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ABSTRACT Incorporating partial momentum refreshment into Magnetic Hamiltonian Monte Carlo
(MHMC) to create Magnetic Hamiltonian Monte Carlo with partial momentum refreshment (PMHMC) has
been shown to improve the sampling performance of MHMC significantly. At the same time, sampling from
an integrator-dependent shadow or modified target density has been utilised to boost the acceptance rates of
HamiltonianMonte Carlo (HMC), which leads tomore efficient sampling as the integrator is better conserved
by the shadow Hamiltonian than the true Hamiltonian. Sampling from the shadow Hamiltonian associated
with the numerical integrator used inMHMC is yet to be explored in the literature. This work aims to address
this gap in the literature by combining the benefits of the non-canonical Hamiltonian dynamics of MHMC
with those achieved by targeting the modified Hamiltonian. We first determine the modified Hamiltonian
associated with the MHMC integrator and use this to construct a novel method, which we refer to as Shadow
Magnetic Hamiltonian Monte Carlo (SMHMC), that leads to better sampling behaviour when compared to
MHMC while leaving the target distribution invariant. The new SMHMC method is compared to MHMC
and PMHMC across various target posterior distributions, including datasets modeled using Bayesian Neural
Networks and Bayesian Logistic Regression models.

INDEX TERMS Bayesian neural networks, Bayesian logistic regression, Hamiltonian Monte Carlo,
magnetic Hamiltonian Monte Carlo, shadow Hamiltonian, Markov chain Monte Carlo.

I. INTRODUCTION
Markov Chain Monte Carlo (MCMC) methods are a vital
inference tool for probabilistic machine learning mod-
els [1]–[6]. MCMC algorithms are preferable to variational
approaches [7], [8] as they are assured to converge to the
correct target distribution if the sample size is adequately
large [9], [10]. These methods are premised on constructing
a Markov chain of samples that asymptotically, as the num-
ber of generated samples tends to infinity, converge to the
desired equilibrium distribution. By definition, the samples
generated by MCMC algorithms are auto-correlated, which
means that they will have higher variance than classical
Monte Carlo techniques. This branch of inference techniques
was initially developed by physicists, with famous examples
being the Metropolis-Hastings [11] method of Metropolis
and Hastings and the now popular and go-to Hamiltonian
Monte Carlo (HMC) algorithm of Duane et al. [12]. These
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MCMCmethods then later entered the field of computational
statistics, where they are used today to sample from various
complex probabilistic models [13].

HMC has been enhanced over the last decade with
some examples of the improved algorithms being Rieman-
nian Hamiltonian Monte Carlo [2] which considers the
local geometry of the target posterior to better explore
the density, the No-U-Turn Sampler (NUTS) [3] which
automatically tunes the trajectory length and step size
parameters of HMC, Quantum-Inspired Hamiltonian Monte
Carlo [14] which uses a random mass matrix as inspired by
the behaviour of quantum particles, continuously-tempered
Hamiltonian Monte Carlo [15], [16] which is suited for
sampling from multi-modal distributions and also produces
the Bayesian evidence metric which can be utilised for
model comparison, Magnetic Hamiltonian Monte Carlo [4],
[17] which employs non-canonical Hamiltonian dynamics
to better explore the target posterior, as well as methods
that use shadow Hamiltonians, such as Separable Shadow
Hamiltonian Hybrid Monte Carlo [18] and ShadowManifold
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Hamiltonian Monte Carlo [5], to sample from high dimen-
sional target densities while maintaining high sample accep-
tance rates [5], [18]–[23].

Magnetic Hamiltonian Monte Carlo (MHMC) utilises
non-canonical dynamics to skillfully probe the target poste-
rior distribution [4], [6], [20]. MHMC introduces a magnetic
field to HMC which leads to reduced auto-correlations and
efficient convergence [4], [24]. MHMC has been extended
to manifolds by Brofos and Lederman [25] and shows good
improvement over MHMC. Mongwe et al. [26] present a
method for the automatic tuning of the step size and trajec-
tory length parameters in MHMC, which shows improve-
ment over MHMC. This method is based on the NUTS
methodology of Hoffman and Gelman [3]. MHMC has the
disadvantage that the magnetic component has to be spec-
ified by the user. In the existing literature on MHMC,
there are no automated means of tuning the magnetic
component [4], [6], [20].

