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ABSTRACT The canopy height model (CHM) is a representation of the height of the top of vegetation
from the surrounding ground level. It is crucial for the extraction of various forest characteristics, for
instance, timber stock estimations and forest growth measurements. There are different ways of obtaining
the vegetation height, such as through ground-based observations or the interpretation of remote sensing
images. The severe downside of field measurement is its cost and acquisition difficulty. Therefore, utilizing
remote sensing data is, in many cases, preferable. The enormous advances in computer vision during the
previous decades have provided various methods of satellite imagery analysis. In this work, we developed
the canopy height evaluation workflow using only RGB and NIR (near-infrared) bands of a very high
spatial resolution (investigated onWorldView-2 satellite bands). Leveraging typical data from airplane-based
LiDAR (Light Detection and Ranging), we trained a deep neural network to predict the vegetation height.
The provided approach is less expensive than the commonly used drone measurements, and the predictions
have a higher spatial resolution (less than 5 m) than the vast majority of studies using satellite data (usually
more than 30 m). The experiments, which were conducted in Russian boreal forests, demonstrated a strong
correlation between the prediction and LiDAR-derived measurements. Moreover, we tested the generated
CHM as a supplementary feature in the species classification task. Among different input data combinations
and training approaches, we achieved the mean absolute error equal to 2.4 m using U-Net with Inception-
ResNet-v2 encoder, high-resolution RGB image, near-infrared band, and ArcticDEM. The obtained results
show promising opportunities for advanced forestry analysis and management. We also developed the easy-
to-use open-access solution for solving these tasks based on the approaches discussed in the study cloud-free
composite orthophotomap provided by Mapbox via tile-based map service.

INDEX TERMS Artificial intelligence, artificial neural networks, computer vision, data analysis, digital
elevation models, remote sensing, forestry, transfer learning.

I. INTRODUCTION
Canopy height model (CHM) estimation has a long history,
but advances in computer vision and satellite sensing
technologies have opened new opportunities in this area. The
height can be effectively utilized in different applications
and broadens the surface’s two-dimensional representation
in the visible spectrum. There are both natural [1]–[5] and
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anthropogenic [6], [7] objects of landcover to be explored.
The present study is focused on natural types of landcover,
especially wild forest areas. Landcover height characteristics
can be used in various applications, such as biomass
evaluation [8]–[10], improving the accuracy of tree species
classification [11], [12], and correlated vegetation properties
extraction [13].

There are three frequently reported sources of
canopy height information: 1) field-based measurements;
2) Unmanned Aerial Vehicle (UAV)-based approaches;
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and 3) satellite remote sensing data. All aforementioned
approaches have advantages and limitations connected with
acquisition time and cost (Fig 1). The first data source is
forest inventory documents, usually treated as field-based
observations. They are available for some regions and useful
in addressing forest owners’, governmental, and independent
organizations’ needs [14]. However, these data do not cover
all regions of practical interest [15]. Furthermore, such
data actualization is time-consuming and cost intensive in
difficult-to-access areas. An alternative approach is to use
remote sensing data.

The remote sensing approach draws on both active and
passive sensing technologies. During active sensing such
as Light Detection and Ranging (LiDAR) measurements,
the sensor measures time between the emitted light time
and its return time to estimate the distance of an object
(a surface). This technology allows digital elevation models
to be produced. Passive remote sensing measures radiation
that is emitted or reflected by the object in different spectral
wavelengths. Spectral bands obtained this way can be used for
future analysis and to calculate the height value in landcover
extraction.

A common approach builds on UAV assessment. A UAV
with LiDAR sensors is a powerful tool for forest height
estimation. It obtains canopy height data with minor errors,
meeting the precision requirements for almost all forestry
tasks. However, such equipment is more expensive than
a spectral aerial camera system, thus there remains the
challenge of obtaining the same information using low-cost
methods [16]. Many works use LiDAR data as a reference
and aim to find a cheaper height data source. A detailed
review of the alternative approaches to LiDAR sensing is
presented in [17], [18]. Thus, most of the current studies in
the sphere of canopy height estimation use UAVs with optical
aerial systems [19]–[24]. Despite its advantages over field-
based observations, when large regions have to be processed,
the labor involved in working with vast and remote areas
is problematic. Satellite data address this issue, providing
a cheaper option for forest monitoring [17]. Point cloud
data that is useful for estimation of the canopy height can
also be derived from satellite imagery using photogrammetry
approach. The comparison of such photogrammetry approach
and high-density LiDAR measurements is presented in [25],
where authors showed photogrammetry method is slightly
less accurate (difference in R2 is about 0.07) compare
to the LiDAR method for height measurements of the
forest region in New Zealand. The important benefit of the
photogrammetry method is that it could provide information
for the larger scale compare to the LiDARmethod, however it
requires special high resolution imagery which is not always
available for the particular region. The other limitation of
the photogrammetric method is that it is able to characterise
only the upper canopy and is not able to perform vertical
characterisation of the forest such as can be done by laser
scanning. The comparison of the photogremmetry obtained
by unmanned aerial systems and areal laser scanning for

the forest inventory in Oregon was presented in [26], where
authors stated that photogrammetry is slightly less accurate
compare to laser scanning (difference in R2 for height
estimation is about 0.15). However photogrammetry is easier
to integrate to existing forest monitoring methodologies.

