar to the proof of
(1).

4) The proof of this assertion is similar to the proof of
(2).

Example 4: Let ℘ = (F̂, Ĥ , C) be a bipolar soft covering
over =, ρ = (=, K℘) be a bipolar soft covering approxima-
tion space and A,B ⊆ =. Then the bipolar soft covering lower
and upper approximations have not the following properties:
Theorem 3: 1) BSρ+ (A∩B) ⊆ BSρ+ (A)∩BSρ+ (B)
2) BSρ+ (A ∪ B) ⊇ BSρ+ (A) ∪ BSρ+ (B)
3) BSρ− (A ∪ B) ⊆ BSρ− (A) ∩ BSρ− (B)
(1). The following example show that the reverse inclusion

of inequality mentioned above does not hold:
As an illustration, let ℘ = (F̂, Ĥ , C) be a full bipolar

soft set over =, where = = {t1, t2, t3, t4, t5, t6}, C =
{̃ε1, ε̃2, ε̃3, ε̃4} and The mapping F̂ : C −→ P(=),

ε̃ 7−→


{t1, t2, t3} if ε̃ = ε̃1

{t2, t3, t4} if ε̃ = ε̃2

{t4, t5} if ε̃ = ε̃3

{t1, t5, t6} if ε̃ = ε̃4

For A = {t1, t2, t3, t4} ⊆ =, B = {t4, t5} ⊆ =, we
have BSρ+ (A) = {t1, t2, t3, t4}, BSρ+ (B) = {t4, t5}, so
BSρ+ (A) ∩ BSρ+ (B) = {t4}, but BSρ+ (A ∩ B) = ∅. Which
implies that BSρ+ (A ∩ B) ! BSρ+ (A) ∩ BSρ+ (B).
(2). The following example show that the reverse inclusion of
inequality mentioned above does not hold:
As an illustration, let ℘ = (F̂, Ĥ , C) be a full bipolar
soft set over =, where = = {t1, t2, t3, t4, t5, t6}, C =
{̃ε1, ε̃2, ε̃3, ε̃4} and The mapping F̂ : C −→ P(=),

ε̃ 7−→


{t1, t2, t3} if ε̃ = ε̃1

{t2, t3, t4} if ε̃ = ε̃2

{t4, t5} if ε̃ = ε̃3

{t1, t5, t6} if ε̃ = ε̃4

For A = {t1, t2} ⊆ =, B = {t3, t4} ⊆ =,we have BSρ+ (A) =
{}, BSρ+ (B) = {}, so BSρ+ (A)∪BSρ+ (B) = {}, but BSρ+ (A∪
B) = {t1, t2, t3, t4}. Which implies that BSρ+ (A ∪ B)  
BSρ+ (A) ∪ BSρ+ (B).
(3) The following example show that the reverse inclusion of
inequality mentioned above does not hold:

As an illustration, let ℘ = (F̂, Ĥ , C) be a full bipolar
soft set over =, where = = {t1, t2, t3, t4, t5, t6}, C =
{̃ε1, ε̃2, ε̃3, ε̃4} and The mapping

Ĥ :eC −→ P(=),

ε̃ 7−→


{t1} if ε̃ =ẽε1

{t2, t3} if ε̃ =ẽε2

{t4, t5} if ε̃ =ẽε3

{t6} if ε̃ =ẽε4

For A = {t1, t2} ⊆ =, B = {t3, t4} ⊆ =,we have BSρ− (A) =
{t2, t3, t4, t5, t6}, BSρ− (B) = {t1, t2, t3, t4, t5, t6}, so
BSρ− (A)∩BSρ− (B) = {t2, t3, t4, t5, t6}, but BSρ− (A∪B) =
{t4, t5, t6}. Which implies that BSρ− (A ∪ B) ! BSρ− (A) ∩
BSρ− (B).

IV. A NEW PROPOSAL FOR MULTI-ATTRIBUTE GROUP
DECISION-MAKING USING BSCB-RSs HYBRID WITH
PROMETHEE METHOD AND TOPSIS METHOD
A. MULTI-ATTRIBUTE GROUP DECISION MAKING BASED
ON BSCB-RSS USING PROMETHEE TECHNIQUE
In this section, a multi-criteria group decision-analysis
(MCGDA) approach, based on the promethee method com-
bined with bipolar soft covering based rough set is presented
to solve multi-criteria decision-making problems. Promethee
is a rapid, flexible and progressive method for pair-wise
comparison inMCDM. This method considers the outranking
flows for evaluating alternatives. The concept is built on
pairwise comparison between alternatives and calculates two
outranking flows for each alternative, namely positive and
negative outranking flows. The positive outranking flow gives
a measure of how the alternative outranks all the other, while
the negative outranking flow gives a measure of how the
alternative is outranked by all the others. The higher φ+(a) is
the better alternative when φ+(a) represents the power of a.
On the other hand, the smaller φ−(a) is the better alternative
when φ−(a) represents the weakness of a.
In the following, we present an algorithm over the bipolar soft
covering based rough set hybrid with Promethee. We apply
this algorithm for selection of most optimal site for earth dam.
Let = = {t1, t2, . . . , tn} be the finite universe of objects,
C = {ε̃1, ε̃2, . . . , ε̃m} be the set of all possible parameters and
℘ = (F̂, Ĥ ,C) be a bipolar soft set over =. Suppose thatG =
{p1, p2, . . . , pk} is a set of expert persons, Y1,Y2, . . . ,Yk
are non-empty subsets of =, represent results of primary
evaluations of expert persons p1, p2, . . . , pk , respectively and
bipolar soft set D1,D2, . . . ,Dr are the actual result that pre-
viously obtained for problems in different places or different
times.
Definition 18: Let BSDq (Yj) = (Yj

ρ+
, Yj

ρ−
) and

BSDq (Yj) = (Yjρ+ , Yjρ− ) be lower and upper approximations
of bipolar soft set Yj; (j = 1, 2 . . . . . . , k) related to Dq; (q =
1, 2 . . . . . . , r). Then

[BS]ρ+,ρ−

=


{Y11

+

ρ+
, Y11

−

ρ−
} {Y21

+

ρ+
, Y21

−

ρ−
} . . . {Yk1

+

ρ+
, Yk1

−

ρ−
}

{Y12
+

ρ+
, Y12

−

ρ−
} {Y22

+

ρ+
, Y22

−

ρ−
} . . . {Yk2

+

ρ+
, Yk2

−

ρ−
}

. . .

. . .

{Y1
r+

ρ+ , Y1
r−

ρ−} {Y2
r+

ρ+ , Y2
r−

ρ−} . . . {Yk
r+

ρ+ , Yk
r−

ρ−}


(3)

and

[BS]ρ+,ρ−
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=


{Y1

1+

ρ+ , Y1
1−

ρ−} {Y2
1+

ρ+ , Y2
1−

ρ−} . . . {Yk
1+

ρ+ , Yk
1−

ρ−}

{Y1
2+

ρ+ , Y1
2−

ρ−} {Y2
2+

ρ+ , Y2
2−

ρ−} . . . {Yk
2+

ρ+ , Yk
2−

ρ−}

. . .

. . .

{Y1
r+

ρ+ , Y1
r−

ρ−} {Y2
r+

ρ+ , Y2
r−

ρ−} . . . {Yk
r+

ρ+ , Yk
r−

ρ−}


(4)

are said to be bipolar soft lower approximation matrix and
bipolar soft upper approximation matrix, respectively. Here

Yjq
+

ρ+
= (t1jq

+

ρ+
, t2jq

+

ρ+
, . . . . . . .,tnjq

+

ρ+
) (5)

Yjq
−

ρ−
= (t1jq

−

ρ−
, t2jq

−

ρ−
, . . . . . . .,tnjq

−

ρ−
) (6)

Yj
q+

ρ+
= (t1j

q+

ρ+
, t2j

q+

ρ+
, . . . . . . .,tnj

q+

ρ+
) (7)

Yj
q−

ρ−
= (t1j

q−

ρ−
, t2j

q−

ρ−
, . . . . . . .,tnj

q−

ρ−
) (8)

where

t1jq
+

ρ+
=

1 if ti ∈ Yj
ρ+

0 if ti /∈ Yj
ρ+

(9)

t1jq
−

ρ−
=

−0.5 if ti ∈ Yj
ρ+

0 if ti /∈ Yj
ρ+

(10)

t1j
q+

ρ+
=

{
0.5 if ti ∈ Yjρ+
0 if ti /∈ Yjρ+

(11)

t1j
q−

ρ−
=

{
−1 if ti ∈ Yjρ−
0 if ti /∈ Yjρ−

(12)

Definition 19: Let [BS]ρ+,ρ− and [BS]ρ+,ρ− be bipolar
soft lower approximation matrix and bipolar soft upper
approximation matrix, respectively. Then

[W ]ρ+,ρ− = [BS]ρ+,ρ− + [BS]ρ+,ρ−

=


u11 u12 u1k
u21 u22 u2k
· · ·

· · ·

· · ·

ur1 ur2 urk

 = [uij]r×k (13)

is called weighted covering based parameter matrix, where
each entry is of the form

uij = {u
ρ+

ij , u
ρ−

ij } = {Yjρ+ ⊕ Yjρ+ , Yjρ− ⊕ Yjρ−}.