It has been previously confirmed that the performance of
HMC suffers from the deterioration in acceptance rates due to
numerical integration errors as the system size increases [5],
[19]. AsMHMC is an extension of HMC, and becomes HMC
when the magnetic component is absent, one would expect
MHMC also suffers from the pathology of deterioration of
acceptance rates as the system size increases. This deterio-
ration in acceptance rates results in large auto-correlations
between the generated samples, thus requiring large sample
sizes. The decline of the acceptance rates can be reduced
by using more accurate higher-order integrators, by using
smaller step sizes, or by employing shadow Hamiltoni-
ans [23]. These first two approaches tend to be more com-
putationally expensive than the latter approach [5], [23].
In this work, we explore the method of utilising shadow
Hamiltonians.

Shadow Hamiltonian-based samplers have been success-
fully employed to manage the deterioration of sample accep-
tance as the system size and step sizes increases and lead to a
more efficient sampling of the target posterior [18], [19], [22].
The shadow Hamiltonians are constructed by performing
backward error analysis of the integrator and, as a result, are
better preserved when compared to the true Hamiltonian [27].
Numerous strategies have been proposed for sampling from
shadow Hamiltonians of diverse numerical integrators [5],
[18], [19], [22], [28].

Mongwe et al. [29] introduce the Quantum-Inspired Mag-
netic Hamiltonian Monte Carlo algorithm. Their work
explored the utility of employing a random mass matrix
for the auxiliary momentum variable in MHMC, which is
consistent with the behaviour of quantum particles. The
results showed a significant improvement in sampling results
when compared to MHMC. Magnetic Hamiltonian Monte
Carlo with partial momentum refreshment (PMHMC) was
introduced by Mongwe et al. [17] and shows that retain-
ing some of the chains’ past dynamics can improve the
sampling performance of MHMC. The disadvantage of
the above two approaches is the need to manually tune

the volatility-of-volatility and momentum refreshment
parameters that the authors introduce. Although these works
addressed important gaps in the literature, they did not con-
sider the potential benefits of sampling from the shadow
Hamiltonian instead of the true Hamiltonian in MHMC.
Mongwe et al. [28] explored the benefits of combining
shadow Hamiltonians and partial momentum refreshment
for the Separable Shadow Hamiltonian Monte Carlo method
with good results. Sampling from the shadow Hamiltonian
associated with the leapfrog-like integrator used in MHMC
is yet to be explored in the literature.

In this work, we address this gap in the literature by
deriving the fourth-order shadow Hamiltonian correspond-
ing to the leapfrog-like integrator in MHMC. From this,
we construct the novel ShadowMagnetic HamiltonianMonte
Carlo (SMHMC) algorithm, which leaves the target den-
sity invariant. We compare the performance of the proposed
method to MHMC and the PMHMC algorithm in [17]. The
empirical results on a multivariate Gaussian distribution with
a dimension of ten, real-world benchmark datasets modeled
using Bayesian Logistic Regression and Bayesian Neural
Network targets show that SMHMC achieves higher effective
sample sizes when compared to the other MCMC algorithms
considered. The proposed method does, however, consume
more computational resources than the other MCMC meth-
ods due to the requirement to compute the shadow Hamilto-
nian and thus leads to poor performance on a time-normalised
basis. This is a crucial area of improvement of the proposed
method, which we intend to address in the future.

A. CONTRIBUTIONS
Our contributions in this work can be summarised as follows:

• A shadow Hamiltonian that is preserved up to
fourth-order by the numerical integrator used in MHMC
is derived.

