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ABSTRACT This paper focuses on visual attention, a state-of-the-art approach for image captioning tasks
within the computer vision research area. We study the impact that different hyperparemeter configurations
on an encoder-decoder visual attention architecture in terms of efficiency. Results show that the correct
selection of both the cost function and the gradient-based optimizer can significantly impact the captioning
results. Our system considers the cross-entropy, Kullback-Leibler divergence, mean squared error, and
negative log-likelihood loss functions; the adaptive momentum (Adam), AdamW, RMSprop, stochastic
gradient descent, and Adadelta optimizers. Experimentation shows that a combination of cross-entropy
with Adam is the best alternative returning a Top-5 accuracy value of 73.092 and a BLEU-4 value of
20.10. Furthermore, a comparative analysis of alternative convolutional architectures demonstrated their
performance as an encoder. Our results show that ResNext-101 stands out with a Top-5 accuracy of
73.128 and a BLEU-4 of 19.80; positioning itself as the best option when looking for the optimum
captioning quality. However, MobileNetV3 proved to be a much more compact alternative with 2,971,952
parameters and 0.23Giga fixed-pointMultiply-Accumulate operations per Second (GMACS). Consequently,
MobileNetV3 offers a competitive output quality at the cost of lower computational performance, supported
by values of 19.50 and 72.928 for the BLEU-4 and Top-5 accuracy, respectively. Finally, when testing
vision transformer (ViT), and data-efficient image transformer (DeiT) models to replace the convolutional
component of the architecture, DeiT achieved an improvement over ViT, obtaining a value of 34.44 in the
BLEU-4 metric.

INDEX TERMS Image captioning, visual attention, computer vision, supervised learning, artificial
intelligence.

I. INTRODUCTION
Image captioning is a branch of computer vision whose
main objective is the generation of accurate and organic
text descriptions of any type of scenario portrayed in an
image or frame [1]. Traditional approaches (i.e., before
the neural network’s era) tackled the image captioning
problem using classical image processing methodologies
that usually relied on the generation of templates together
with object detection to produce the caption given an input
image [2], [3]. Following a similar line to the use of
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image templates, the construction of pattern recognition
systems has made a meritorious historical space in the
resolution of computer vision tasks involving images, as in
the case of content-based image retrieval problems [4].
Moreover, the incorporation of fuzzy logic was of great
interest over time as it positioned itself as a popular method
that maps labels from previously extracted features [5], [6].
As a consequence of the emerging techniques, joined
to the usage of neural structures, visual attention has
emerged as a high potential alternative, proposing to replicate
human vision by enabling an emulation of attention by
the neural network on the most relevant sections of an
image [7].
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Several researchers have replicated the state-of-the-art
implementation proposed by Xu et al. for further study [8].
The latter convolutional architecture can be broadly divided
into two well-defined structures. On the one hand, a convo-
lutional network, which takes as input the raw images to be
processed, while it outputs a set of feature vectors, each of
which represents a D-dimensional part of a section of the
illustration. Thus, the decoding part of the model will be
able to selectively focus on specific parts of the image by
making use of subsets of the feature vectors. In addition,
a long short-term memory (LSTM) network makes use of
the previous output to generate a word at each time instant in
dependence on a context vector, previously generated words,
and the previous hidden state.

Modern artificial intelligence models provide promising
results for the captioning problem. However, one of the
remaining challenges is the optimization of hyperparameters
which is far from trivial and remains a challenge for
captioning and other applications [9].

In this paper, three experimental scenarios are examined
with the Show, Attend and Tell architecture as the object of
study. First, we conduct a study that serves as complementary
content to our paper, seeking to leave tangible evidence that
support the general configuration of the original contribution.
Otherwise stated, alternatives that equal or exceed the perfor-
mance obtained in the benchmark work. In order to achieve
the previously mentioned objective, it was decided to study
the performance impact of different model hyperparameters,
conducting a comparative study to select the cost function
that minimizes the training error over a certain number of
epochs for our specific application, setting the optimizer as
a fixed variable. Then, the same principle is applied to test
different gradient-based optimizers with the cost function as
an independent variable. As a second experiment, once the
optimal configuration of hyperparameters was established,
we sought to study the performance and computational
requirements that various convolutional models can achieve
by replacing the original encoder. And finally, to analyze
the viability of recent models that leave aside the notion
of convolutions, we tested the performance of architectures
based on transformers, replacing the encoder component of
the baseline original work.