Our work is focused on using satellite images for
CHM estimation as it is more preferable data source than
LiDAR derived measurements in terms of cost and spatial
coverage. Neural networks allows us to conduct image
processing automatically.We set up the hypothesis that neural
networks can extract significant spatial features from very
high-resolution RGB images of 1 m to improve performance
of CHM estimation. It was expected that developing a
satellite-based solution compatible with a high-resolution
UAV approach would further enable the prediction of
advanced forest characteristics. Thus, this study’s objectives
and contributions were:

1) to develop a method for vegetation height estimation
utilizing deep neural networks and different config-
urations of input data varying spectral compound
(reducing to Blue, Green, and Red), spatial resolution
and by adding topography features;

2) to assess the generated heightmap, conducting a further
investigation into the classification of dominant forest
species (conifer and deciduous). For this, multispectral
imagery was incorporated with height data;

3) to create the software toolchain to train a neural
network to predict CHM using single satellite non-
stereo imagery.

4) to develop the easy-to-use open-access solution for the
community which is now available by the following
resource [27]. The underlying code for CNN model
training is shared:
https://github.com/LanaLana/forest_height.

II. RELATED WORK
For canopy height estimation studies, spectral satellite
imagery can be distinguished by the following characteristics:
spatial resolution, spectral range, and availability. The
majority of works use a spatial resolution much higher than
20 m to tackle the canopy height evaluation problem. This
approach is justified for particular tasks when large-scale
maps are produced. In [28], they conducted a 30 m spatial
resolution canopy height evaluation with Landsat imagery
and showed the dynamics over 29 years in the Darwin region.
In [29], they employed Landsat 7 and 8 time-series data (30m
spatial resolution) to estimate tree heights in Africa. GLAS
(Geoscience Laser Altimeter System) height measurements
from the ICESat satellite were used as reference data
(60 − 70 m spatial resolution). The same height data source
was mentioned in [30]. In [31], they used Sentinel-2 images
that were resampled to a 20 m pixel size to predict Mangrove
forest canopy height. Other studies involving Sentinel-2 data
are reported in [32]–[34]. In [35], they assessed SAR images
from ALOS PALSAR, and upsampled them from 30 to 5 m
as a LiDAR elevation model. The cases of very high
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FIGURE 1. Cost comparison of different forest height measurement approaches (diagram is not to
scale).

spatial resolution (3.7 m) images from the Planet Dove
implementation are presented in [36]. However, the target
height map spatial resolution for that study was 1 hectare.
Very high spatial resolution (2 m) WorldView-2 satellite
imagery was used in [37], but the working spatial resolution
was adjusted to 5 m.

Another important data characteristic is the spectral range
and the number of channels. A wider wavelength range is
available for satellites with low spatial resolutions (Landsat,
Sentinel) than for some very high spatial resolution satellites.
For instance, Planet (3–5 m spatial resolution) and GeoEye
(2 m spatial resolution) satellites have Blue, Green, Red,
and NIR bands; RapidEye (6 m spatial resolution) has Red
Edge. The GeoEye panchromatic channel has a 0.4 m spatial
resolution and allows RGB to be enhanced. WorldView-2
provides eight spectral bands with a spatial resolution of 2 m.
An additional source of very high remote sensing data is
Basemaps, with RGB bands such as those provided byMaxar
one [38]. Nevertheless, the majority of works focus on using
only the wide multispectral range (more than eight bands),
sacrificing the spatial resolution. From the aforementioned
satellite-based studies, the minimal number of spectral bands
(Blue, Green, Red, NIR) was only considered in [36].
However, the goal of the work was the creation of a
large-scale country wide map, so the spatial resolution of the
analysis was 1 hectare. Therefore, the issue of minimizing the
number of required satellite bands for forest height estimation
has not yet been well studied.

Satellite data are frequently accompanied with data of
other sensing techniques. In [39], they combined four
Kompsat-3 multispectral bands and PALSAR-1 radar images
resampled into 2.8 m to train a neural network. Few studies
have implemented this into self-contained spectral satellite
data [33], [40]–[42]. However, the spatial resolution of the

Sentinel and Landsat images (lower than 10 m) considered
in these studies is not high enough to extract small details
on the surface. Thus, the satellite spatial resolution of
1-m per pixel is still beyond the scope of the majority of
studies.

Data availability is also a significant aspect of implemen-
tation in practice. Sentinel and Landsat images are available
free of cost, while WorldView, Planet, and RapidEye are
commercial and contain a greater amount of the spatial
information required in applied tasks.