• We combine the benefits of non-canonical Hamiltonian
dynamics with the proprieties of shadow Hamiltoni-
ans to form the Shadow Magnetic Hamiltonian Monte
Carlo (SMHMC) algorithm, which is guaranteed to
leave the target density invariant.

• Numerical experiments across diverse targets show that
the new algorithm outperforms the other considered
MCMC techniques on an effective sample size basis.

The remainder of this paper is structured as follows:
Sections II and III discuss the material that forms the basis
of the new method, Section IV introduces the new method,
Section V outlines the experiments conducted and Section VI
discusses the results of the experiments. We then provide the
conclusion in Section VII.

II. MAGNETIC HAMILTONIAN MONTE CARLO
TheHamiltonianMonte Carlo (HMC) algorithm is composed
of two steps: 1) the molecular dynamics step and 2) theMonte
Carlo step. The molecular dynamics step involves integrating
Hamiltonian dynamics, while the Monte Carlo step employs
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FIGURE 1. Illustration of the conservation of the Hamiltonian (i.e., total
energy) through time as the skater moves from position A to C.

the Metropolis-Hastings (MH) algorithm to account for any
errors introduced by the numerical integrator used in the
molecular dynamics step [11], [12], [19], [22], [30]–[32].
Note that if we could exactly solve the molecular dynamics
step, we would not need the Monte Carlo step.

HMC improves upon the MH [11] algorithm by utilising
first-order gradient information of the unnormalised target
posterior. This gradient information is used to guide HMC’s
exploration of the parameter space [12], [32]. This necessities
that the target posterior function is differentiable and has
support almost everywhere on RD, which is the case for the
majority of machine learning models of interest. In HMC,
the position vectorw is augmented with auxiliary momentum
variable p, which is typically chosen to be independent of w.
The Hamiltonian H (w,p), which represents the total energy,
from this system is written as follows:

H (w,p) = U (w)+ K (p) (1)

whereU (w) is potential energy or the negative log-likelihood
of the target posterior distribution and K (p) is the kinetic
energy defined by the kernel of a Gaussian with a covariance
matrixM [1]:

K (p) =
1
2
log

(
(2π )D|M|

)
+

pTM−1p
2

. (2)

Within this framework, the evolution of the physical sys-
tem is governed by Hamiltonian dynamics [1], [33]. As the
particle moves through time using Hamiltonian dynamics,
the total energy is conserved over the entire trajectory of the
particle, with kinetic energy being exchanged for potential
energy and vice versa to ensure that the Hamiltonian or total
energy is conserved [1], [33]. As an illustration, consider a
person skating from position A to C as displayed in Figure 1.
At position A, the person only has potential energy and no
kinetic energy, and they only have kinetic energy at point B.
At position C, they have both kinetic and potential energy.
Throughout the movement from A to C, the total energy
will be conserved if the individual traverses the space using
Hamiltonian dynamics. This allows the individual to traverse
long distances. This energy conservation property of Hamil-
tonian dynamics is key to the efficiency of HMC in exploring
the target posterior.

The equations governing the Hamiltonian dynamics are
defined by Hamilton’s equations in a fictitious time t as
follows [31]:

dw
∂t
=
∂H (w,p)
∂p

;
dp
∂t
= −

∂H (w,p)
∂w

. (3)

which can also be re-expressed as:

d
∂t

[
w
p

]
=

[
0 I
−I 0

] [
∇wH(w, p)
∇pH(w, p)

]
(4)

The Hamiltonian dynamics satisfy the following important
properties, which make it ideal for efficiently generating
distant proposals [30], [34]:

1) Conservation of energy: That is, the change of the
Hamiltonian through time is zero as illustrated in Fig-
ure 1. Mathematically:

∂H (w,p)
∂t

=
∂H (w,p)
∂w

∂w
∂t
+
∂H (w,p)
∂p

∂p
∂t

=
∂H (w,p)
∂w

(
∂H (w,p)
∂p

)
+
∂H (w,p)
∂p

(
−
∂H (w,p)
∂w

)
H⇒

∂H (w,p)
∂t

= 0 (5)