In response to the uncertainties raised by the previously
described experimental scenarios, the combination of cross-
entropy loss and Adam optimizer was highlighted as the
best hyperparameter configuration according to the Top-
5 Accuracy, BLEU-4, and loss value metrics. By reusing
this configuration for the following experiment, different
decisions can be made depending on the final purpose of
the researcher [10]. If the architecture with the best metrics
concerning response quality is required, the convolutional
models ResNet-152 and ResNeXt-101 provided the best
results in the metrics used in the previous experimentation.
On the other hand, looking for the alternative with the lowest
computational demands, the MobileNet V3 model is the
most attractive, decreasing the number of parameters, training

time, and inference, together with the giga fixed-point
multiply-accumulate operations per second (GMACs), with-
out sacrificing the accuracy metrics considerably. Finally,
as the last experimental scene, it was decided to dispense
with the original encoder used by the benchmark architecture
in order to decide for alternatives outside the convolutional
principles. Two different transformer-based models, initially
conceived for image classification tasks, were selected
for this last examination. According to the corresponding
results, an improvement of state of the art in terms of the
BLEU-4 metric was obtained when using the Vision Trans-
former (ViT) and Data-efficient Image Transformer (DeiT)
models. However, the best results were obtained when using
the second of these couple of models, in conjunction with a
training process consisting of an initial phase where only the
decoder of the architecture is subjected to training, while as a
second stage, the parameters that conform the last transformer
encoder block are also optimized.

II. RELATED WORKS
According to the historical summary presented in Table 1, one
of the pioneering research works incorporating an attention
system is the one proposed by Larochelle & Hinton, based
on a variant of the restricted Boltzmann machine (RBM)
mainly used for digit classification. They used the benchmark
MNIST dataset, where a limited set of pixels is provided from
which the architecture collects both high- and low-resolution
information about neighboring pixels [11]. Moving forward
in the timeline, Bahdanau et al. reused the notion of attention
applied to different convolutional architectures. In this case,
a much more novel model such as an encoder-decodermakes
use of a reduced but visible attention system to take into
consideration certain parts of a sentence when performing
the translation of a specific word [12]. The idea of taking
advantage of the benefits offered by recurrent architectures
was a common factor that persisted in later works, among
which stand out research-oriented to digit classification such
as that presented by Mnih et al. [13], and the one proposed
by Ba et al. [14].
In order to substantiate the evolution within the area

of image captioning, a brief historical review of relevant
works is presented in Table 2. Throughout this summary,
we can find contributions such as the one proposed by
Kiros et al., using a multi-log bilinear model for exploiting
the characteristics of images to generate a biased version
of this architecture [15]. Followed this research, the same
author incorporated recurrent structures within an encoder-
decoder model, a common factor among image captioning
proposals. This fact is mainly due to the nature of human
speech that is sought to be incorporated into the learning
algorithm. Furthermore, authors such as Mao et al. [16],
Vinyals et al. [17], and Donahue et al. [18] have reused this
idea in their respective research efforts.

Finally, Table. 3 contains an excerpt from previous
works that promote our hypothesis of incorporating a
non-convolutional model within the proposed benchmark.
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The transformer architecture originates with the proposition
that attentional systems are sufficient tools to replace
approaches that employ recurrent networks for machine
translation tasks. This architecture uses multi-head attention
as the cornerstone of the transformer blocks contained in the
encoding and decoding part. The authors of this work use a
simile with database information retrieval systems to propose
its attentional principle, generating the key K , the query
Q, and the value V matrices from linear projections on the
input. This technique is intended to divide the aforementioned
matrices for each attention head in order to compute the
attention as follows:

Attention(Q,K ,V ) = softmax

(
QKT
√
dk

)
V (1)

where dk corresponds to the embedding size used to represent
each word [19].

The achievement obtained in this work is evidenced by
an improvement in the BLEU metric for English-to-German
translation tasks compared to the state-of-the-art.

The novel transformer architecture attracted the attention
of engineers and practitioners by dispensing the conventional
convolutional or recurrent models, usually used to build
encoders and decoders. Hence, researchers were fast to
evaluate the feasibility of both parts that constructed this
outstanding model.

On the one hand, regarding the machine translation tasks,
the encoder of the transformer has been sought to be used as
an alternative for the encoding of the content coming from
an input text. One of the main attractions of this specific
part of the transformer is the high parallelization capacity
due to the nature of the multi-head attention modules. On the
other hand, the decoder, similar to recurrent models, requires
previous states when generating a new word during the
inference process. Thus, Wang et al. proposed to counteract
the impact of the large number of parameters of a transformer
decoder by replacing it with a classical LSTM network to
perform the translation task given the output generated by
the transformer encoder. Thereby, the authors end up with an
architecture capable of decoding four times faster than using
the classical transformer, with a slightly lower performance
in terms of BLEU metric [20].

As time went by, the scientific community became much
more aware of the role that both transformer parts played
in performing translation tasks. During training, the encoder
acquires the general understanding of the source language,
considering the context in which each word was initiated.
At the same time, the decoder is trained to map the words
from the source language to the target language. Therefore,
the underlying knowledge of the language that both neural
network architectures had separately granted to the scientific
community, have provided two great weapons to tackle
natural language tasks. On the one hand, by exploiting the
decoder modules of the transformer we obtain the GPT
architecture, whose later versions leave a hegemony mainly
in text generation [21]. On the other hand, models such as

BERT have been proposed to take advantage of the encoder
modules. The versatility of this model is undeniable at the
moment of performing almost any task in the area of natural
language processing by executing fine-tuning according to
the specific application [22].