Here the operation represent the vector addition.
Definition 20: Let [W ]ρ+,ρ− be the weighted covering

based parameter matrix. Then

[S]ρ+,ρ− = [{sρ
+

ij , s
ρ−

ij }]r×k (14)

is called the standardized covering based decision matrix,

where sρ
+

ij =
k∑
i=1

uρ
+

ij and sρ
−

ij =
k∑
i=1

uρ
−

ij ; j = 1, 2, . . . , r .

Definition 21: Let [S]ρ+,ρ− be the standardized covering
based decision matrix. Then the corresponding normalized
covering based decision matrix is defined as:

[N ]ρ+,ρ− =


η11 η12 η1k
η21 η22 η2k
· · ·

· · ·

· · ·

ηr1 ηr2 ηrk

 = [ηij]r×k

where each entry ηij = {η
ρ+

ij , η
ρ−

ij } with the following
conditions:

η
ρ+

ij =
sρ
+

ij√
r∑
l=1

(sρ
+

lj )2
(15)

and

η
ρ−

ij =
sρ
−

ij√
r∑
l=1

(sρ
−

lj )2
(16)

Definition 22: Let [S]ρ+,ρ− be the normalized cover-
ing based decision matrix. Then the corresponding aver-
age weighted normalized covering based decision matrix is
defined as:

[U ]ρ+,ρ− =


u11 u12 u1k
u21 u22 u2k
· · ·

· · ·

· · ·

ur1 ur2 urk

 = [uij]r×k

where each entry

uij =
∣∣∣ηρ+ij + ηρ−ij ∣∣∣ . (17)

Definition 23: Let [U ]ρ+,ρ− = [uij]r×k be the average
weighted normalized covering based decision matrix. Then
determine the deviation by pairwise comparison by using the
following equation

dj(a, b) = gj(a)− gj(b) (18)

Where

gj =
[uij −min(uij)]

[max(uij)−min(uij)]

and dj(a, b) denotes the difference between the evaluations
of a and b on each criterion.

Let ξ = (ξ1, ξ2, . . . , ξl)T be the weight vector of the
attributes, where 0 ≤ ξi ≤ 1, i = 1, 2, . . . , l, and satisfies
l∑
i=1
ξi = 1, where ξi is the weight for ith criterion.

Definition 24: Let dj(a, b) denotes the difference between
the evaluations of a and b on each criterion. Then we define
the preference function

Pj(a, b) = Fj[dj(a, b)] (19)
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FIGURE 2. Criteria for selection of appropriate dam site.

Pj(a, b) represent the function of difference between the
evaluations of alternative a regarding alternative b on each
criterion into a degree ranging from 0 to 1. Preference func-
tion is to replace the negative function by 0 and retains the
positive values.
Definition 25: Let Pj(a, b) represent the preference func-

tion, determine the multi-criteria preference index by the
following Equation

π (a, b) =
k∑
j=1

p(a, b)ξj (20)

Definition 26: Let Pj(a, b) be the multi-criteria prefer-
ence index. Then we define the positive outranking flow
ψ+(a) and negative outranking flow ψ−(a) by the following
formula, respectively.

ψ+(a) =
1

n− 1

n∑
b=1

π (a, b), (a 6= b)

and ψ−(a) =
1

n− 1

n∑
b=1

π (b, a), (a 6= b) (21)

Definition 27: Let ψ+(a) and ψ−(a) be the positive out-
ranking flow and negative outranking flow, respectively. Then
we calculate the net flow values

ψ(a) = ψ+(a)− ψ−(a).

1) PROPOSED ALGORITHM
In this section, we present the algorithm for the established
method of considered multi criteria group decision making
problem in section 4.1.
Step 1: Take primary evaluations Y1,Y2, . . . ,Yk of experts

p1, p2, . . . , pk .
Step 2: Construct D1,D2, . . . ,Dr bipolar soft covering

based Soft sets using the real results.
Step 3: Compute BSρ

+

Dq (Yj), BSρ
−

Dq (Yj), BS
ρ+

Dq (Yj) and

BS
ρ−

Dq (Yj) for each j = 1, 2, . . . , k and q = 1, 2, . . . , r .
Step 4: Construct covering bipolar soft lower approxima-

tion matrix [BS]ρ+,ρ− , covering bipolar soft upper approxi-
mation matrix [BS]ρ+,ρ− .

Step 5: Compute weighted covering based parameter
matrix [W ]ρ+,ρ− .
Step 6: Compute standardized covering based decision

matrix [S]ρ+,ρ− .
Step 7: Compute normalized covering based decision

matrix [N ]ρ+,ρ− .
Step 8: Compute average weighted normalized covering

based decision matrix [U ]ρ+,ρ− .
Step 9: Determination of deviation by pairwise compari-

son.
Step 10: Determine the multi-criteria preference index.
Step 11: Calculate the net flow values and rank accord-

ingly.

2) CASE STUDY
In this subsection, the bipolar soft covering based rough set
model for selection of appropriate Dam site is applied in a
numerical example. It is shown in fig 1. A decision maker
group formed for this reason, consisting of a geographer,
an energy engineer and a map engineer. Let the sites t1, t2, t3,
t4, t5, t6 be selected as the alternative for Earth dam site loca-
tion. The decisionmaker group evaluate these alternatives and
for selection of a suitable alternative we will use selection
criterion. In order to determine effective factors in selecting
an appropriate site, extensive studies were conducted and
the most effective attributes (criteria and subcriteria) were
selected. These attributes are shown in Fig 1.

A brief explanation about the attributes is presented:
ε̃1) Topographical Conditions:
It is critical to have a secondary valley or stone abutments

with proper topography around the main river while building
a dam spillway. In addition, because the main river is U or
S shaped, the length of tunnels, channels, and other water
transfer systems to divert or transfer water from upstream
to downstream during dam building and afterward is limited.
In general, the best location for a dam reservoir and its body
is where a vast valley with high walls connects to a narrow
canyon with tenacious walls.
ε̃2) Hydrological: This criteria consists of four subcrite-

rion, which is presented below.
SC1) River flow regime: At the dam location, the river’s

permanent or seasonal flow regime is critical. Seasonal rivers
convey more silt and have poorer water quality, making water
resource management more difficult owing to inaccurate
water delivery into reservoirs. As a result, it is suggested that
the flow be maintained indefinitely.
SC2) Annual yield: The yearly yield is the annual volume

of water that passes through the cross section of the river in
the dam site, and it plays a vital part in determining where the
dam should be built.
SC3) Volume of reservoir: When the reservoir generated

after dam building has larger volume, the surface area of the
reservoir water increases, which has a greater impact on the
climate, but it also increases the possibility for evaporation
and water pollution. On the other hand, if the dam is built
in a location where the surface area of the reservoir water
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will not be considerably affected by raising the volume of
the reservoir water, (Because of the valley’s steep slope), the
height and hydrostatic pressure of the water will rise, which
will benefit energy generation and downstreamwater transfer.
However, the dam’s body would be subjected to more force,
and the structure would need to be raised and strengthened.
As a result, the dam should be built in such a way that
the reservoir capacity is determined by the aforementioned
factors, such as leakage and other losses are optimal.
SC4) Probable maximum flood: The largest volume of

water produced by thawing snow and ice or other atmospheric
precipitation that is likely to occur in rivers is known as the
probable maximum flood.
ε̃3) Lateral Impacts:
There are three subcriterion in this criteria, which are listed

below.
SC1) Environmental impacts: Other factors that play a

part in determining the dam site include changing weather
conditions, vegetation, and wildlife.
SC2) Social impacts: The social consequences of popula-

tion centre displacement and integration of different ethnic
cultures as a result of the demolition of residential areas for
dam construction, reservoir dewatering, and downstream dam
water use should all be considered.
SC3) Political impacts: Dam construction purposes for

decreasing political tensions, such as water supply for a com-
munity, preventing grievances, and immigration of people of
a border city, should all be taken into account.
ε̃4) Damage: This criteria has two sub-criteria, which are

listed below.
SC1) Dam body and reservoir: Environmental damages,

such as the destruction of mines, historical monuments, agri-
cultural fields, and residential areas; road, railway, and power
line displacement; and changes in the path of oil and gas
pipelines, telecommunication facilities, among other things,
should be addressed.
SC2) Probable dam break: Material and moral damages

caused by a possible dam collapse are essential factors to
consider when choosing a dam site, and the dam should be
built in an areawhere the amount of harm caused by a possible
dam break is minimal.
ε̃5) Health Dam Site: The dam location must be in an area

with few seams and tracks, as well as a low risk of tectonic
activity such as earthquakes, landslides, and subsidence. Fur-
thermore, greater results will be realised in the dam location
with reduced permeability and liquefaction properties of soil
and natural materials. Furthermore, the region’s soil mechan-
ical qualities (compaction, consolidation, and so on) as well
as the type of geological layers in the region have an impact
on reservoir water quality.