2) Reversibility: That is, the dynamics can be moved
forward in time by a certain amount and backwards in
time by the same amount to get back to the original

position. Mathematically: Let8t,H

[
w0
p0

]
be the unique

solution at time t of equation (3) with initial position[
w0
p0

]
. As the Hamiltonian in equation (1) is time-

homogeneous, we have that :

8t,H ◦8s,H

[
w0
p0

]
= 8t+s,H

[
w0
p0

]
H⇒ 8−t,H ◦8t,H

[
w0
p0

]
=

[
w0
p0

]
(6)

3) Volume preservation: This property serves to simplify
the MH step in HMC so that it does not require a
Jacobian term, as volume preservation means that the
Jacobian term is equal to one [1], [35]. There have
also been extensions of HMC that do not preserve
volume [33].

These three properties are significant in that conservation of
energy allows one to determine if the approximated trajectory
is diverging from the expected dynamics, reversibility of
the Hamiltonian dynamics ensures reversibility of the sam-
pler, and volume preservation simplifies the MH acceptance
step [1], [5].

The differential equation in equations (3) and (4) cannot
be solved analytically in most instances. This necessitates the
use of a numerical integration scheme. As the Hamiltonian in
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equation (1) is separable, to traverse the space, we can employ
the leapfrog integrator [12], [31]. The position and momen-
tum update equations for the leapfrog integration scheme are:

pt+ ε2 = pt +
ε

2
∂H (wt ,pt)

∂w
wt+ε = wt + εM−1pt+ ε2

pt+ε = pt+ ε2 +
ε

2

∂H
(
wt+ε,pt+ ε2

)
∂w

. (7)

Algorithm 1: Hamiltonian Monte Carlo Algorithm
Input: N , ε, L, winit, H (w, p)
Output: (w)Nm=0

1: w0← winit
2: for m→ 1 to N do
3: pm−1 ∼ N (0,M)
4: pm, wm = Leapfrog(pm−1, wm−1, ε, L, H ) in

equation (7)
5: δH = H (wm−1, pm−1)− H (wm, pm)
6: αm = min (1, exp (δH))
7: um ∼ Unif(0, 1)
8: wm =Metropolis(αm, um, wm, wm−1) in equation

(8)
9: end for

Due to the discretisation errors arising from the numerical
integration, the Monte Carlo step in HMC utilises the MH
algorithm in which the parametersw∗ proposed by the molec-
ular dynamics step are accepted with probability:

P(accept w∗) = min
(
1,

exp (−H (w∗,p∗))
exp (−H (w,p))

)
. (8)

Algorithm 1 shows the pseudo-code for the HMC where ε
is the discretisation step size and L is the trajectory length.
The overall HMC sampling process follows a Gibbs sampling
scheme, where we fully sample the momentum (see line 3 in
Algorithm 1) and then sample a new set of parameters given
the drawn momentum.

Magnetic Hamiltonian Monte Carlo (MHMC) is a special
case of non-canonical HMC using a symplectic structure cor-
responding to motion of a particle in a magnetic field [4], [6].
MHMC extends HMC by endowing it with a magnetic field,
which results in non-canonical Hamiltonian dynamics [4].
This magnetic field offers a significant amount of flexibil-
ity over HMC and encourages more efficient exploration of
the posterior, which results in faster convergence and lower
auto-correlations in the generated samples [4], [20], [24].
MHMC uses the same Hamiltonian as in HMC, but exploits
non-canonical Hamiltonian dynamics where the canonical
matrix now has a non-zero element on the diagonal. The
MHMC dynamics are given as:

d
∂t

[
w
p

]
=

[
0 I
−I G

] [
∇wH(w, p)
∇pH(w, p)

]
(9)

whereG is a skew-symmetric1 (or antisymmetric ) matrix and
is the term that represents the magnetic field. This also shows
that MHMC only differs fromHMC dynamics in equation (4)
by G being non-zero. When G = 0, MHMC and HMC
have the same dynamics. Tripuraneni et al. [4] prove that in
three dimensions, these dynamics are Newtonian mechanics
of a charged particle in a magnetic field. How this magnetic
field relates to the force field (e.g. are they orthogonal?) will
determine the extent of the sampling efficiency of MHMC
over HMC [24].