After data acquisition, the obvious question of data
processing arises. Computer vision algorithms enable
high-quality automatic satellite imagery analysis. Such
methods are usually based on key feature extraction from
input spectral bands to describe some object, which can
be a pixel or set of pixels. Then, the algorithm aims to
ascribe a label (for classification tasks) or a value (for
regression tasks) to the object. The processing methods for
expansive forestry areas using satellite images are classical
machine learning models, such as Random Forest [43] or
Support Vector Machine [44]. Their main advantages are
simplicity and straightforward interpretation in the case of
linear models. Generally, spatial characteristics are not taken
into consideration, and an algorithm relies on spectral values
or precalculated vegetation indices. In [28], a combination
of 14 vegetation indices and spectral bands were used in
the Random Forest model to predict the canopy height using
Landsat images.Moreover, the strong correlation between the
normalized difference vegetation index (NDVI) and canopy
height has been well emphasized in aerial photography
[16], [35]. Despite the importance of spectral data, other
vital features can also be processed. For instance, there
is a strong correlation between forest height and canopy
width, as discussed in [32], in which the canopy volume was
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FIGURE 2. Region of interest.

estimated using only the crown projected area and the crown
diameter combined in a particular regression equation. The
deep neural network-based approach is more capable than
classical machine learningmethods for the following reasons:
the texture and spatial features extracted by the neural
networks include sufficient information about landcover; it
not only handles spectral values, but also the aforementioned
spatial characteristics of an object available, for instance,
in UAV-based tasks [45].

Tree height is correlated with tree diameter for each
forest species [46]. In [47], tree height was estimated
from the exponential equation, including diameter at breast
height value. The crown form depends on the tree species;
accompanied by the crown diameter, it can provide impor-
tant features for a neural network. Tree height can also
be derived from spectral information only, as it depicts
meaningful vegetation characteristics such as chlorophyll
content [48].

III. MATERIALS AND METHODS
A. STUDY AREA
The study area is located in the Arkhangelsk region of
northern European Russia with coordinates between 45◦16′

and 45◦89′ longitude and between 61◦31′ and 61◦57′ latitude
(Fig 2). The investigated territory belongs to the middle
boreal zone. The region’s climate is humid, with the warmest
month being July when the temperature rises to 17◦C . The
topography is flat, with a height difference in a range between
170 and 215 m above sea level [49]. The main species present
in the region are pine, spruce, aspen, and birch.

B. REFERENCE DATA
We used forest inventory and LiDAR-derived data covering
the area of about 50 thousand hectares. LiDARmeasurements
were continued in the end of August of 2017 and 2018 by
Leica ALS 80 HP scanner. Then the Canopy Height
Model (CHM) with a 1 m spatial resolution was generated
from LiDAR-derived point clouds.

The inventory data were collected in accordance with the
official Russian inventory regulation in 2018 and 2019 [50].
It included such characteristics as canopy height, species
percentage distribution, and age. This data was organized
as a set of individual stand coordinates with appropriate
characteristics based on the assumption that the crop was
homogeneous. A species class markup was used in additional
experiments presented as a raster map of dominant conifer
and deciduous classes. The statistics of this data are shown in
Table 3.

However, the shift in geo-referencing between the satellite
data and LiDAR-derived measurements makes the target at
1 m spatial resolution less useful. As the typical shift lies
between 2 and 3m, the high spatial resolution CHMwill show
erroneous value for the particular point in the satellite image.
This forced us to downsample the height map to 5 m to make
the target value for each point represent the mean value of the
area including the true location.

The distribution of the height over the study region is
shown in the Figure 4. Although, height is usually represented
as a continues value, height categories are essential for
practical use in power lines services. Height classes are often
required instead of continues values for decision making
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FIGURE 3. The blue lines define the study area with LiDAR measurements. The red squares are the test regions.

TABLE 1. WorldView images.

TABLE 2. Sentinel images.

TABLE 3. Dataset statistics for conifer and deciduous classification.

within protected areas [51]. The reason is that different
categories (dangerous vegetation overgrowing) have different
importance and estimation in particular categories have to be
more precise to reduce accidents on power lines corridors.

C. THE TEST REGION SELECTION
The training and test area was from the same satellite images,
but without overlapping. The test regionwasmanually chosen
to include a diversity of height classes. The total test area
was equal to 13% of the initial dataset. The spatial location
is presented in the Fig 3. The height distribution through the
test areas is presented in the Fig 4.

D. SATELLITE DATA
We used Sentinel-2 and WorldView-2 satellite imagery to
check the high and very high spatial resolution data sources.
The boreal location of the study area resulted in a lack
of cloudless images. All images were from the boreal
growing season (from May to August). Image IDs and
dates are presented in tables 1, 2. WorldView imagery was
downloaded fromGBDX [52]. For the height estimation task,
we used Red, Green, Blue, and Near-Infrared bands, while
for the species classification problem, all eight bands were
considered. The resolution of the WorldView images was
1, 2, or 5 m depending on the experiment statement. For
CNN-based tasks, image values in the range from 0 to 1 are
usually used [53], [54]. Therefore, pixel values were brought
into a range between 0 and 1 using Equation 3. For the
spatial resolution adjustment, the pansharpening procedure
was implemented using a panchromatic band which was
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FIGURE 4. Reference LiDAR-derived height (Canopy height model (CHM) values) distribution for the
study area. (a-b) Training dataset. (c-d) Test dataset. These height categories are the important ones
for power lines services in Russia.