Then NOT set of parameters of C is eC, ẽε ∈eC .
Step 1: Primary evaluations of experts persons (geogra-

pher, energy engineer and map engineer) p1, p2 and p3 are:

Y1 = {t1, t3, t5}, Y2 = {t1, t2, t3, t4}

and Y3 = {t3, t5}.

Step 2:Real results in five different periods are represented
as bipolar soft covering over=,D1 = (F̂1, Ĥ1,C),D2 = (F̂2,
Ĥ2, C),D3 = (F̂3, Ĥ3, C),D4 = (F̂4, Ĥ4, C) andD5 = (F̂5,
Ĥ5, C) as follows:
The real result in D1 period choose the set of parameters

as: Ê1 = {̃ε1, ε̃4, ε̃5}, F̂1 : Ê1 −→ P(=) by

ε̃ 7−→


{t1, t3, t5} if ε̃ = ε̃1

{t3, t5} if ε̃ = ε̃4

{t1, t2, t4} if ε̃ = ε̃5

and Ĥ1 :eÊ1 −→ P(=) by

ẽε 7−→


{{t2} if ε̃ =ẽε1

{t1, t4} if ε̃ =ẽε4

{t3, t5} if ε̃ =ẽε5

The real result in D2 period choose the set of parameters
as: Ê2 = {̃ε1, ε̃3}
F̂2 : Ê2 −→ P(=) by

ε̃ 7−→

{
{t2, t4, t5} if ε̃ = ε̃1

{t1, t3} if ε̃ = ε̃3

and Ĥ2 :eÊ2 −→ P(=) by

ẽε 7−→

{
{t3} if ε̃ =ẽε1

{t2, t5} if ε̃ =ẽε3

The real result in D3 period choose the set of parameters as:
Ê3 = {̃ε2, ε̃3, ε̃4}
F̂3 : Ê3 −→ P(=) by

ε̃ 7−→


{t1, t2} if ε̃ = ε̃2

{t3, t4} if ε̃ = ε̃3

{t5} if ε̃ = ε̃4

and Ĥ3 :eÊ3 −→ P(=) by

ẽε 7−→


{t4, t5} if ε̃ =ẽε2

{t2} if ε̃ =ẽε3

{t1} if ε̃ =ẽε4

The real result in D4 period choose the set of parameters as:
Ê4 = {̃ε1, ε̃2}
F̂4 : Ê4 −→ P(=) by

ε̃ 7−→

{
{t1, t2, t3, t4} if ε̃ = ε̃1

{t5} if ε̃ = ε̃2

and Ĥ4 :eÊ4 −→ P(=) by

ẽε 7−→

{
{t5} if ε̃ =ẽε1

{t1, t2} if ε̃ =ẽε2

The real result in D5 period choose the set of parameters as:
Ê5 = {̃ε2, ε̃5}
F̂5 : Ê5 −→ P(=) by

ε̃ 7−→

{
{t1, t3} if ε̃ = ε̃2

{t2, t3, t4, t5} if ε̃ = ε̃5
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Ĥ5 :eÊ5 −→ P(=) by

ẽε 7−→

{
{t2, t4} if ε̃ =ẽε2

{t1} if ε̃ =ẽε5

Step 3: Using the Definition 17, to calculate the operators
BSDq (Yj), BSDq (Yj), for j = 1, 2, 3 and q = 1, 2, . . . ., 5.

BSD1
(Y1) = ({t1, t3, t5}, {t1, t2, t4})

BSD2
(Y1) = ({t1, t3}, {t2, t5})

BSD3
(Y1) = ({t5}, {t2, t4, t5})

BSD4
(Y1) = ({t5}, {t1, t2})

BSD5
(Y1) = ({t1, t3}, {t2, t4})

and

BSD1 (Y1) = ({t1, t3, t5}, {t2})

BSD2 (Y1) = ({t1, t2, t3, t4, t5}, {})

BSD3 (Y1) = ({t1, t2, t3, t4, t5}, {t2})

BSD4 (Y1) = ({t1, t2, t3, t4, t5}, {})

BSD5 (Y1) = ({t1, t2, t3, t4, t5}, {t2, t4})

Similarly,

BSD1
(Y2) = ({t1, t2, t3, t4}, {t3, t5}),

BSD2
(Y2) = ({t1, t3}, {t2, t5}),

BSD3
(Y2) = ({t1, t2, t3, t4}, {t4, t5}),

BSD4
(Y2) = ({t1, t2, t3, t4}, {t5}),

BSD5
(Y2) = ({t1, t3}, {}),

and

BSD1 (Y2) = ({t1, t2, t3, t4, t5}, {})

BSD2 (Y2) = ({t1, t2, t3, t4, t5}, {})

BSD3 (Y2) = ({t1, t2, t3, t4}, {})

BSD4 (Y2) = ({t1, t2, t3, t4}, {t5})

BSD5 (Y2) = ({t1, t2, t3, t4, t5}, {})

Also,

BSD1
(Y3) = ({t3, t5}, {t1, t2, t4})

BSD2
(Y3) = ({}, {t2, t5}),

BSD3
(Y3) = ({t5}, {t1, t2, t4, t5})

BSD4
(Y3) = ({t5}, {t1, t2})

BSD5
(Y3) = ({}, {t1, t2, t4}),

and

BSD1 (Y3) = ({t3, t5}, {t1, t2, t4})

BSD2 (Y3) = ({t1, t2, t3, t4, t5}, {})

BSD3 (Y3) = ({t3, t4, t5}, {t1, t2})

BSD4 (Y3) = ({t1, t2, t3, t4, t5}, {t1, t2})

BSD5 (Y3) = ({t2, t3, t4, t5}, {t1, t2, t4})

Step 4: Covering based bipolar soft lower approxima-
tion matrix [BS]ρ+,ρ− and covering based bipolar soft upper
approximation matrix [BS]ρ+,ρ− , respectively, are obtained
as follows:

[BS]ρ+,ρ− =


{(1, 0, 1, 0, 1) , (0,−0.5, 0,−0.5, 0)}
{(1, 0, 1, 0, 0) , (0,−0.5, 0, 0,−0.5)}
{(0, 0, 0, 0, 1) , (0,−0.5, 0,−0.5,−0.5)}
{(0, 0, 0, 0, 1) , (−0.5,−0.5, 0, 0, 0)}
{(1, 0, 1, 0, 0) , (0,−0.5, 0,−0.5, 0)}

{(1, 1, 0, 1, 0) , (0, 0,−0.5, 0,−0.5)}
{(1, 0, 1, 0, 0) , (0,−0.5, 0, 0,−0.5)}
{(1, 1, 1, 1, 0) , (0, 0, 0,−0.5,−0.5)}
{(1, 1, 1, 1, 0) , (0, 0, 0, 0,−0.5)}
{(1, 0, 1, 0, 0) , (0, 0, 0, 0, 0)}

{(0, 0, 1, 0, 1) , (−0.5,−0.5, 0,−0.5, 0)}
{(0, 0, 0, 0, 0) , (0,−0.5, 0, 0,−0.5)}
{(0, 0, 0, 0, 1) , (−0.5,−0.5, 0,−0.5,−0.5)}
{(0, 0, 0, 0, 1) , (0, 0, 0, 0, 0)}
{(0, 0, 0, 0, 0) , (−0.5,−0.5, 0,−0.5, 0)}



[BS]ρ+,ρ− =


{(0.5, 0, 0.5, 0, 0.5), (0,−1, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0,−1, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0,−1, 0,−1, 0)}

{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0), (0, 0, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0,−1)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}

{(0, 0, 0.5, 0, 0.5), (−1,−1, 0,−1, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0, 0, 0, 0, 0)}
{(0, 0, 0.5, 0.5, 0.5), (−1,−1, 0, 0, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (−1,−1, 0, 0, 0)}
{(0, 0.5, 0.5, 0.5, 0.5), (−1,−1, 0,−1, 0)}