As with HMC, these non-canonical dynamics cannot be
integrated exactly, and we resort to a numerical integration
schemewith aMHacceptance step to ensure detailed balance.
The update equations for the leapfrog-like integration scheme
for MHMC, for the case where M = I, are given as [4]:

pt+ ε2 = pt +
ε

2
∂H (wt ,pt)

∂w
wt+ε = wt +G−1 (exp (Gε)− I)pt+ ε2
pt+ ε2 = exp (Gε)pt+ ε2

pt+ε = pt+ ε2 +
ε

2

∂H
(
wt+ε,pt+ ε2

)
∂w

. (10)

The above equations show that we can retrieve the update
equations of traditional HMC by first performing a Taylor
matrix expansion for the exponential and then substituting
G = 0. The pseudo-code for the MHMC algorithm is shown
in Algorithm 2. It is important to note that we need to flip
the sign of G (see lines 8-15 in Algorithm 2), as we do the
sign of p in HMC, so as to render the MHMC algorithm
reversible. In this sense, we treat G as being an auxiliary
variable in the same fashion as p [4]. In this setup, p would
be Gaussian whileGwould have a binary distribution [4] and
only taking on the values ±G0, with G0 being specified by
the user. Exploring more complex distributions for G is still
an open area of research.

Although MHMC requires matrix exponentiation and
inversion as shown in equation (10), this only needs to
be computed once upfront and stored [4]. Following this
approach results in computation time that is comparable to
HMC, which becomes more important in models that have
many parameters such as neural networks.

As G only needs to be antisymmetric, there is no guar-
antee that it will be invertible. In this case, we need first to
diagonalise G and separate its invertible or singular com-
ponents [4]. As G is strictly antisymmetric, we can express
it as iH where H is a Hermitian matrix, and can thus be
diagonilised over the space of complex numbers C as [4]:

G = [W3 W0]
[
3 0
0 0

][W T
3

W T
0

]
(11)

where 3 is a diagonal submatrix consisting of the nonzero
eigenvalues of G, columns of W3, and W0 are the eigenvec-
tors of G corresponding to its nonzero and zero eigenvalues,

1That is: GT
= −G.

VOLUME 10, 2022 34343



W. T. Mongwe et al.: Shadow Magnetic Hamiltonian Monte Carlo

respectively. This leads to the following update for w in
equation (10) [4]:

wt+ε = wt + [W3 W0]

×

[
3−1 (exp(3ε)− I) 0

0 I

][
W T
3

W T
0

]
pt+ ε2 (12)

It is worthwhile noting that when G = 0 in equation (12)
then the flow map will reduce to an Euler translation as in
traditional HMC [4].

Algorithm 2:Magnetic Hamiltonian Monte Carlo Algo-
rithm

Input: N , ε, L, winit, H (w, p), G
Output: (w)Nm=0

1: w0← winit
2: for m→ 1 to N do
3: pm−1 ∼ N (0,M)
4: pm, wm = Integrator(pm−1, wm−1, ε, L, G, H ) in

equation (10)
5: δH = H (wm−1, pm−1)− H (wm, pm)
6: αm = min (1, exp (δH))
7: um ∼ Unif(0, 1)
8: if αm > um then
9: wm = wm
10: G = −G, pm = −pm
11: else
12: wm = wm−1
13: end if
14: pm = −pm← flip momentum
15: G = −G← flip magnetic field
16: end for

III. SHADOW HAMILTONIAN FOR MAGNETIC DYNAMICS
The leapfrog-like integrator for MHMC only preserves the
Hamiltonian, that is, the total energy of the system, up to
second order O(ε2) [18], [18], [19]. This leads to a larger
than expected value for δH in line 5 of Algorithm 2 for long
trajectories, which results inmore rejections in theMH step in
line 8 of Algorithm 2. To increase the accuracy of the preser-
vation of the total energy to higher orders, and consequently
maintain high acceptance rates, one could: 1) decrease the
step size and thus only consider short trajectories, or 2) utilise
numerical integration schemes which preserve the Hamilto-
nian to a higher order, 3) or a combination of 1) and 2).
These three approaches typically lead to a high computational
burden, which is not ideal [5], [23].