Once the precedent set by BERT was established, its use
in conjunction with recurrent networks continued to be a
great experimental attraction thanks to the computational
benefits mentioned above. Thus, Chen et al. proposed the
acceleration of sentence correction tasks in Chinese, using a
BERT-RNN model trained by applying the TF technique as
an additional measure to accelerate the training process. After
experimentation with various recurrent models functioning as
decoder, the BERT-GRU combination outperformed the best
BLEU metric, and improved the inference time of the base
transformer model by 1131% [23].

Despite the progressive dominance of transformer-based
networks in natural language processing, the feasibility of
this type of architecture in the world of computer vision has
been the focus of many researchers in the last couple of years.
An example of the first approach to this new challenge can
be found in the work of Patel and Varier. They contributed
to the research community with a comparison between a
CNN-LSTM model and a CNN-Transformer architecture
for image captioning tasks on the Flickr8k dataset. This
work concludes by showing the feasibility of the transformer
decoder within the proposed architecture. However, the
performance metrics remained slightly behind in terms of
BLEU, METEOR, ROGUE and CIDER in comparison to the
classical alternatives using LSTMnetworks as a decoder [24].

Subsequently, because of the considerable impact caused
by the work ‘‘An image is worth 16×16 words: transformers
for image recognition at scale’’ by Dosovitskiy et al., the
ViT model was considered as a viable approach to the use
of transformer-based architectures for computer vision. The
authors of this work proposed an architecture that uses the
transformer encoder reusing configurations from the BERT
model. The output of this encoder part is then reused within
an multi-layer percepton (MLP) layer to perform image
classification. The modification that allows this architecture
to take an image as input, is that the corresponding input
is previously divided into N patches, each one containing
an specific section of the image, ensuring no overlapping
between them. These image portions are then flattened and
each of these structures is treated as if it were a word within
the classical transformer architecture. The impact that this
paper generated was not only due to the alternative proposed
to use an image as input, but also for being a new state-of-
the-art in the task of image classification [25].

After this recent approach of using transformers for
tasks involving images had been consolidated, the desire
to use a full-transformer architecture for this type of tasks
continued to be studied. Liu et al. proposed the use of such
an architecture, using the ViT model as the coding part
together with the classical decoder of the transformer [26].
This proposal was tested in image captioning tasks on the
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FIGURE 1. Overall representation of the convolutional encoder-decoder architecture built to generate real captioning.

MSCOCO dataset, obtaining an improvement of the state-of-
the-art in terms of BLEU, METEOR, ROGUE and CIDER
metrics.

As mentioned so far, the current trend corresponds to the
exploitation of attentional systems based on transformers,
even pursuing the possibility of consolidating a model
capable of being specialized in multiple vision-language
tasks after a short period of fine-tuning [27]. However, new
approaches inspired by the one proposed in the Show, Attend
and Tell work remain on the table as fierce competitors in
the area of image captioning. Thus, progress continues to
be made in the generation of descriptions in Chinese, using
architectures that not only continue to employ convolutional
structures for the extraction of features present in the images,
but the decoding process remains in charge of a recurrent net-
work, more specifically using bidirectional LSTM networks
supported by a fuzzy attentional module [28].

III. SYSTEM MODEL AND DESIGN
The convolutional model employed for this study is built
following an encoder-decoder architecture supported by a
visual attention model. The proposed neural architecture is
schematized in Fig. 1, where an instance of the dataset is out-
lined in order to show its operation. The encoder makes use
of transfer learning by borrowing the original convolutional
architecture of Resnet [29], taking the pre-trainedmodel from
the PyTorch repository.1 This operation aims to generate an
encoded version of the input RGB image composed by a set
of L D-dimensional annotation/feature vectors, where each
one corresponds to a simplified representation of a part of the
original image.

a = {a1, a2, . . . , aL}, aL ∈ RD (2)

1https://github.com/pytorch/vision/blob/main/torchvision/models/
resnet.py

On the decoder side, given the sequential nature of the
problem to be solved, an LSTM recursive architecture is
constructed [30]. Up to this point, the description of the
input image is generated in a word-by-word basis. At each
decoding step, the Att-MLP attention network uses the set of
annotation vectors together with the previous hidden state,
passing this output through a softmax function.

λti = Att(ai, ht−1) (3)

αti =
exp(λti)∑L
k=1 exp(λtk )

(4)

Once the corresponding weights have been computed for
each annotation vector at time t , we proceed to compute the
vector ẑt , which is a dynamic representation of the relevant
parts of an image for an specific time. For the present
work, we analyze the deterministic approach of the original
architecture, parsing the context vector as a soft attention-
weighted annotation vector.