Step 5:Nowwe construct weighted covering based param-

eter matrix [W ]ρ+,ρ− by using Equation (13), which is given
as:

[W ]ρ+,ρ−

=


{(1.5, 0, 1.5, 0, 1.5), (0,−1.5, 0,−0.5, 0)}
{(1.5, 0.5, 1.5, 0.5, 0.5), (0,−0.5, 0, 0,−0.5)}
{(0.5, 0.5, 0.5, 0.5, 1.5), (0,−1.5, 0,−0.5,−0.5)}
{(0.5, 0.5, 0.5, 0.5, 1.5), (−0.5,−0.5, 0, 0, 0)}
{(1.5, 0.5, 1.5, 0.5, 0.5), (0,−1.5, 0,−1.5, 0)}

{(1.5, 1.5, 0.5, 1.5, 0.5), (0, 0,−0.5, 0,−0.5)}
{(1.5, 0.5, 1.5, 0.5, 0.5), (0,−0.5, 0, 0,−0.5)}
{(1.5, 1.5, 1.5, 1.5, 0), (0, 0, 0,−0.5,−0.5)}
{(1.5, 1.5, 1.5, 1.5, 0), (0, 0, 0, 0,−1.5)}
{(1.5, 0.5, 1.5, 0.5, 0.5), (0, 0, 0, 0, 0)}

{(0, 0, 0.5, 0, 0.5), (−1.5,−1.5, 0,−1.5, 0)}
{(0.5, 0.5, 0.5, 0.5, 0.5), (0,−0.5, 0, 0,−0.5)}
{(0, 0, 0.5, 0.5, 1.5), (−1.5,−1.5, 0,−0.5,−0.5)}
{(0.5, 0.5, 0.5, 0.5, 1.5), (−1,−1, 0, 0, 0)}
{(0, 0.5, 0.5, 0.5, 0.5), (−1.5,−1.5, 0,−1.5, 0)}


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Step 6: Compute standardized covering based decision
matrix [S]ρ+,ρ− by using Equation (14), we have

[S]ρ+,ρ− =


{3, − 1.5} {1.5, − 3} {2.5, − 0.5}
{3.5, 0} {1.5, − 1.5} {3.5, 0}
{2, − 1.5} {2, − 2} {2.5, 0}
{2.5, − 1.5} {2.5, − 1.5} {2.5, 0}
{3, − 1.5} {1.5, − 3} {3.5, 0}

{1.5, − 2} {2.5, − 0.5}
{1.5, 0} {1.5, − 1.5}
{2.5, − 1.5} {3, − 1.5}
{2.5, 0} {3, − 1.5}
{1.5, − 3} {1.5, 0}


Step 7: We construct normalized covering-based decision

matrix [N ]ρ+,ρ− by using Equations (15) and (16), which is
given as:

[N ]ρ+,ρ− =


{0.472,−0.5} {0.364,−0.583} {0.379,−1}
{0.55, 0} {0.364,−0.29} {0.53, 0}
{0.31,−0.5} {0.485,−0.388} {0.379, 0}
{0.39,−0.5} {0.607,−0.29} {0.379, 0}
{0.472,−0.5} {0.364,−0.583} {0.53, 0}

{0.342,−0.512} {0.466,−0.189}
{0.342, 0} {0.279,−0.566}

{0.569,−0.384} {0.599,−0.566}
{0.569, 0} {0.599,−0.566}

{0.342,−0.767} {0.279, 0}


Step 8: Now we construct average weighted normalized

covering-based decision matrix [V ]ρ+,ρ− by using Equations
(17), which is given as:

Step 9:We calculate the deviation by pairwise comparison
by using Formula (18), which is given below.

Step 10: Next, we calculate the multi-criteria preference
index by using Formula (20).

Step 11: Finally, we calculate the net flow values and rank
accordingly.

Ranking the preference order is: t3 > t4 > t2 > t1 > t5.
Which indicate that Site t3 is the best site for earth dam.

B. MULTI-CRITERIA GROUP DECISION MAKING BASED
ON BSCB-RSS USING TOPSIS TECHNIQUE
TOPSIS is a useful multi-criteria group decision mak-
ing (MCGDM) technique for ranking of design alternatives
and selection of the best alternative in concept evaluation pro-
cess through computation of Euclidean distances. The aggre-
gating function calculated in TOPSIS represents “closeness
to ideal solution”. TOPSIS uses vector normalization to make
criteria of same units. The basic principle of TOPSIS is that
the alternative that has been chosen as the best, should have
the shortest distance from the positive ideal solution (PIS) and
the farthest from the negative ideal solution (NIS).

In this subsection, we apply bipolar soft TOPSISmethod to
solve proposed problems to make a comparison with bipolar
soft Promethee method.

The procedure of TOPSIS technique under bipolar soft
covering based rough sets environment is explained as fol-
lows:

As in the subsection of bipolar soft Promethee,
Steps 1–8 have already been done in subsection (A-2).
So we move on step 9–11.
Definition 28: Let [U ]ρ+,ρ− = [uij]r×k be the average

weighted normalized covering based decision matrix. Then
the expressions

PIS = {µ>1 , µ
>

2 , . . . . . . .., µ
>
k } = {∨uij | i ∈ Ir } (22)

and

NIS = {µ⊥1 , µ
⊥

2 , . . . . . . .., µ
⊥
k } = {∧uij | i ∈ Ir } (23)

are called Positive ideal solution and negative ideal solution,
respectively.
Definition 29: Let PIS be positive ideal solution and NIS

be negative ideal solution. Then the separation measurements
of each alternative to PIS is calculated as:

S>i =

√√√√√ k∑
j=1

(uij − u>j )
2; i = 1, 2, . . . . . . , r . (24)

The separation measurements of each alternative to NIS is
calculated as:

S⊥i =

√√√√√ k∑
j=1

(uij − u⊥j )
2; i = 1, 2, . . . . . . , r . (25)

Definition 30: Let S>i and S⊥i be the separation measure-
ments of the positive ideal solution and the negative ideal
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solution, respectively. Then the relative closeness of alterna-
tives to ideal solutions (represented as ℘i ) is defined as:

℘i =
S⊥i

S>i + S⊥i
; 0 ≤ ℘i ≤ 1; i = 1, 2, . . . . . . , r .

(26)

1) PROPOSED ALGORITHM
In this section, we present the algorithm for the established
method of considered multi criteria group decision making
problem in section 4.2.
Step 1-8: These steps have already been done in

subsection (A-2).
Step 9: Find positive ideal solution (PIS) and negative ideal

solution (NIS).
Step 10: Calculate separation measurements of PIS S>i and

NIS S⊥i for each alternative.
Step 11: Calculate relative closeness ℘i of alternatives to

ideal solution and rank accordingly.

2) NUMERICAL EXAMPLE
In Sect. IV-A2, the decision-making problems have presented
using bipolar soft Promethee method. Here, we present these
applications using bipolar soft TOPSIS method to take into
account the comparison of bipolar soft Promethee method
and bipolar soft TOPSIS method. Steps 1–8 have already
been done in Sect. IV-A2. So we move on step 9–11.
Step 9: The positive ideal solution (PIS) and negative ideal

solution (NIS) by using the Equations (22) and (23) are
obtained as:

PIS = {0.621, 0.55, 0.379, 0.569, 0.53};

NIS = {0.028, 0.074, 0.097, 0.033, 0.028}.

Step 10: The separation measurements of PIS and NIS for
each parameter by using the Equations (24) and (25) are:

S>1 = 0.922 S⊥1 = 0.419

S>2 = 0.792 S⊥2 = 0.371

S>3 = 0.192 ⊥

3 = 1.005

S>4 = 0.542 S⊥4 = 0.738

S>5 = 0.812 S⊥5 = 0.417

Step 11: The relative closeness of alternatives to the ideal
solution by using Equation (26) are

℘1 = 0.347

℘2 = 0.319

℘3 = 0.840

℘4 = 0.577

℘5 = 0.339

Ranking the preference order is: t3 > t4 > t1 > t5 > t2.
which indicate that Site t3 is the best site for earth dam.
Figure 2 illustrates the visual representation of the site

rankings.

FIGURE 3. Ranking of sites by using Promethee and TOPSIS!

V. DISCUSSION AND COMPARATIVE ANALYSIS
In this section, we address validity of the proposed method,
advantages, and disadvantages, as well as a comparison of the
proposed techniques to several existing techniques.