An alternative strategy is to assess the error produced
by feeding the solution backward through [21], [27] the
leapfrog-like integration scheme in equation (10), to derive
a modified Hamiltonian whose energy is preserved to a
higher-order by the integration scheme than the true Hamilto-
nian [21]. This modified Hamiltonian is also referred to as the
shadow Hamiltonian. We then sample from the shadow den-
sity and correct for the induced bias via importance sampling
as is done in [5], [18], [19], [23], among others.

Shadow Hamiltonians are perturbations of the Hamilto-
nian that are by design exactly conserved by the numerical
integrator [19]–[21], [23]. In this manuscript, we focus on
a fourth-order truncation of the shadow Hamiltonian under
the leapfrog-like numerical integrator in equation (10). Since
the MHMC numerical integrator is second-order accurate
(O2) [4], the fourth-order truncation is conserved with higher
accuracy (O4) by the integrator than the true Hamiltonian.
In Theorem 1, we derive the fourth-order shadow Hamilto-
nian under the numerical integrator.
Theorem 1: Let H : Rd×Rd = R be a smoothHamiltonian

function. The fourth–order shadow Hamiltonian function Ĥ :
Rd ×Rd = R corresponding to the numerical integrator used
in MHMC is given by:

Ĥ (w,p) = H (w,p)+
ε2

12

[
KpUwwKp + KpGKppUw

]
−
ε2

24

[
UwKppUw

]
+O(ε4) (13)

Proof: As outlined in Tripuraneni et al. [4], the Hamil-
tonian vector field

−→
H = ∇pH∇w + (−∇w + G∇pH )∇p =

−→
A +
−→
B will generate the exact flow corresponding to exactly

simulating the MHMC dynamics [4]. We obtain the shadow
Hamiltonian via the separability of the true Hamiltonian [4].
The numerical integration scheme in equation (10) splits the
Hamiltonian as: H (w,p) = H1(w) + H2(p) + H1(w) and
exactly integrates each sub-Hamiltonian [4]. Using the Baker-
Campbell-Hausdorff [36] formula we obtain:

8
frog
ε,H = 8ε,H1(w) ◦8ε,H2(p) ◦8ε,H1(w)

= exp
(ε
2
−→
B
)
◦ exp

(
ε
−→
A
)
◦ exp

(ε
2
−→
B
)

= H (w,p)+
ε2

12
{K , {K ,U}}

−
ε2

24
{U , {U ,K }} +O(ε4) (14)

where the non-canonical Poisson brackets [6], [37] are
defined as:

{f , g} = [∇wf ,∇pf ]
[
0 I
−I G

]
[∇wg,∇pg]T

= −∇pf∇wg+∇wf∇pg+∇pfG∇pg (15)

and collapse to the canonical Poisson brackets when
G = 0 [6], [37]. The corresponding derivatives from the
non-canonical Poisson brackets are presented in Appendix A.
The shadow Hamiltonian for the leapfrog-like integrator is
then:

Ĥ (w,p) = H (w,p)+
ε2

12

KpUwwKp + KpGKppUw︸ ︷︷ ︸
A


−
ε2

24

[
UwKppUw

]
+O(ε4) (16)

where A is the factor induced by the presence of the magnetic
field G. When G = 0, the shadow in (16) becomes the
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shadow for Hamiltonian dynamics [18], [19]. Note that the
modified Hamiltonian in (16) is preserved to fourth-order [5],
[18], [23], and is thus more accurately conserved by numeri-
cal integrator in MHMC than the true Hamiltonian [38].