ẑt =
L∑
i=1

αtiai (5)

Through this outcome, the previously generated word and
the previous hidden state, the LSTM network generates the
corresponding output word probability:

p(yt |a, yt−11 ) ∝ exp(L0(Eyt−1 + Lhht + Lzẑt )) (6)

where L0, Lh, Lz, and E are learnable parameters initialized
randomly. The objects in Fig. 1 denoted with discontinuous
contours are the groundtruth components extracted from the
dataset. Notwithstanding, those objects are only used during
the training phase of the model. Their nature is described in
the next section of the paper.
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IV. THE DATASET STRUCTURE
The dataset used for training the network is the 2014 version
of the MS COCO variant oriented to image captioning
tasks [31]. Three inputs are structured in the dataset to be
used by the neural network during the training stage. It should
be noted that these three components are prepared for the
training, testing, and validation sets.

A. INPUT IMAGES
The set of images obtained from MS COCO must have
pixels values in the domain b ∈ {0, 1} to be compatible
with the pre-trained convolutional model used as the encoder
block. For the effect, a normalization of the RGB channels
is applied using the values of µ = [0.485, 0.456, 0.406]
and σ = [0.229, 0.224, 0.225], where µ and σ represent the
mean and the standard deviation of the ImageNet dataset [32],
respectively. Each image in the dataset is represented as
X (i)
∈ R256×256, where X (i) is a matrix of 256 × 256 pixels.

We letm be the total number of images onMSCOCO dataset,
and represent the entire dataset as X , {X (1), . . . ,X (m)

},
where each image X (i) is mapped to a ground truth caption
Y (i) that represents the corresponding ground-truth encoded
caption.

B. ENCODED CAPTIONS
In order to be able to manipulate the descriptions associated
with each image in the dataset, the model uses a mapping
system supported by a dictionary. Within this file, each
word used in the captioning of the entire dataset has
an identification number. In this way, each ground-truth
will be represented as a numerical array according to the
equivalences defined by the mapping system.

In addition, the inclusion of three special characters within
the mapping file is required. On the one hand, the neural
network requires a start and end signal to delimit the
extension of the descriptions. On the other hand, since not all
the descriptions occupy the same sentence size, it is required
to fill the missing spaces of the encoded caption with a
padding character. Consequently, taking the longest ground-
truth as referral, the content of the rest of the captions is
updated to match the reference length by incorporating the
padding operator. The proposed methodology normalizes the
MS COCO dataset in arrays of 52 elements.

As an example, in Fig. 2 it can be seen an instance included
in the validation group. This image is associated with
a corresponding C description: ‘‘a man with a red
helmet on a small moped on a dirt road’’.
Referring to the file, which contains its encoded description
EC , one can find an encoding of the form:

EC = [9488, 1, 2, 3, 1, 4, 5, 6, 1, 7, 8, 6, 1, 9, 10,

9489, 0, 0, . . . , 0],

considering that it has been generated from the equivalences
contained in the mapping file, the contents of which are
presented in Table 4.

FIGURE 2. Image taken from the training set with an associated
groundtruth caption: ‘‘a man with a red helmet on a small moped
on a dirt road.’’

TABLE 4. Mapping system used to encode the caption the example
image.

C. CAPTION LENGHTS
Finally, the last file is generated whose purpose is to house
an array, whose elements represent the number of words that
make up the description associated with each of the images.

V. HYPERPARAMETER NOTIONS
This section describes the loss and optimizer functions
employed by the reference benchmark. In addition, Algo-
rithm 1 details the intervention of these components during
the training phase of the neural network.

A. CROSS-ENTROPY LOSS FUNCTION
To describe the loss function of our attention model, we let
a be the function parametrized by θ , the caption output of
the network is represented as C = a(X, θ ), where C is the
collection of words inferred from the MS COCO dictionary.
The loss function measures the inference performance of our
attention model when compared with its respective ground
truth. In order to measure the difference between the ground
truth distribution and the distribution of the caption outcome,
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we define J (θ ) as the cross-entropy. The cross-entropy loss
function penalizes the attention model when it infers a low
probability for a given caption. Our attention model works
by updating the values of θ , moving the loss towards the
minimum of J (θ ) [33].

For our training set of (X (i),Y (i)) for i ∈ {1, . . . ,m},
we estimate the parameters θ = {θ (1), . . . , θ (n)} that mini-
mizes J (θ ) by computing:

J (θ ) = −
1
m

m∑
i=1

L(X (i),Y (i), θ )

= −
1
m

m∑
i=1

Y (i)log
(
p̂(i)
)
, (7)

where Y (i) represents the expected captionC of the ith image,
and p̂(i) constitutes the probability that the ith image outcomes
the intended value of C.