A. VALIDITY OF THE PROPOSED MODEL
1) As we all know, aggregation is a vital stage in classical
group decision making approaches for gathering the prefer-
ences or opinions of all decision-makers. In our proposed
decisionmaking approaches, every decision-maker expressed
their opinion as a Bipolar Soft set, and afterward, all opinions
given by decision-makers are aggregated through the usage
the Bipolar soft Covering based approximations, and then a
compromise optimal proposal is acquired. So, the Bipolar soft
covering based rough sets approach to MCGDM provides a
different strategy to aggregate the preferences of decision-
makers. Therefore, the proposed decision making approaches
( Promethee and TOPSIS ) are valid and offer a novel tech-
nique and perspective to investigate GDM problems in real
life. The basic idea of these both techniques (Promethee and
TOPSIS) is given below:

i) Promethee (Preference Ranking Organization Method
for enrichment evaluations) methods are family of outrank-
ing methods including Promethee I, II, III, IV, V and VI.
Promethee I is partial outranking mehod, Promethee III to
VI are actually having the fundamental basics of Promethee
II with the little variations in assumption and methodology.
In this article, we have used the Promethee II technique which
is a complete outranking method. This method compare the
alternatives pairwise for each criterion, finding the strength
of preferring one over the other. This method considers the
outranking flows for evaluating alternatives. The concept
is built on pairwise comparison between alternatives, and
calculates two outranking flows for each alternative, namely
positive and negative outranking flow.

ii) TOPSIS (Technique of Preference by similarity to the
ideal solution) is the goal, aspiration and reference level
model. This technique measure how good alternatives reach
determined goals and aspirations. TOPSIS’ key principle is
to choose the solution that has the shortest distance from the
positive ideal solution and the farthest distance from the ideal
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negative solution. To measure the relative closeness levels
of alternatives to the positive and negative ideal solution,
Euclidean distance access is used.

B. ADVANTAGES OF THE PROPOSED MODEL
In general, real-world MCDM and MCGDM problems arise
in a complicated environment under uncertain and imprecise
data, which is hard to address. The proposed technique is
exceptionally appropriate for the scenario when the data is
complex, vague, and uncertain. Especially, when the existing
data is depending on the bipolar information by decision-
makers. A few benefits of proposed techniques ( Promethee
and TOPSIS) are listed below:

i) The proposed approach considers positive and negative
aspects of each individual alternative in the form of a bipolar
soft set. This hybrid model is more generalized and appropri-
ate to deal with aggressive decision making.

ii) Classical Promethee and TOPSIS techniques do not
provide a clear framework for assigning the weights. But, our
proposed techniques are effective in solving MCGDM prob-
lems when the weights information of criteria is completely
unknown.

iii) The proposed MCGDM technique is more effective for
discrete data problems.

iv) The proposed method takes into account not only the
opinions of key decision-makers, but also previous experi-
ences with bipolar soft covering approximations in actual
scenarios. As a result, it is a more comprehensive method
for better interpreting available information and, as a result,
making decisions using artificial intelligence.

v) The proposed MCGDM techniques are simple to com-
prehend and may be applied to decision making real life
situations.

C. DISADVANTAGES OF THE PROPOSED TECHNIQUE
Someminor flaws are there in the proposed techniques which
are discussed below:

i) Although there are some differences among the optimal
decision-making results (the optimal alternatives) and the
ranking results determined by these two decision making
methods, this phenomenon is normal in decision-making the-
ory. Decision-makers can select a method according to actual
requirements and their own interest.

ii) These techniques have complicated structure, the large
data in the form of bipolar information. Such large data is
hard to deal with, due to massive calculations, which are not
so natural to perform. However, one could create a MATLAB
programming code to make these complicated calculations
simpler.

D. COMPARISON WITH SOME EXISTING METHODS
There are several approaches in the literature that can be
used to solve MCGDM problems. Each of these MCGDM
techniques has its own set of advantages and disadvantages.
The capability of every technique relies on the problem
under consideration. In this section, we compare the proposed

FIGURE 4. Ranking of sites for earth dam.

MCGDM technique to some current MCGDM techniques in
fuzzy and bipolar fuzzy environments, and we discuss the
significance of the proposed MCGDM strategies.

We talk about comparative analysis of proposed strategy
with soft covering-based rough sets [83], fuzzy soft set [3],
covering-based rough fuzzy set [43], picture fuzzy set [7],
generalized hesitant fuzzy rough sets [63]. All these tech-
niques have their own value in the literature. If we compare all
these techniques with our proposed strategies, we investigate
the following points.

(i) The previously-mentioned techniques cannot catch
bipolarity in decision making which is a fundamental aspect
of human thinking and behavior.

(ii) Besides, these techniques do not ensure harmony in the
opinions of decision-makers.

(iii) The models presented in [7], and [43] are well known
for their ability to solve some decision making problems by
describing the idea of decision-makers with a crisp number.
They fail to handle some group decision making problems
due to the uncertainty of the objective world and the com-
plexity of the decision-making problems. For example, sev-
eral experts disagree about the degree to which an element
belongs to a set and cannot compromise one another. One
prefers to assign 0.4, whereas the other prefers 0.6. In this
situation, a rough set model based on bipolar soft covering
could be an excellent solution.

(iv)When we compare our proposed result to the technique
described in [4], we can see that the optimal alternative in
this method is obtained simply by using the tabular form
of bipolar soft sets, whereas the optimal alternative in our
proposed model is obtained by using the bipolar soft covering
based rough approximations.

(v) If we apply the recent approach proposed in [31] to our
Example 5, we get the following ranking among the alter-
natives (shown in following Table) and the corresponding
pictorial depiction is given in Figure 3.

VI. CONCLUSION AND FUTURE WORK
The rough set theory is arising as an incredible theory and
has different applications in numerous fields. On the other
hand, the bipolar soft sets are the appropriate mathematical
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model to deal with the uncertainty as well as the bipolarity
of the data. In this paper, we presented a general approach
for the bipolar soft covering based rough bipolar soft set.
some algebraic properties of fuzzy bipolar soft covering
approximations have been studied as well. We discussed a
decision making problem with the information having uncer-
tainty as well as bipolarity and applied the bipolar soft cov-
ering approximations to iron out this problem. In the real
world, in a complex environment where competing systems
of reasoning, ambiguous and imprecise knowledge must be
taken into account, decision-making problems take place.
Multi-criteria approaches for decision-making are used to
face such uncertainty. PROMETHEE-II and TOPSIS are two
of these processes. We have defined the process, method-
ology and significance of two well-known MCGDM meth-
ods in this research paper, namely, the PROMETHEE-II
method and TOPSIS method by using bipolar soft cover-
ing based rough bipolar soft set. These approaches have
been used to address site selection-related decision-making
problems. These algorithm provides three key benefits over
the present algorithms. Firstly, it manipulates the bipolarity
of the data, endowed with uncertainty. Secondly, this algo-
rithm accommodates the opinions of any (finite) number of
decision-makers about any (finite) number of alternatives.
Thirdly, with the best decision, it also yields the worst deci-
sion. Furthermore, a practical application demonstrates the
validity of this methodology. Finally, a comparison analysis
of the proposed model is performed.

There are several study topics that need to further explo-
ration. Firstly, it is a potential topic to study some theoreti-
cal aspects on CB-BSRSs, such as attribute reductions [74],
[75], granular structures [18], [74], and others. Secondly, the
combination of CB-BSRSs with other important traditional
MCDMmethods [24], [26], [49] is also a promising research
direction. We will investigate these topics in the future.

REFERENCES
[1] J. C. R. Alcantud, ‘‘Revealed indifference and models of choice behav-

ior,’’ J. Math. Psychol., vol. 46, no. 4, pp. 418–430, 2002.
[2] E. Abo-Tabl, ‘‘On links between rough sets and digital topology,’’ Appl.

Math., vol. 5, no. 6, pp. 941–948, 2014.
[3] M. I. Ali, ‘‘A note on soft sets, rough soft sets and fuzzy soft sets,’’ Appl.

Soft Comput., vol. 11, no. 4, pp. 3329–3332, Jun. 2011.
[4] M. I. Ali, M. K. El-Bably, and E.-S.-A. Abo-Tabl, ‘‘Topological approach

to generalized soft rough sets via near concepts,’’ Soft Comput., vol. 26,
no. 2, pp. 499–509, Jan. 2022, doi: 10.1007/s00500-021-06456-z.

[5] S. Abdullah, M. Aslam, and K. Ullah, ‘‘Bipolar fuzzy soft sets and its
applications in decision making problem,’’ J. Intell. Fuzzy Syst., vol. 27,
no. 2, pp. 729–742, 2014.