obtained in the imagery bundle with multispectral data from
the data vendor. We did not consider any predefined cloud
mask for WorldView. However, during training, pixels with
particular properties were eliminated from consideration (see
subsection III-G). This allowed us to clean the dataset from
erroneous labels.

m = max(0,mean(I )− 3 ∗ std(I )) (1)

M = min(max(I ),mean(I )+ 3 ∗ std(I )) (2)

I ′ = (I − m)/(M − m) (3)

where mean, std are the mean and standard deviation of
the image. In equations 1, 2, we calculate m and M
(minimum and maximum of the preserved dynamic range).
The standardization of the imagery according to the whole
dataset statistics proves profitable for the neural network
training compared to a simple scaling of the entire value
range [55].

For the additional analysis, freely available Sentinel
data were downloaded in L1C format from EarthEx-
plorer USGS [56] and preprocessed using Sen2Cor [57]
to an L2A format. Pixel values were brought into a
range between 0 and 1 using Equation 3. We used
the B02,B03,B04,B05,B06,B07,B08,B11,B12, and B8A
bands, which were adjusted to a 10 m resolution. 60m bands
were discarded as they are more affected by atmosphere than
the land surface. 20 to 10 m bands were upsampled with the

nearest neighbor method to avoid initial data corruption (they
can be unambiguously downsampled back to exactly initial
20m data).

Both for Sentinel and WorldView, each image covered
the entire study area, and images were considered separately
without any spatial averaging (the same as in [58]).

As supplementary features, we used a freely available
high-resolution digital elevation model (DEM), Arctic-
DEM [59], covering boreal regions (Fig 5). It provides a
resolution of 2 m. For some experiments, the resolution was
upsampled to 1 m by interpolation (see the section III-E).
Both the satellite and LiDAR data were co-registered

through geo-referencing, the same as in [37].
We used cloud-free composite orthophotomap provided by

Mapbox [60] via tile-based map service as an example of
free-available high-resolution RGB data-source. This image
covered the same test region and was used just for the
developed model assessment. We chose this data-source,
because model implementation without expensive input data
demands is crucial for open-access platform that can handle
a more available images. The spatial resolution was 1 m per
pixel, and the preprocessing was the same as for WorldView
data.

E. FEATURE SELECTION FOR DEEP NEURAL NETWORK
Convolutional neural networks take a tensor as an input. The
feature selection to create this tensor is fundamental. To find
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FIGURE 5. One of the ArcticDEM tiles (yellow square) with an overlay of the studied area (blue
lines). Even in boreal regions, ArcticDEM layer can have some missing data.

the best input data representation for the CHM estimation
problem, we established a range of experiments. Firstly,
we conducted a study with the WorldView bands.

The workflow of our research is shown in the Fig 6.
For each experiment, the RGB bands were used constantly.
The variable part concerned the resolution changing and the
supplementary features (NIR and ArcticDEM), which were
combined with the RGB channel in a single input tensor for
the neural network model.

We studied the original (2 m), pansharpened (1 m), and
downsampled (5 m) images. For the experiments with the
1 m resolution, bands were upsampled to the target resolution
by bilinear interpolation. We used bilinear interpolation for
image resampling to avoid aliasing emerging in nearest
neighbor and halo inherent to higher-order interpolation
methods, which are more problematic for neural networks
than bilinear interpolation. A reference CHM was used
during the training procedure to estimate the model’s
error. To minimize data mismatches, reference and pre-
dicted height maps were intersected with the forest cover
mask before the loss function calculation stage. Therefore,
we conducted the following experiments for the WorldView
images:

1) RGB original resolution 2 m;
2) RGB pansharpened to 1 m;
3) RGB pansharpened to 1 m+ArcticDEM upsampled to

2 m;
4) RGB + NIR original resolution 2 m;
5) RGB + NIR original resolution 2 m + ArcticDEM

upsampled to 2 m;
6) RGB pansharpened to 1 m + NIR upsampled to 1 m;
7) RGB pansharpened to 1 m+ NIR upsampled to 1 m+

ArcticDEM upsampled to 1 m;
8) RGB downsampled to 5 m resolution.

FIGURE 6. Experiment workflow for canopy height estimation with RGB
WorldView bands. The dotted lines show optional steps for input tensor
creation.

For experiments 1, 2, there was three-band raster; for
experiments 3, 4, 6, we used four-band raster; and for
experiments 5, 7, five-band raster was considered.

To assess the importance and restriction of the spatial
resolution, we also checked the model’s performance for the
WorldView RGB bands downsampled to 5 m.

We conducted the following study to compare model’s
performance for high-resolution RGB images and less
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detailed but richer in terms of the spectral information
Sentinel data with 10 bands, upsampled to 10 m. There were
two experiments:

1) Multispectral bands;
2) Multispectral bands + ArcticDEM downsampled to

10 m.