B. ADAPTIVE MOMENT OPTIMIZER
In order to optimize our attention model through a gradient-
based optimization method, we express the gradient vector of
(7) with respect to θ as

g = ∇θJ (θ )

=
1
m
∇θ

m∑
i=1

L(X (i),Y (i), θ )

=
1
m

m∑
i=1

(
p̂(i) − Y (i)

)
X (i). (8)

To locate the minimum of J (θ ), the proposed optimization
algorithm moves to the negative direction of (8) iteratively.
Our model computes individual adaptive learning rates for
different parameters from estimates of first and second
moments of g [34].

VI. EXPERIMENTAL SETTINGS
It is essential to point out that for the three study cases,
the training of the corresponding models was performed
considering that the aim was to take advantage of the use of
transfer learning on the encoder part. Therefore, only the part
of the architecture directly in charge of generating the words
of the final captioning was subjected to training. In addition,
the TF technique (mentioned in the related works section)
was applied so that training can be accelerated by allowing
the recurrent network to access the ground-truths during the
inference process.

All the experiments presented in the next sections were
obtained using a HPC node with an AMD EPYC 7742
64-Core Processor and a 40 Gb Nvidia A-100 graphic
card.

A. HYPERPARMETER TUNING
As a first experiment, we maintain all the default hyper-
parameters of the model to study the impact of the

Algorithm 1 Parameter Optimization and Training
Input: Set of images X , set of ground-truths Y , set of caption sizes

S, initial learning rate γ , batch size β.
Output: Predicted caption C, Set of individual attention masks α.

Initialization:
1: Initialize γ to 4e-4 and β to 32. F Value of γ will depend on

the training type.
2: Initial memory and hidden LSTM states are initialized by using

separate MLPs given an image:
c0 = finit,c0 (

1
L
∑L

i=1 ai)
h0 = finit,h0 (

1
L
∑L

i=1 ai)
DATA ACQUISITION AND PRE-PROCESSING. (IN SECT. II-A.)

3: Get MSCOCO dataset F From online server.
4: for each image do
5: Resize and Normalize.
6: end for
7: Sample a minibatch of m′tr examples from the training

set B =
{[
X (1)
: Y (1)], . . . , [X (m′tr ) : Y (m′tr )

]}
CROSS-ENTROPY COST FUNCTION DEFINITION (SECT. V-A.)

8: J (θ ) = − 1
m′tr

∑m′tr
i=1 L(X

(i),Y (i), θ )
PARAMETER OPTIMIZATION FOR CONVOL. ENC.-DEC. (V-B.)

9: while stopping criterion not met do
10: Compute gradient estimate:

g← 1
m′tr
∇θ

∑m′tr
i=1 L

(
X (i),Y (i), θ

)
11: Update parameters: θ ← θ + g
12: end while

CAPTION GENERATION OF UNSEEN IMAGE.

13: Get input image.
14: Generate the caption for the input image using optimized θ

parameters.
15: Extract caption matrix C and the set of masks α from line 14.

different cost functions. Since the cross-entropy cost
function was used to train the benchmark model, we con-
trasted the performance of the architecture using the neg-
ative log-likelihood (NLL), mean squared error (MSE),
and the Kullback-Leibler Divergence (KLDIVLOSS) cost
functions.

Once the first experimental phase is completed, the aim
is to keep the cost function as an independent variable
to sweep different optimizers. Once again, in addition
to the optimizer used in the benchmark implementation
(Adam), we examined the effect of AdamW, root mean
square propogation optimizer (RMSprop), stochastic gradient
descent (SGD), and Adadelta optimizers.

B. ENCODER ANALYSIS
In this scenario, once the optimal configuration of hyper-
parameters has been found, both the cost function and the
network optimizer are set as fixed variables, allowing us
to proceed with the second part of the experiment. Within
this final stage, it is proposed to evaluate the performance
of the architecture, both in terms of response quality and
computational requirements, using different convolutional
structures to replace the Oxford VGG model used in the
encoder of the default implementation. The alternatives to be
evaluated in this work correspond to the ResNet-101, ResNet-
152, ResNeXt-101, and MobileNetV3 models.
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C. TRANSFORMER-BASED APPROACHES
For this last experimental environment, the objective is to
study the alternative of replacing the convolutional encoder
of the original architecture by a model that dispenses
with the traditional convolutional principles forged within
the computer vision area, more specifically, focusing on
incorporating transformer-based models in this specific part
of the image captioning system. Despite its origin related to
natural language processing, the ViT model demonstrated its
viability for image classification tasks. Given the potential of
this network to surpass our state-of-the-art, it was proposed
as an experiment to verify the performance of such a model
to carry out image captioning tasks. Consequently, it was
decided to use both the original version of ViT and its version
with distillation (DeiT).