[6] A. Albadvi, S. K. Chaharsooghi, and A. Esfahanipour, ‘‘Decision mak-
ing in stock trading: An application of promethee,’’ Eur. J. Oper. Res.,
vol. 177, no. 2, pp. 673–683, Mar. 2007.

[7] S. Ashraf, T.Mahmood, S. Abdullah, andQ. Khan, ‘‘Different approaches
to multi-criteria group decision making problems for picture fuzzy
environment,’’ Bull. Brazilian Math. Soc., vol. 50, no. 2, pp. 373–397,
Jun. 2019.

[8] M. I. Ali, M. Shabir, and M. Naz, ‘‘Algebraic structures of soft sets
associated with new operations,’’ Comput. Math. Appl., vol. 61, no. 9,
pp. 2647–2654, May 2011.

[9] J. Brans and P. Vincle, ‘‘A preference ranking organization method,’’
Magt. Sci. vol. 31, no. 6, pp. 647–656, 1985.

[10] R. Bilsel, G. Buyukozkan, and D. Ruan, ‘‘A fuzzy preference ranking
model for a quality evaluation of hospital web sites,’’ Int. J. Intell. Syst.,
vol. 21, no. 11, pp. 1181–1197, 2006.

[11] Z. Bonikowski, E. Bryniarski, and U. Wybraniec-Skardowska, ‘‘Exten-
sions and intentions in the rough set theory,’’ Inf. Sci., vol. 107, nos. 1–4,
pp. 149–167, Jun. 1998.

[12] J. Brans, B. Mareschal, and P. Vincke, ‘‘PROMETHEE: A new family
of outranking methods in MCDM,’’ in Operation Research, J. Brans, Ed.
Amsterdam, The Netherlands: North-Holland, 1984, pp. 477–490.

[13] R. Benayoun and B. Roy, ‘‘Manual de reference du programme electre,
note de synthese et formation 25,’’ Amer. J. Oper. Res., 1966.

[14] C. Chen, ‘‘Extension of the TOPSIS for group decision-making under
fuzzy environment,’’ Fuzzy Sets Syst., vol. 114, pp. 1–9, Oct. 2000.

[15] I. Couso and D. Dubois, ‘‘Rough sets, coverings and incomplete informa-
tion,’’ Fundam. Inf. vol. 108, nos. 3–4, pp. 223–247, 2011.

[16] T.-Y. Chen and C.-Y. Tsao, ‘‘The interval-valued fuzzy TOPSIS
method and experimental analysis,’’ Fuzzy Sets Syst., vol. 159, no. 11,
pp. 1410–1428, Jun. 2008.

[17] N. Çağman, S. Enginoğlu, and F. Çıtak, ‘‘Fuzzy soft set theory and its
applications,’’ Iranian J. Fuzzy Syst., vol. 8, no. 3, pp. 137–147, 2011.

[18] D. Chen, Y. Yang, and H. Wang, ‘‘Granular computing based on fuzzy
similarity relations,’’ Soft Comput., vol. 15, pp. 1161–1172, May 2011.

[19] L. D’eer and C. Cornelis, ‘‘A comprehensive study of fuzzy covering-
based rough set models: Definitions, properties and interrelationships,’’
Fuzzy Sets Syst., vol. 336, pp. 1–26, Apr. 2018.

[20] L. D’eer, C. Cornelis, and L. Godo, ‘‘Fuzzy neighborhood operators based
on fuzzy coverings,’’ Fuzzy Sets Syst., vol. 312, pp. 17–35, Apr. 2017.

[21] T. Deng, Y. Chen, W. Xu, and Q. Dai, ‘‘A novel approach to fuzzy rough
sets based on a fuzzy covering,’’ Inf. Sci., vol. 177, no. 11, pp. 2308–2326,
2007.

[22] D. Dubois and H. Prade, ‘‘Rough fuzzy sets and fuzzy rough sets,’’ Int.
J. General Syst., vol. 17, nos. 2–3, pp. 191–209, 1990.

[23] M. K. El-Bably, M. I. Ali, and E.-S.-A. Abo-Tabl, ‘‘New topological
approaches to generalized soft rough approximations with medical appli-
cations,’’ J. Math., vol. 2021, pp. 1–16, Dec. 2021.

[24] J. Harsanyi, ‘‘Cardinal welfare, individualistic ethics, and interper-
sonal comparisons of utility,’’ J. Political Econ. vol. 63, pp. 309–321,
Aug. 1955.

[25] C. Huang, M. Lin, and Z. Xu, ‘‘Pythagorean fuzzy MULTIMOORA
method based on distance measure and score function: Its application in
multicriteria decision making process,’’ Knowl. Inf. Syst., vol. 62, no. 11,
pp. 4373–4406, Nov. 2020.

[26] C. Hwang, Multiple Attributes Decision Making Methods and Applica-
tions. Berlin, Germany: Springer, 1985.

[27] F. Feng, C. Li, B. Davvaz, and M. Ali, ‘‘Soft sets combined with fuzzy
sets and rough sets: A tentative approach,’’ Soft Comput., vol. 14, no. 9,
pp. 899–911, 2010.

[28] F. Feng, X. Liu, V. Leoreanu-Fotea, and Y. B. Jun, ‘‘Soft sets and soft
rough sets,’’ Inf. Sci., vol. 181, no. 6, pp. 1125–1137, Mar. 2011.

[29] T. Feng, S.-P. Zhang, and J.-S. Mi, ‘‘The reduction and fusion of fuzzy
covering systems based on the evidence theory,’’ Int. J. Approx. Reason-
ing, vol. 53, no. 1, pp. 87–103, 2012.

[30] H. Jiang and J. Zhan, ‘‘Covering-based variable precision (I ,T )-fuzzy
rough sets with applications to multiattribute decision-making,’’ IEEE
Trans. Fuzzy Syst., vol. 27, no. 8, pp. 1558–1572, Aug. 2019, doi:
10.1109/TFUZZ.2018.2883023.

[31] F. Karaaslan and N. Çagman, ‘‘Bipolar soft rough sets and their applica-
tions in decision making,’’ Afrika Math., vol. 29, nos. 5–6, pp. 823–839,
Sep. 2018.

[32] F. Karaaslan and S. Karatas, ‘‘A new approach to bipolar soft sets and its
applications,’’ 2014, arXiv:1406.2274.

[33] M. J. Khan, P. Kumam, P. Liu, W. Kumam, and S. Ashraf, ‘‘A novel
approach to generalized intuitionistic fuzzy soft sets and its applica-
tion in decision support system,’’ Mathematics, vol. 7, no. 8, p. 742,
Aug. 2019.

[34] Q. Kong and Z. Wei, ‘‘Covering based fuzzy rough sets,’’ J. Intell. Fuzzy
Syst. vol. 26, pp. 2405–2411, Oct. 2015.

[35] K. Lee, ‘‘Bipolar valued fuzzy sets and their basic operations,’’ in Proc.
Int. Conf. Intell. Technol., Bangkok, Thailand, 2000, pp. 307–317.

[36] M. Lin, C. Huang, Z. Xu, and R. Chen, ‘‘Evaluating IoT platforms using
integrated probabilistic linguisticMCDMmethod,’’ IEEE Internet Things
J., vol. 7, no. 11, pp. 11195–11208, Nov. 2020.

37600 VOLUME 10, 2022

http://dx.doi.org/10.1007/s00500-021-06456-z
http://dx.doi.org/10.1109/TFUZZ.2018.2883023


F. Tufail et al.: Comparison of Promethee and TOPSIS Techniques Based on Bipolar Soft Covering-Based Rough Sets

[37] T. J. Li, Y. Leung, and W.-X. Zhang, ‘‘Generalized fuzzy rough approx-
imation operators based on fuzzy coverings,’’ Int. J. Approx. Reson.,
vol. 48, no. 3, pp. 836–856, 2008.

[38] J. Li, ‘‘Fuzzy approximation operators based on coverings,’’ inProc. Joint
Rough Set Symp., 2007, pp. 55–62.

[39] J.-H. Li, C.-L. Mei, and Y.-J. Lv, ‘‘Incomplete decision contexts: Approx-
imate concept construction, rule acquisition and knowledge reduction,’’
Int. J. Approx. Reasoning, vol. 54, no. 1, pp. 149–165, 2013.

[40] G. L. Liu and Y. Sai, ‘‘A comparison of two types of rough sets induced by
coverings,’’ Int. J. Approx. Reasoning, vol. 50, pp. 521–528, Mar. 2009.

[41] Z. Li, N. Xie, and G. Wen, ‘‘Soft coverings and their parameter reduc-
tions,’’ Appl. Soft Comput., vol. 31, pp. 48–60, Jun. 2015.