F. STRATEGIES FOR HEIGHT PREDICTION AND
EVALUATION METRICS
Regression may naturally lead to richer (continuous) esti-
mations for practical implementations than rigid class-based
output maps. Therefore, we considered both regression and
classification tasks for a comparative analysis. The regression
problem statement means that we ascribe each pixel with a
particular value corresponding to the height parameter. Then,
the loss can be estimated as an error between real height
value (CHM value) and the predicted value. The considered
metrics are root mean square error (RMSE), mean absolute
error (MAE), and mean bias error (MBE):

RMSE =

√∑n
i=1(yi − ŷi)2

n
(4)

MAE =

∑n
i=1 |yi − ŷi|

n
(5)

MBE =

∑n
i=1(ŷi − yi)

n
(6)

where y is the mean target value among all pixels (mean
CHM value), ŷi is the predicted value of the ith pixel, yi is the
target value of the ith pixel (CHM value), and n is the pixel
number. Test regions results were computed for all images in
WorldView or Sentinel datasets.

Using the same reference data we can also solve classifica-
tion task. When we formalized the problem as a classification
task, we divided the continuous values of height into various
classes. The choice of such a division often depends on an
applied task’s demands. For our study, we chose intervals
0 − 4, 4 − 10, 10 − 20, and > 20 m. We rely on the
amount of classes and intervals of height that described [61].
We slightly shifted the boundaries of the height intervals,
described in [61] according to the suggestion inventory
data provider from Arkhangelsk region. After splitting the
continuous dataset to the aforementioned classes we can
compute the portion of the wrong estimated pixel classes and
use F1-score [62] for evaluation of the trained classification
models.

precision =
TP

TP+ FP
(7)

recall =
TP

TP+ FN
(8)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(9)

where TP denotes true positive, FP denotes false positive, and
FN denotes false negative. The above formulas were applied
in a per-class basis. To compute results, test regions from all
images were used.

This refers to the area assessment, while in terms of
regression, we strove to optimize each pixel value. Therefore,
these two approaches can lead to a different local optimum.
For example, if we split heights between 0 and 30 m into the
following buckets: 0− 4, 4− 10, 10− 20, and 20− 30, then
it is not important that we do not ascribe the exact values but
some value from the correct bucket to some pixels. Then, it is
clear that regression predictions can also be represented in
terms of classification.

For the classification task, the multiclass weighted
cross-entropy loss function was used to make the predictions
more balanced even for classes with fewer representatives.
The same approach was implemented for the regression task.
We compared the simple RMSE loss (Equation 11) and the
weighted RMSE loss (Equation 11). For heights with fewer
representatives, the penalty for the wrong prediction was
increased by predefined weights. The weights were inversely
proportional to the height distribution. There was also a
threshold for the height when the weight was equal to 1 (no
extra penalty). The range of weights and the threshold were
chosen empirically, as shown in the Figure 7.

RMSE loss =

√∑n
i=1(yi − ŷi)2

N
(10)

Weighted RMSE loss =

√∑n
i=1(yi − ŷi)2 ∗ weights(yi)

N
(11)

where ŷi is the predicted value of the ith pixel, yi is the target
value of the ith pixel, N is the number of relevant (non-
masked) pixels, weights(yi) is the extra penalty depending on
the target value of the ith pixel.
We needed to manage the temporal mismatch (such as

logging) between LiDAR scanning and satellite imagery.
To do so, we used two heuristics. The first one was that pixels
labeled as forest by the forest cover model but with a height
of less than 1 m were considered to be a forest logging. The
forest cover model classifies pixels covered with clouds as
non-forested. Therefore, the second heuristic was that pixels
not labeled as forest but with CHM > 5 m were considered
clouds. Reference and predicted height values for these pixels
were not used in the loss function calculation during the
training procedure (they were treated as masked). Thus,
the mask of relevant pixels was defined by the following
equations:

logging = (height_map < 1) ∗ forest_mask (12)

cloud = (height_map > 5) ∗ (forest_mask == 0)

(13)

height_mask = (logging == 0) ∗ (cloud == 0) (14)

where forest mask was obtained by the neural network model
trained to predict forest cover with a high accuracy, especially
in terms of small details using RGB bands. The model was
implemented in the GeoAlert service [63].
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FIGURE 7. LiDAR-derived height distribution (a) and penalty weights for
errors on corresponding height values (b). These weights are used during
loss computation.

G. EXPERIMENTAL SETTINGS
For all the neural network models, training was performed
on the Skoltech supercomputer Zhores [64], using Keras [65]
with a Tensorflow [66] backend. The source code containing
the implementation details is available in the aforementioned
repository.