It should be noted that since the present work does
not require image classification tasks, both architectures
were stripped of the last MLP layer since the attentional
model will reuse the output of the transformer model. The
schematization of the final model for image captioning is
shown in Fig. 3.
Finally, it is worth mentioning that both the ViT and

DeiT models correspond to models retrieved from the
Huggingface repository, being pre-trained in the ImageNet-
21k and ImageNet-1k datasets respectively.

On the one hand, the first method to be studied consists
of defining γ = 4e − 4 to train only the learnable
parameters belonging to the decoder system architecture.
This method is taken into consideration since the aim is to
take advantage of the knowledge contained in the pre-trained
models. By contrast, the second proposed methodology
corresponds entirety with the previously described approach,
with the difference that γ = 1e − 4 is defined. Lastly,
and as a final modality, we seek to rescue the model
obtained with the second training experiment so that, in the
last four iterations of the process, not only the decoder
parameters are subjected to training, but also those that
make up the last transformer block of both the ViT and
DeiT models.

The final objective of this experiment was to use the
BLEU-4 metric on both versions of the image captioning
model to contrast the margin of improvement achieved
concerning the state-of-the-art.

VII. RESULTS
From Table 5, it is possible to highlight an evident
improvement in the performance of the model when using
the cross-entropy as a loss function. Although the MSE loss
is positioned as the second-best alternative throughout the
experimental process, a difference of 31.584 in the Top-5
accuracy indicator and 0.187 in BLEU-4 metric shows a large
gap between the cross-entropy function and this alternative.
Considering this significant difference, the results obtained
by the KLDIVLOSS and the NLL position them as unsuitable
alternatives for the model to be trained on.

TABLE 5. Experimental results using Top-5 accuracy and the BLEU-4
performance metric for each one of the loss functions under study.

TABLE 6. Experimental results using the training loss, the Top-5 Accuracy,
and the BLEU-4 performance metrics for each one of the optimizers
under study.

In addition to the quantitative results, Fig. 4 illustrates
a captioning example generated using each one of the loss
functions under study. The outcomes prove that the cross-
entropy loss function is positioned not only as the one with
the best results, but also the only loss function capable of
generating a complete and meaningful description for an
illustration that has never been seen by our model.

Proceeding with the second part of this scene, the results
offered in Table 6 reveal a tighter situation when defining
an optimal alternative. In the first instance, the optimizer
Adam is positionedwith the best results according to the three
defined metrics. However, its variation, AdamW, not only
returns the same BLEU-4 value as Adam, but it represents
only a 0.005 and 0.133 of difference in the loss and Top-5
Accuracy indicators, respectively. This closeness in terms of
results can be visualized using Fig. 5. In this illustration,
each optimizer is tested by predicting the captioning for an
image consisting of a child in front of a laptop computer.
When contrasting both variations of the Adam optimizer, it is
observed that the predictions only differ when mentioning the
gender of the person in the image.

It is worth highlighting the performance of the RMSprop,
which ranks as the third-best alternative, presenting a loss
value of 3.663, along with 71.444 and 19.20 for Top-5
accuracy andBLEU-4, respectively. RMSprop shows promis-
ing results when comparing the output caption with the
example image shown in Fig. 5. This optimizer is capable of
generating a fully meaningful captioning by portrying to the
content of the image. However, it missed minor details like
not including a reference to the elderliness of the person in
the illustration.

Finally, the SGD and Adadelta optimizers provided the
worst results. Although both optimizers presented slightly
different metrics, it is observed that neither of them were able
to create a model capable of generating meaningful captions.

Now, referring to the results of the encoder testing phase
shown in Table 7, two isolated analyses were conducted.
At first, when looking for the convolutional model that
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FIGURE 3. Overall representation of the ViT adaptation proposal for solving images captioning tasks. The MLP of the original
implementation is replaced by the decoder used in previous experimental scenes.

FIGURE 4. Image captioning results using an attention model with: (a) cross entropy loss, (b) MSE loss, (c) NLL loss, and (d) KLDIVLOSS. The results reveal
an inadequate inference of MSE, NLL and KLDIVLOSS functions. By far, cross entropy is the only loss function that allows a proper training of our
attention model.

allows the best captioning quality, the superiority of the
ResNeXt-101 model is evidenced. This model stands out
with a Top-5 Accuracy of 73.128 and a loss value of
3.404, surpassing the original encoder based on the VGG-16
architecture and the rest of the convolutional alternatives.
On the other hand, the picture changes when looking for
the architecture with lower computational requirements,
trying to minimize the sacrifice of the output quality as
much as possible. Therefore, MobileNetV3 demonstrates its

inherent qualities as an architecture oriented to embedded
environments, requiring 2,971,952 parameters, 3.5379 hours
of training time, and 0.07975 seconds of average inference
time. Such indicators become much more meaningful when
referring to the BLEU-4, Top-5 Accuracy, and loss metrics,
returning 19.50, 72.928, and 3.424, respectively.