[42] M. Lin, Z. Xu, Y. Zhai, and Z. Yao, ‘‘Multi-attribute group decision-
making under probabilistic uncertain linguistic environment,’’ J. Oper.
Res. Soc., vol. 69, no. 2, pp. 157–170, Feb. 2018.

[43] L. Ma, ‘‘On some types of neighborhood-related covering rough sets,’’
Int. J. Approx. Reson., vol. 53, pp. 901–911, Sep. 2012.

[44] L. Ma, ‘‘Some twin approximation operators on covering approximation
spaces,’’ Int. J. Approx. Reson., vol. 56, pp. 59–70, Jan. 2015.

[45] L. Ma, ‘‘Two fuzzy covering rough set models and their generalizations
over fuzzy lattices,’’ Fuzzy Sets Syst., vol. 294, pp. 1–17, Jul. 2016.

[46] D. Molodtsov, ‘‘Soft set theory-first results,’’ Comput. Math. Appl.,
vol. 37, nos. 4–5, pp. 19–31, 1999.

[47] P. K. Maji, R. Biswas, and A. R. Roy, ‘‘Soft set theory,’’ Comput. Math.
Appl., vol. 45, pp. 555–562, Feb. 2003.

[48] Z. M. Ma and B. Q. Hu, ‘‘Topological and lattice structures of -fuzzy
rough sets determined by lower and upper sets,’’ Inf. Sci., vol. 218,
pp. 194–204, Jan. 2013.

[49] A. Mardani, A. Jusoh, and E. K. Zavadskas, ‘‘Fuzzy multiple crite-
ria decision-making techniques and applications–two decades review
from 1994 to 2014,’’ Expert Syst. Appl., vol. 42, no. 8, pp. 4126–4148,
May 2015.

[50] S. Murat, H. Kazan, and S. Coskun, ‘‘An application for measuring
performance quality of schools by using the PROMETHEE multi cri-
teria decision making method,’’ Proc. Soc. Behav. Sci., vol. 195, no. 1,
pp. 729–738, 2015.

[51] P. Majumdar and S. K. Samanta, ‘‘On soft mappings,’’ Comput. Math.
Appl., vol. 60, no. 9, pp. 2666–2672, Nov. 2010.

[52] N. Malik and M. Shabir, ‘‘A consensus model based on rough bipo-
lar fuzzy approximations,’’ J. Intell. Fuzzy Syst., vol. 36, no. 4,
pp. 3461–3470, Apr. 2019.

[53] N.Malik andM. Shabir, ‘‘Rough fuzzy bipolar soft sets and application in
decision-making problems,’’ Soft Comput., vol. 23, no. 5, pp. 1603–1614,
Mar. 2019.

[54] M. Naz and M. Shabir, ‘‘On fuzzy bipolar soft sets, their algebraic
structures and applications,’’ J. Intell. Fuzzy Syst., vol. 26, no. 4,
pp. 1645–1656, 2014.

[55] X. Ma, Q. Liu, and J. Zhan, ‘‘A survey of decision making methods
based on certain hybrid soft set models,’’ Artif. Intell. Rev., vol. 47, no. 4,
pp. 507–530, 2017.

[56] X. Ma, J. Zhan, M. I. N. Ali, and N. Mehmood, ‘‘A survey of decision
making methods based on two classes of hybrid soft set models,’’ Artif.
Intell. Rev., vol. 49, no. 4, pp. 511–529, 2018.

[57] S. Opricovic, ‘‘A fuzzy compromise solution for multicriteria prob-
lems,’’ Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., vol. 15, no. 3,
pp. 363–380, Jun. 2007.

[58] Z. Pawlak, ‘‘Rough sets,’’ Int. J. Comput. Inf. Sci., vol. 11, no. 5,
pp. 341–356, Oct. 1982.

[59] Z. Pawlak and A. Skowron, ‘‘Rudiments of rough sets,’’ Inf. Sci., vol. 177,
no. 1, pp. 3–27, Jan. 2007.

[60] J. A. Pomykala, ‘‘Approximation operations in approximation space,’’
Bull. Pol. Acad. Sci., vol. 35, nos. 9–10, pp. 653–662, 1987.

[61] S. Roy and S. Bera, ‘‘Approximation of rough soft set and its application
to lattice,’’ Fuzzy Inf. Eng., vol. 7, Sep. 2015, Art. no. 379387.

[62] M. Shabir, M. Ali, and T. Shaheen, ‘‘Another apprach to soft rough sets,’’
Knowl. Based Syst., vol. 40, pp. 72–80, Mar. 2013.

[63] T. Shaheen,M.Ali, andM. Shabir, ‘‘Generalized hesitant fuzzy rough sets
(GHFRS) and their application in risk analysis,’’ Soft Comput., vol. 24,
no. 18, pp. 14005–14107, Sep. 2020.

[64] B. Sun, X. Chen, L. Zhang, and W. Ma, ‘‘Three-way decision making
approach to conflict analysis and resolution using probabilistic rough set
over two universes,’’ Inf. Sci., vol. 507, pp. 809–822, Jan. 2020.

[65] M. Shabir and M. Naz, ‘‘On bipolar soft sets,’’ 2013, arXiv:1303.1344.

[66] E. C. C. Tsang, C. Degang, and D. S. Yeung, ‘‘Approximations and
reducts with covering generalized rough sets,’’ Int. J. Comput. Math.
Appl., vol. 56, pp. 279–289, Jul. 2008.

[67] G. Tuzkaya, C. Kahraman, and D. Özgen, ‘‘An integrated fuzzy multi-
criteria decision making methodology for material handling equipment
selection problem and an application,’’ Expert Syst. Appl., vol. 37, no. 4,
pp. 2853–2863, Apr. 2010.

[68] H. Tlig and A. Rebai, ‘‘A TOPSIS method based on intuitionistic fuzzy
values: A case study of north African airports,’’Manage. Sci. Lett., vol. 7,
pp. 351–358, Jan. 2017.

[69] N. Tozlu, S. University, S. Yuksel, and T. H. Dizman, ‘‘A topological
approach to soft covering approximation space,’’ Int. J. Math. Trends
Technol., vol. 29, no. 1, pp. 33–38, Jan. 2016.

[70] F. Ülengin, Y. Älker Topcu, and Ä. Ö. Åahin, ‘‘An integrated decision
aid system for bosphorus water-crossing problem,’’ Eur. J. Oper. Res.,
vol. 134, no. 1, pp. 179–192, Oct. 2001.

[71] B. Vahdani and H. Hadipour, ‘‘Extension of the ELECTREmethod based
on interval-valued fuzzy sets,’’ Soft Comput., vol. 15, no. 3, pp. 569–579,
Mar. 2011.

[72] M.-C. Wu and T.-Y. Chen, ‘‘The ELECTRE multicriteria
analysis approach based on intuitionistic fuzzy sets,’’ in Proc.
IEEE Int. Conf. Fuzzy Syst., Aug. 2009, pp. 1383–1388, doi:
10.1109/FUZZY.2009.5276880.

[73] C. Wang, D. Chen, B. Sun, and Q. Hu, ‘‘Communication between infor-
mation systems with covering based rough sets,’’ Inf. Sci., vol. 216,
pp. 17–33, Dec. 2012.

[74] C. Y. Wang and B. Q. Hu, ‘‘Granular variable precision fuzzy rough
sets with general fuzzy relations,’’ Fuzzy Sets Syst., vol. 275, pp. 39–57,
Sep. 2015.

[75] C. Wang, Y. Huang, M. Shao, and X. Fan, ‘‘Fuzzy rough set-
based attribute reduction using distance measures,’’ Knowl.-Based Syst.,
vol. 164, pp. 205–212, Jan. 2019.

[76] W. Xu, Q. Wang, and S. Luo, ‘‘Multigranulation fuzzy rough sets,’’ J.
Intell. Fuzzy Syst. vol. 26, pp. 1323–1340, Jan. 2014.

[77] W.-H. Xu and W.-X. Zhang, ‘‘Measuring roughness of generalized rough
sets induced by a covering,’’ Fuzzy Sets Syst., vol. 158, pp. 2443–2455,
Nov. 2007.

[78] B. Yang and B. Q. Hu, ‘‘A fuzzy covering-based rough set model and
its generalization over fuzzy lattice,’’ Inf. Sci., vol. 367, pp. 463–486,
Nov. 2016.

[79] B. Yang and B. Q. Hu, ‘‘On some types of fuzzy covering-based rough
sets,’’ Fuzzy Sets Syst., vol. 312, pp. 36–65, Apr. 2017.

[80] Y. Yao, ‘‘Relational interpretations of neighborhood operators and rough
set approximation operators,’’ Inf. Sci., vol. 101, pp. 239–259, Oct. 1998.