IV. SHADOW MAGNETIC HAMILTONIAN MONTE CARLO
We now present the Shadow Magnetic Hamiltonian Monte
Carlo (SMHMC) algorithm, which combines non-canonical
Hamiltonian dynamics in MHMC with the high conservation
property of shadow Hamiltonians. The benefits of employ-
ing non-canonical Hamiltonian dynamics in MHMC have
already been established in [4], [17], [24], while the advan-
tages of shadow Hamiltonians in general are presented in [5],
[18], [20]–[22]. We combine these two concepts to create a
new sampler that outperforms MHMC across various perfor-
mance metrics.

An analysis of the shadow Hamiltonian corresponding to
MHMC in equation (13) shows that the conditional density
for the momenta πH (p|w) is not Gaussian. This suggests that
if we fully re-sample themomenta from a normal distribution,
as is done in [33], wewill attain a sampler that does not satisfy
detailed balance [5], [22]. This necessitates computationally
intensive momentum generation [19] or partial momentum
refreshment [22], [23] with an MH step. In this manuscript,
we utilise the partial momentum refreshment procedure out-
lined in [5], [22], in which a Gaussian noise vector u ∼
N (0,M) is drawn. The momentum proposal is then produced
via the mapping:

R(p, u) =
(
ρp+

√
1− ρ2u,−

√
1− ρ2p+ ρu

)
(17)

The new parameter, which we refer to as the momentum
refreshment parameter, ρ = ρ(w,p, u) takes values between
zero and one, and controls the extent of the momentum reten-
tion [5], [17], [23]. When ρ is equal to one, the momentum
is never updated and when ρ is equal to zero, the momentum
is always updated [17]. The momentum proposals are then
accepted according to the modified non-separable shadow
Hamiltonian given as H̄ (w,p, u) = Ĥ (w,p)+ 1

2uM
−1u. The

updated momentum is then taken to be ρp+
√
1− ρ2u with

probability:

ω := max{1, exp(H̄ (w,p, u)− H̄ (w,R(p, u)))}. (18)

The incomplete refreshment of the momentum produces
a chain which saves some of the behaviour between neigh-
bourhood samples [5], [17], [22], [23], [39]. In Section V-D,
we assess the sensitivity of the sampling results on the
user-specified value of ρ. An algorithmic description of the
SMHMC sampler is provided in Algorithm 3. It is worth
noting from Algorithm 3 that the SMHMC sampler uses two
reversible MH steps, which implies that the resulting Markov
chain is no longer reversible [5], [22], [23]. By breaking
the detailed balance condition, it is no longer immediately
clear that the target density is stationary, and so this must be
demonstrated [5], [23].

Theorem 2: The SMHMCalgorithm leaves the importance
target distribution invariant.

Proof: The proof of theorem 2 is obtained in Appendix
A of the paper by Radivojevic and Akhmatskay [23]. The
proof involves showing that the addition of step 4 in
Algorithm 3 leaves the target invariant. The result follows
from [23] by making use of the fact that the explicit form of
the shadow Hamiltonian, which has the additional magnetic
component A = KpGKppUw in equation (16) in our case,
is not required for the proof [5], [23].

Algorithm 3: Shadow Magnetic Hamiltonian Monte
Carlo Algorithm

Input: L, ε, ρ, N , G, (w0,p0).
Output: (wi, pi, bi)Ni=0

1: for i→ 1 to N do
2: (w,p)← (wi−1,pi−1).
3: u ∼ N (0,M)
4: p̄← ρp+

√
1− ρ2u with probability ω in equation

(18).
5: (ŵ, p̂) = 8L

ε,H (w, p̄,G) in equation (10)

6: ζ = min
[
1, exp(−δĤ )

]
, u ∼ Unif(0, 1)

7: if ζ > u then
8: (wi,pi,G)← (ŵ, p̂,G)
9: else
10: (wi,pi,G)← (w,−p,−G)
11: end if
12: bi = exp

(
Ĥ (wi,pi)− H (wi,pi)

)
13: end for

V. EXPERIMENT DESCRIPTION
In this section, we outline the settings used for the experi-
ments, the performance metrics, approach for algorithm tun-
ing, and we also present the sensitivity analysis for the partial
momentum refreshment parameter ρ used in SMHMC and
PMHMC.