The evident closeness between the results, in terms of
response quality, can be seen in the example of captioning
included in Fig. 6. The ability of each of the models to
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TABLE 7. Once the experimental phase has been completed with each proposed architecture for the system encoder, the quantitative results are shown.
The chosen metrics denote both the quality of the response generated and the computational performance of each architecture.

FIGURE 5. Image captioning results using: (a) SGD and Adadelta optimizers, (b) RMSprop optimizer, (c) AdamW optimizer, and (d) Adam optimizer. The
image illustrates the inadequate inference results of SGD and Adadelta when compared with their alternatives. Also, note that Adam optimizer yields the
finest result over the test image (a recurrent outcome obtained for further experiments using images from the test set).

generate descriptions according to the scenario depicted in
the input image, including different details regarding colors,
positions, and environmental conditions, can be perceived.
Likewise, this example provides a visualization of possible
minor failures when generating the corresponding caption.
In the aforementioned image, the encoder based on the VGG-
16 architecture returns a description with redundancy, which
can be justified by the training period established for the
present experimentation.

Relying on a second example, Fig. 7 once again demon-
strates the ability to generate a fully meaningful sentence
by all architectures; however, not all of them manage to
match the context of the image despite occasional errors

in specific words. Under this scenario, the MobileNetV3
network generates an output that is entirely far from a
possible ground-truth for the given image. Although this
specific example is not a compelling reason to contradict
the quantitative results previously shown, this example is
intended to demonstrate a scenario where the robustness of
a model for mobile environments becomes evident.

As for the results concerning the transformer-based
architectures, Fig. 8 evidences the loss curves generated
from the inference process on the validation group. Although
both the ViT and DeiT based models show the lowest
losses using the training method with the highest gamma
value, it should be taken into account that from the fifth
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FIGURE 6. Image captioning results using as encoder: (a) ResNet-152, (b) ResNet-101, (c) VGG-16, (d) ResNext-101, and (e) MobileNet V.3. All the
convolutional architectures allowed the generation of sentences with complete meaning matching considerably to the scenario presented in the input
image. Reduced redundancy errors are appreciated when using VGG16.

iteration onwards, these models seem to suffer from possible
overfitting. On the other hand, the loss curves behave more
regularly throughout the iterations analyzed, showing little or
no overfitting when using the alternative training methods.
Therefore, beyond taking these values as indicators of the
performance of the models, the aim is to show the evident
convergence that exists throughout each training lapse.

Having contemplated the convergence of the models,
it is worthwhile to perform a similar visualization now
using a metric related to the nature of natural language.
Thus, Fig. 9 shows the evolution of the BLEU-4 with the
passing of the iterations. Furthermore, within this graph, the
results during the inference process on the validation set
are shown. Therefore, when analyzing the impact of using
a higher gamma value, both ViT and DeiT-based models
present a relatively early learning plateau when reaching the

fifth iteration. Conversely, the other two training methods
present a significant improvement of BLEU-4. remaining in
optimization even when reaching the last iterations. Both
procedures allow a progressive improvement of the metric
even during the last iterations; however, the methodology that
contemplates the re-training of the transformer component
stands out slightly.

However, considering that the inferences generated for the
realization of this graph involved the use of TF, such values
might not fully represent the capabilities of the models, since
when seeking to caption an image devoid of a ground-truth,
TF could not be applied. For this reason, it was decided to
construct the results included in Fig. 10.

By employing much more realistic conditions for the
inference process, it can be seen that the models trained with
a lower γ outperformed the performance metrics of those
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FIGURE 7. Image captioning results using as encoder: (a) ResNet-152, (b) ResNet-101, (c) VGG-16, (d) ResNext-101, and (e) MobileNet V.3. It can be seen
that the first four architectures generated results that were significantly close to the content of the input image. On the contrary, when using MobiliNet V.
3, the generated result consists of a description completely unrelated to the target scenario, even though the sentence was grammatically correct and
made complete sense.

with a slightly higher γ in a very few number of iterations.
Moreover, when using these results, a clear metrics boost is
perceived, in contrast to when TF was used during inference.
Thus, to contrast the best checkpoints obtained in each stage
of this experimental scene, Table 8 allows to have a superior
contrast of the maximum performance obtained when using
ViT and DeiT through the application of each of the three
training.

As a result, it can be verified that the use of TF during the
inference process camouflaged the real performance of both
models. Simulation results show that the DeiT-based model
can be selected as the alternative with enhanced outcomes,
specifically reaching a BLEU-4 of 34.44 through the training
process involving the calculation of gradients for the last
transformer block. Additionally, when reviewing the partial

TABLE 8. BLEU-4 metric obtained by the best checkpoint generated from
each training process applied to the ViT and DeiT based models using a
beam size of 3.

results of each training method, it is observed that regardless
of the method applied, the DeiT-based model achieves the
best BLEU-4 metrics.