Both for the regression and classification task, U-Net [67]
with an Inception-ResNet-v2 [68] encoder was used
(Figure 8). U-Net is a popular CNN architecture in the
remote sensing domain which has shown high performance
in various problems [69], [70]. The upsampling layers
follow the U-Net’s downsampling layers. Skip connections
between layers allow the convolutional neural network
to manipulate vital information at large spatial scales
avoiding losing local information. Skip connections also
facilitate gradient flow during the training procedure that
was highlighted in [71]. We substituted the original VGG

encoder with a ResNet-based one as it has shown high
results in various works [72]. Residual connections in
the Inception-ResNet-v2 encoder support shortcuts leading
to better prediction quality [73] and enabling substantial
simplification of the Inception blocks. We used the original
U-Net decoder, where every step consists of an upsampling
of the feature map followed by a 2 × 2 convolution. That
halves the number of feature channels. The expansive path
also includes concatenation with the cropped feature map
from the contracting path and two 3 × 3 convolutions
followed by a ReLU. The total number of parameters in the
neural network is 62M where the encoder includes 54M.
The decoder has 5 blocks, while the encoder part consist
of 8 blocks. The models’ implementation was based on
opensource library [74].

Each model was trained 25 epochs for 200 training and
100 validation steps with a decreasing learning rate from
0.001 using RMSprop [75] optimizer and early stopping with
patience 5 epochs. For the classification task as an activation
function for the last layer, the softmax function was chosen.
As an activation function for the last layer’s regressionmodel,
we used linear function.

For all models, geometrical augmentation was imple-
mented. This involves random rotations, and vertical and
horizontal flipping. For models using the RGB channels
only, we implemented color transformation. For this task, the
albumentations library [76] was used.

H. CLASSICAL MACHINE LEARNING METHODS
We also conducted experiments with classical machine
learning methods to compare different approaches in canopy
height estimation. Two approaches were considered: Random
Forest (RF) [43] and Gradient Boosting (GB) [77]. These
approaches are widely used in the remote sensing domain due
to relatively high performance in various tasks. For the RF
method, we implemented 300 decision trees with maximum
depth equal to 8, as these parameters shown the best quality.
We also compared it to decision tree numbers 100, 200, 400,
500, 600, and maximum depth values equal to 4, 5, 6, 7, 8,
9, 10. In the GB method the parameters were 200 estimators
with learning rate equal to 0.1, and maximum depth equal
to 7, that were also set empirically (the same grid was
considered to choose number of trees and maximum depth as
in the RF case). For both two methods the implementation
was used from scikit-learn [78]. A proper feature space is
essential for machine learning algorithms, namely in classical
one. The features were selected according to the study
described in [79] as more relevant for vegetation properties
estimation from Sentinel images. Therefore, the following
vegetation indices were computed and accomplished initial
multispectral bands resulting in Sentinel-derived features: the
Normalized Difference Vegetation Index (NDVI), the Simple
Ratio Index (SRI), the red-edge Normalized Difference Veg-
etation Index (RENDVI), and the Anthocyanin Reflectance
Index 1 (ARI1). Thus, each pixel was considered as an input
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FIGURE 8. U-Net model with Inception-ResNet-v2 encoder.

sample with 14 features (10 Sentinel bands and 4 vegetation
indexes) for a machine learning algorithm.

The following experiments were performed:
1) RF + Sentinel-derived features (Sentinel resolution

10 m)
2) RF + Sentinel-derived features (Sentinel resolution

10 m + ArcticDEM)
3) GB + Sentinel-derived features (Sentinel resolution

10 m)
4) GB + Sentinel-derived features (Sentinel resolution

10 m + ArcticDEM)

I. FOREST-TYPE CLASSIFICATION MODEL
To estimate the quality of the developed models, we con-
sidered a forest-type classification problem. To train the
neural network model to predict two species (conifer and
deciduous), we leveraged both WorldView and Sentinel
imagery. The problem was defined as the per-pixel semantic
segmentation task. Forest inventory characteristics were used
as reference data. Eight WorldView bands were intersected
with the forest mask. Both for the Sentinel and WorldView
imagery, a height map or age map was used as an additional
channel. This was done to make the model more robust in
terms of species diversity resulting from different forest ages.
Therefore, the neural network input was formed of 10 bands.

As mentioned above, there are two familiar sources of
height values: LiDAR-derivied data and forest inventory
characteristics. The difference is in the data representation.
Forest inventory characteristics establish height for each
individual stand (small region joined according to some
similar value of features such as tree species, age, density).
Although real height within each stand can differ for each
pixel, all pixels corresponding to a particular stand have the
same height value. Thus, for this experiment we used both
inventory- and LiDAR-derived height data.

We compared model predictions according to the next
strategies of data leveraging:

1) just multispectral data;
2) multispectral data and CHM data;
3) multispectral data and inventory height data;

4) multispectral data and inventory age data;
5) multispectral and artificially generated CHM by the

best model height.
For these experiments, we trained a smaller U-Net model

with the Resnet-34 encoder [80]. Individual stands from the
dataset were randomly split into a training and testing set
shown in Table 3. During training, the cross-entropy loss
function was computed in a per-pixel manner. For testing,
the F1-score was estimated for each individual stand. The
predicted class for the individual stand was defined as a
dominant class among all pixels within the stand. Each forest
classification model was trained 25 epochs for 200 training
and 100 validation steps with a decreasing learning rate from
0.001 using RMSprop [75] optimizer and early stopping with
patience 5 epochs. The activation function for the last layer
was soft-max.