[81] Y. Yao, ‘‘Perspectives of granular computing,’’ in Proc. IEEE Int. Conf.
Granular Comput., Jul. 2005, pp. 85–90.

[82] Y. Yao and B. Yao, ‘‘Covering based rough sets approximations,’’ Inf. Sci.,
vol. 200, pp. 91–107, Oct. 2012.

[83] S. Yüksel, Z. G. Ergül, and N. Tozlu, ‘‘Soft covering based rough sets and
their application,’’ Sci. World J., vol. 2014, pp. 1–9, Dec. 2014.

[84] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[85] W. Zakowski, ‘‘Approximations in the (µ,π ) space,’’ Demonstr. Math.,
vol. 16, pp. 761–769, May 1983.

[86] J. Zhan and J. C. R. Alcantud, ‘‘A novel type of soft rough covering and
its application to multicriteria group decision making,’’ Artif. Intell. Rev.,
vol. 52, no. 4, pp. 2381–2410, Dec. 2019, doi: 10.1007/s10462-018-9617-
3.

[87] J. Zhan and J. C. R. Alcantud, ‘‘A survey of parameter reduction of soft
sets and corresponding algorithms,’’ Artif. Intell. Rev., vol. 52, no. 3,
pp. 1839–1872, Oct. 2019.

[88] J. Zhan, M. I. Ali, and N. Mehmood, ‘‘On a novel uncertain soft set
model: Z-soft fuzzy rough set model and corresponding decision making
methods,’’ Appl. Soft Comput., vol. 56, pp. 446–457, Jul. 2017.

[89] J. Zhan, Q. Liu, and T. Herawan, ‘‘A novel soft rough set: Soft rough
hemirings and correspondingmulticriteria group decision making,’’ Appl.
Soft Comput., vol. 54, pp. 393–402, May 2017.

[90] J. Zhan andW.Xu, ‘‘Two types of coverings basedmultigranulation rough
fuzzy sets and applications to decisionmaking,’’Artif. Intell. Rev., vol. 53,
no. 1, pp. 167–198, Jan. 2020, doi: 10.1007/s10462-018-9649-8.

[91] J. Zhan and Q. Wang, ‘‘Certain types of soft coverings based rough
sets with applications,’’ Int. J. Mach. Learn. Cybern., vol. 10, no. 5,
pp. 1065–1076, May 2019.

VOLUME 10, 2022 37601

http://dx.doi.org/10.1109/FUZZY.2009.5276880
http://dx.doi.org/10.1007/s10462-018-9617-3
http://dx.doi.org/10.1007/s10462-018-9617-3
http://dx.doi.org/10.1007/s10462-018-9649-8


F. Tufail et al.: Comparison of Promethee and TOPSIS Techniques Based on Bipolar Soft Covering-Based Rough Sets

[92] J. Zhan and K. Zhu, ‘‘Reviews on decision making methods based on
(fuzzy) soft sets and rough soft sets,’’ J. Intell. Fuzzy Syst., vol. 29,
pp. 1169–1176, Jan. 2015.

[93] J. Zhan and K. Zhu, ‘‘A novel soft rough fuzzy set: Z-soft rough fuzzy
ideals of hemirings and corresponding decision making,’’ Soft Comput.,
vol. 21, no. 8, pp. 1923–1936, Apr. 2017.

[94] W.-R. Zhang, ‘‘Bipolar fuzzy sets and relations: A computational frame-
work for cognitive modeling and multiagent decision analysis,’’ in Proc.
1st Int. Joint Conf. North Amer. Fuzzy Inf. Process. Soc., Dec. 1994,
pp. 305–309.

[95] X. Zhang, C. Mei, D. Chen, and J. Li, ‘‘Feature selection in mixed data:
A method using a novel fuzzy rough set-based information entropy,’’
Pattern Recognit., vol. 56, pp. 1–15, Dec. 2016.

[96] X. Zhang, ‘‘Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-
BCI algebras,’’ J. Intell. Fuzzy Syst., vol. 33, no. 3, pp. 1767–1774,
Aug. 2017.

[97] X. Zhang, D. Miao, C. Liu, and M. Le, ‘‘Constructive methods of rough
approximation operators andmultigranulation rough sets,’’Knowl.-Based
Syst., vol. 91, pp. 114–125, Jan. 2016.

[98] L. Zhang and J. Zhan, ‘‘Fuzzy soft β−covering based fuzzy rough sets
and corresponding decision making applications,’’ Int. J. Mach. Learn.
vol. 10, pp. 1487–1502, Jun. 2019.

[99] J. Zhan, B. Sun, and J. C. R. Alcantud, ‘‘Covering based
multigranulation(I,T)-fuzzy rough set models and applications in
multi-attribute group decision-making,’’ Inf. Sci., vol. 476, pp. 290–318,
Feb. 2019.

[100] L. Zhang, J. Zhan, and Z. Xu, ‘‘Covering-based generalized IF rough sets
with applications to multi-attribute decision-making,’’ Inf. Sci., vol. 478,
pp. 275–302, Apr. 2019, doi: 10.1016/j.ins.2018.11.033.

[101] K. Zhang, J. Zhan, W. Wu, and J. Alcantud, ‘‘Fuzzy β-covering based
(I ,T )-fuzzy rough set models and applications to multiattribute decision-
making,’’ Comput. Ind. Eng., vol. 128, pp. 605–621, Feb. 2019.

[102] K. Zhang, J. Zhan, and Y. Yao, ‘‘TOPSIS method based on a fuzzy cov-
ering approximation space: An application to biological nano-materials
selection,’’ Inf. Sci., vol. 502, pp. 297–329, Oct. 2019.

[103] Z. Zhao, ‘‘On some types of covering rough sets from topological points
of view,’’ Int. J. Approx. Reson., vol. 68, pp. 1–14, Jan. 2016.

[104] P. Zhu, ‘‘Covering rough set based on neighbourhood: An approach with-
out using neighbourhoods,’’ Int. J. Approx. Reason. vol. 52, pp. 461–472,
Apr. 2011.

[105] W. Zhu, ‘‘Generalized rough sets based on relations,’’ Inf. Sci., vol. 177,
no. 22, pp. 4997–5011, 2007.

[106] W. Zhu, ‘‘Topological approaches to covering rough sets,’’ Inf. Sci.,
vol. 177, pp. 1499–1508, Mar. 2007.

[107] W. Zhu, ‘‘Relationships among basic concepts in coveringbased rough
sets,’’ Inf. Sci., vol. 179, pp. 2478–2486, Jun. 2009.

[108] W. Zhu and F.-Y. Wang, ‘‘Reduction and axiomization of covering gen-
eralized rough sets,’’ Inf. Sci., vol. 152, pp. 217–230, Jun. 2003.

[109] W. Zhu, ‘‘On three types of covering-based rough sets,’’ IEEE Trans.
Knowl. Data Eng. vol. 19, no. 8, pp. 114–1131, Aug. 2007.

FAIZA TUFAIL received theM.Sc. degree in math-
ematics from the University of Gujrat, Gujarat,
Pakistan, in 2016, and the M.Phil. degree in
pure mathematics from Quaid-i-Azam University
Islamabad, Islamabad, Pakistan, in 2018, where
she is currently pursuing the Ph.D. degree with the
Department of Mathematics. Her research inter-
ests include covering, fuzzy algebraic structures,
soft sets, decision theory, and rough sets and their
hybrid algebraic structures with their applications.

MUHAMMAD SHABIR received the M.Sc.,
M.Phil., and Ph.D. degrees in mathematics from
Quaid-i-Azam University Islamabad, Islamabad,
Pakistan, in 1981, 1984, and 1996, respectively.
He is currently a Professor with the Department
of Mathematics, Quaid-i-Azam University Islam-
abad. He has produced 16 Ph.D. and 118 M.Phil.
students. He has published more than 100 research
articles in international journals. He has also coau-
thored the book Fuzzy Semirings With Applica-

tions to Automata Theory (Springer, New York, NY, USA). His current
research interests include fuzzy algebraic structures, and soft algebraic struc-
tures and their applications.

EL-SAYED A. ABO-TABL received the B.S. and
M.S. degrees in mathematics and the Ph.D. degree
in philosophy of science (mathematics) from the
College of Science, Assiut University, in 1996,
2002, and 2008, respectively. He is currently
working as a Professor and the Head of the
Department of Mathematics, Qassim University,
Al Mithnab, Saudi Arabia. He has published more
than 30 research articles in international journals.
His current research interests include topology,

rough sets, Granular computing, and pure mathematics.

37602 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.ins.2018.11.033