As a complement to the quantitative results shown above,
Fig. 11 provides a brief sample of the accuracy that ViT- and
DeiT-based models can provide when generating inference.
The images used for this section were extracted from the
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FIGURE 8. Evolution of the loss obtained during each of the corresponding iterations. These results were recovered using TF during the inference process
on the validation set.

FIGURE 9. Evolution of the BLEU-4 metric obtained during each of the corresponding iterations. These results were recovered using TF during the
inference process on the validation set.

validation set to use the ground truth linked to each image
as a referential description.

Within this brief comparative scheme, we observe the
ability of the models not only to describe relationships
between objects or people, but also qualities related to the
capture of physical aspects and generalization of similar

entities. On the one hand, when working on the first
image of Fig. 11, the DeiT model can not only denote
the interaction of the dog with the frisbee, but it can also
contribute with additional information about the colors of
both entities. Also, when the image is presented with food,
both models can recognize that the main content of the
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FIGURE 10. Evolution of the BLEU-4 metric obtained during each of the corresponding iterations. These results were retrieved without using TF during the
inference process on the validation set.

FIGURE 11. Examples of inference using images from the validation group. Models based on ViT and DeiT with best BLEU-4 metrics are used to contrast
with the ground-truth provided by the dataset.

dish is pasta, however, the DeiT model can identify the
presence ofmultiple vegetables within the dish, therefore, this
architecture generalizes these foods into a single category.

VIII. CONCLUSION
During the first experimental stage, it was possible to
determine that the cross-entropy was the loss function that
achieved the best results, returning a Top-5 accuracy and
BLEU-4 metrics of 73.092 and 0.201, respectively. On the
other hand, once the loss function is set as an independent
variable, the Adam optimizer returned the best indicators,
completing the first training period with a loss value of
3.414, a Top-5 Accuracy of 73.092, and a BLEU-4 of 0.201.
However, it is worth noting the good results obtained by the
AdamW optimizer, matching in the BLEU-4 metric its Adam
counterpart.

Furthermore, the comparative study focused on the convo-
lutional model and its use as an encoder to yield two attractive
alternatives depending on the final objective. On one hand,
using the ResNeXt-101 architecture generated the best results
in terms of response quality. This architecture returned
values of 73.128 in Top-5 Accuracy, and 3.404 for the
loss value, denoting an improvement with respect to the
results obtained using VGG-16. On the other hand, when
analyzing the models under lower computational demands,
the encoder based on MobileNetV3 registered 2,971,952
parameters, a training time of 3.5379 hours, an inference time
of 0.07975 seconds, and 0.23 GMACs. Thus, MobileNetV3
emerges as the most compact alternative without neglecting
the quality of the generated captioning, which is evidenced
by its great closeness in the BLEU-4, Top-5 Accuracy, and
loss value metrics.
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Regarding the study involving the use of transformer-based
architectures as a replacement for convolutional models,
both the ViT and DeiT models demonstrate their viability
by verifying their convergence through the evolution of the
loss throughout the iterations. In addition, the DeiT-LSTM
model stands out as the alternative with the best BLEU-4
metric when trained in two phases: the first one in attempt to
optimize only the decoder parameters, and the second phase
incorporating the parameters of the last transformer block
to be optimized using a value of γ = 1e − 4. As a result,
the model achieved a BLEU-4 of 34.44, surpassing the state-
of-the-art from the paper Show, Attend and Tell, whose best
results consisted in a BLEU-4 of 24.3 in its soft-attention
based model, and 25.0 for its hard-attention alternative.

Although we have proved that the three optimizers and two
encoder options offer feasible results for this architecture,
future works can benefit from the individual training epoch to
further study the convergence pace of themodel under limited
edge-computational devices. In addition, future researchers
can study the viability of not only using different encoder
architectures than the presented ones, but also analyze
the impact of other alternatives to LSTM models for the
decoding step, together with an extended investigation on
the architectural frameworks. Another element concerning
the training stage of our model is the decision to use the
MSCOCO 2014 dataset. The selection was made based
on: i) the need of a large image set, and ii) the need
to replicate the results of the benchmark paper. However,
both the convolutional and transformer-based variants have
potential for further research, where the reader can study
the performance and behavior of our model when trained
with other datasets such as Flickr8k or Flickr30k. Finally,
another alternative to foster this work would be to include
further hyperparameters to the study (e.g., dropout rate, batch
size, different types of stride and pooling, size of the kernels,
weight initialization methods, model depth, weight decay,
etc.). Also, different methodologies of optimization such as
Random Search, Grid Search, etc can be applied supported by
a Hyperparameter Tuning Framework, enabling an in-depth
research of the attention architecture
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