IV. RESULTS
The achieved metrics for the regression models are shown
in Table 4. The best quality predictions, using WorldView
imagery with MAE 2.47 m (Exp. 9), were achieved with a
combination of Red, Green, Blue pansharpened bands, the
NIR band, and the supplementary ArcticDEM raster with
resolution upsampled to 1 m (Fig 9). The smaller region is
presented in the Fig 10. For the Sentinel imagery, only two
experimental modes were considered: with ArcticDEM and
without ArcticDEM. For both the Sentinel and WorldView
data, ArcticDEM usage allowed us to improve the prediction
results (for Sentinel, the MAE improved from 4.1 to 3.9 m,
and for WorldView, the MAE improved from 2.9 to 2.58 m).
The pansharpening procedure also contributed to the final
result, decreasing the error from 3.3 to 3.1 m (Exp. 1 and
Exp. 2) for the WorldView RGB model. The NIR band usage
demonstrated an error reduction from 2.9 to 2.58 m (Exp.
3 and Exp. 7). This effect is linked to vegetation condition,
which is reflected by the NIRwavelength. Additional weights
during the loss computation reduced the MAE from 2.58 to
2.47 m (Exp. 7 and Exp. 9).

In Table 5, we can see a comparison between the regression
model and the classification model (Fig 12). These two
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FIGURE 9. Input RGB WorldView image from test regions (a), generated CHM (b), LiDAR-derived
height (c), error (d). Height measurements are in m.

FIGURE 10. Input RGB WorldView image from test regions (pansharpened to 1 m) (a), generated height (b), LiDAR height (downsampled
to 5 m) (c).

models were trained using the same input data. The regression
model’s prediction was split into four appropriate height
classes and the F1-score was calculated. This confirmed the

assumption that after training the model to predict continuous
values, the final results were not worse than the discreet ones
(F1-score: 0.68 and 0.67). Moreover, the regression spectrum
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FIGURE 11. Input RGB Mapbox image from test regions (a), generated height (b), LiDAR height (c).

TABLE 4. Regression models (error in m).

TABLE 5. Classification task (F1-score in m). Exp. 1: Weighted RMSE
RGB+NIR (RGB pansharpened to 1 m resolution + ArcticDEM). Exp. 2:
Classification model RGB+NIR (RGB pansharpened to 1 m resolution +

ArcticDEM).

of values makes the model more flexible, e.g., other classes
can be presented and it does not require extra training for
new splitting into target classes. This approach would be
of potential interest for use in other forest characteristics
computations.

The recognition class that is most difficult to process is
the height between 4 − 10 m. This is mainly caused by
the spatial distribution specificity of the class, and it often

TABLE 6. Forest-type classification (average for all classes F1-score) for
WorldView and Sentinel imagery. Generated height is derivied from the
best model predictions (Exp. 9 Weighted RMSE RGB+NIR (RGB
pansharpened to 1 m resolution + ArcticDEM).

occurs due to the small regions between crowns and depends
dramatically on the satellite and LiDAR geo-reference data.
For this study, we used LiDAR data downsampled to 5 m,
while the WorldView imagery resolution was 1 or 2 m.
This allowed us to save high-resolution spatial surface
characteristics.
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FIGURE 12. Input RGB WorldView image from test regions (a), original height classes (b), generated height
classes in regression (c) and classification (d) problem statement.

To assess the importance of texture information, we exper-
imented with RGB bands downsampled to 5 m 4. The MAE
for this case was 4.4 m. This result is lower than that of the
Sentinel images (4.1 m) and confirms that when we reduced
the spectral information, we faced stricter demands for spatial
resolution.

We checked the generated height in the forestry task of
species classification. The results are presented in Table 6.
The first objective of the experiment was to show how
supplementary features can enhance the quality of applied
tasks. Both LiDAR and inventory data helped to improve
classification in comparison with simple multispectral data.
The second goal was to show that the generated height
is of sufficient quality to beat the base model using just
satellite data. We did not intend to conduct a comparison
between WorldView and Sentinel sources. For this reason,
in both experiments, observation dates were not equal in
the data used. The superior results for the Sentinel imagery,

as compared with the WorldView data, were partially due to
the wider dataset.

We also evaluated the regression model trained using
RGB WorldView (pansharpened to 1 m resolution) image
on a cloud-free composite orthophotomap provided by
Mapbox [60] and covering the same test area. For this
experiment, the MAE was equal to 3.5, and the RMSE
was 4.6. Prediction example is shown in Figure 11. This
promising result allows cheaper CHM estimation for large
areas using only high-resolution free-available satellite RGB
data.

We conducted experiments with classical machine learning
algorithms using Sentinel-derived features to compare this
approach to the proposed one, namely the CNN-based with
high-resolution data. The best results were achieved for the
GB algorithm and combination of Sentinel-derived features
with ArcticDEM, where MAE was equal to 4 and RMSE was
equal to 5.4 4.
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V. DISCUSSION
It is challenging to perform a fair comparison between
the majority of studies related to height estimation for
various reasons. The main reason is the difference in height
distribution. For example, in [37], the predicted height was
limited by 30 m, the spatial resolution was 5 m, and the
final RMSE was 2.2 m. However, according to the presented
plots, the mean value was less than 10 m, while in our
study, it was about 15 m. In [28], the validation pixels range
was defined as being from 0 to 25 m, with a mean value
of 7 m. The model’s spatial resolution was 30 m. For this
height distribution, an RMSE from 2.3 to 4.1 mwas achieved.
In [31], they studied the ranges between 0 to 18 m and 3 to
15 m, by leveraging satellite (both spectral and radar) data
with a 20 m resolution. In contrast to our work, field-based
observations with a sampling frequency of the 10 largest
trees per inventory plot were used as reference material.
Therefore, the achieved result (an RMSE of 1.48 m) cannot
be compared with our model’s performance. Other obstacles
impeding a fair comparison are the species diversity and
regional conditions.

It is worth mentioning that althoughArcticDEMprovides a
stable improvement in canopy height estimation (see table 4,
Exp. 6 and Exp. 7), it does not cover central or southern
regions. For these areas, more powerful base models need to
be implemented, leveraging just satellite imagery.

We showed that high-resolution WorldView 3-bands
images providedmore significant features than low resolution
Sentinel with 10 spectral bands (see table 4, Exp. 2 and Exp.
10). However, resolution adjustment from 2 m to 5 m for
the same WorldView dataset leads to a loss of important
information, in particular texture information (see table 4,
Exp. 2 and Exp. 8). The aforementioned experiments, which
was performed on the same dataset and using the same NNs
with only one difference - the adjusted spatial resolution,
showed that neural networks can extract additional spatial
features from very high-resolution optical images of 1 m.
Thus we experimentally confirmed the initial hypothesis that
by using high resolution data it is possible to make CHM
estimation more accurate.

Creating the model with only high-resolution RGB chan-
nels allows it to be implemented in more available satellite
images, such as RGB mosaic basemaps (google, yandex, and
Mapbox). Therefore, an opportunity to replace WorldView
data with satellite images derived from other sources,
making the provided model more universal. We made a
prediction for cloud-free composite orthophotomap provided
by Mapbox [60] using the CNN model trained on RGB
1 m bands. The achieved quality (MAE = 3.5) confirms
the opportunity for further model application for basemaps
analysis.

There are the following directions for future research.
The first involves improving the co-registration between
LiDAR and satellite data. Now the developed RGB-based
model shows the ability to reconstruct the main patterns
corresponding to the CHM (Fig 10); large individual trees

and spots within forest are detected successfully. However,
satellite data has a slight shift in comparison with LiDAR
data. Improving co-registration would allow the model’s
performance to be assessed more accurately for resolutions
of less or equal to 1 m and also could probably improve the
poor performance for the class of 4–10 m.

The ability of the model to be transferred to new regions
is another essential question. As we did not have data
from other regions, it is impossible to judge the model
robustness for new areas. Moreover, for some regions,
the ArcticDEM layer is not available; therefore, additional
training for new areas might improve prediction quality.
However, the neural network approach has proven to be
powerful enough to extract the necessary spatial information
and adapt to changing natural conditions. Augmentation and
image diversity are often applied to overcome this weakness
in real-life applications.

Another possible objective for future research is a canopy
height estimation for areas with complex topography. Neural
network models rely on landcover’s spectral and texture
characteristics, making the initial approach promising even
when topography is not flat. However, shadows on slopes
pose additional challenges to the multispectral satellite
image analysis. LiDAR data additional preprocessing is also
considered for study areas with complex topography [81].

In this study, we used all available images both for training
and testing (splitting them into training and testing regions)
as it is a common choice in the remote sensing domain [82].
However, in the future work, image-based cross-validation
techniques can be used and robustness for new environmental
conditions can be considered [83].

VI. CONCLUSION
Overall, in this study we confirm the hypothesis that neural
networks can extract significant spatial features from very
high-resolution RGB images, which can be used for more
precise canopy height estimation. We also checked whether
it is possible to get an accuracy of canopy height estima-
tion by using of satellite-based solutions compatible with
measurements obtained by UAV approach. For checking our
assumptionswe analysed the potential of very high-resolution
images with limited spectral information in the task of canopy
height model estimation. We created a software toolchain
based on a state-of-the-art neural network architecture that
enable us to extract spatial features from very high-resolution
images. The proposed approach led to a reduction in the mean
absolute error to 2.4 m, while leveraging just four spectral
bands and the supplementary features from ArcticDEM.
However, in southern regions where ArcticDEM is not
available and without other sufficiently accurate DEM, the
model achieved an MAE of 2.9 m. We also examined how
generated height can be successfully used in the forest
classification task. Our canopy height model estimation
results using RGB bands indicated the prospect of replacing
expensive LiDAR sensing data with easily attainable satellite
data. Depending on the region of study, our technique
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allows a customer to promptly collect all the necessary
relevant forestry inventory information without ground-based
observations. We also developed and shared the easy-to-use
open source solution which gives a new possibilities for the
community to solve similar tasks. In future works, we are
planning to include texture data, indexes and other attributes
that can be obtained using ArcticDEM in the modeling
procedure.
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