A. EXPERIMENT SETTINGS
In our analysis, we compare the performance of SMHMC
against MHMC and PMHMC across a multivariate Gaussian
distribution described in [17] with D = 10, the
Protein dataset [20] modeled using a Bayesian Neural
Network (BNN) and the Heart [20] and Pima [20] datasets
modeled using Bayesian Logistic Regression (BLR). The
details of the real-world datasets are shown in Table 1. Note
that the BNN architecture used is an MLP with one hidden
layer and five hidden units. For all the target posteriors used
in this paper, the momentum refreshment parameter ρ is set to
0.7. This setting worked well on all the targets. Further exper-
iments of the sensitivity to ρ are presented in Section V-D.

B. PERFORMANCE METRICS
We now present the performance metrics used to measure the
performance of the algorithms proposed in this manuscript.
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The performance metrics used are the acceptance rate, the
multivariate effective sample size (ESS), themultivariate ESS
normalised by the execution time. We also assess the conver-
gence of the proposed SMHMC method using the potential
scale reduction factor metric. The acceptance rate metric
measures the number of generated samples that are accepted
in the MH acceptance step of the algorithm [23], [29]. The
higher the number of accepted samples for the same step size,
the more preferable the method. We discuss the remaining
metrics in more detail in the following sections.

1) EFFECTIVE SAMPLE SIZE
The ESS metric is a commonly used metric for assessing the
sampling efficiency of an MCMC algorithm. It indicates the
number of effectively uncorrelated samples out of the total
number of generated samples [23], [29]. The larger the ESS,
the better the performance of the MCMC method. The ESS
normalised by execution time metric takes into account the
computational resources required to generate the samples and
penalises MCMC methods that require more computational
resources to generate the same number of uncorrelated sam-
ples. The larger this metric, the better the efficiency of the
algorithm.

This paper employs the multivariate ESS metric developed
by Vats et al. [40] instead of the minimum univariate ESS
metric typically used in analysing MCMC results. The mini-
mum univariate ESS measure is not able to capture the corre-
lations between the different parameter dimensions, while the
multivariate ESS metric can incorporate this information [2],
[20], [40]. The minimum univariate ESS calculation results
in the estimate of the ESS being dominated by the parameter
dimensions that mix the slowest and ignore all other dimen-
sions [20], [40]. The multivariate ESS is calculated as:

mESS = N ×
(
|3|

|6|

) 1
D

(19)

whereN is the number of generated samples,D is the number
of parameters, |3| is the determinant of the sample covari-
ance matrix and |6| is the determinant of the estimate of
the Markov chain standard error. When D = 1, mESS is
equivalent to the univariate ESSmeasure [40]. Note that when
there are no correlations in the chain, we have that |3| = |6|
and mESS = N .

We now address the ESS calculation forMarkov chains that
have been re-weighted via importance sampling, such is the
case for the SMHMC algorithm proposed in this paper [5],
[20], [21], [23]. For N samples re-weighted by importance
sampling, the common approach is to use the approximation
by Kish [5], [41] given by

ESSIMP =
1(∑N
j=1 b̄

2
j

) (20)

where b̄j = bj/
∑N

k=1 bk . This accounts for the possible
non-uniformity in the importance sampling weights. In order
to account for both the effects of sample auto-correlation

and re-weighting via importance sampling, we approximate
ESS under importance sampling by taking directions from
Heide et al. [5] and using:

ESS :=
ESSIMP
N

×mESS =
1(∑N
j=1 b̄

2
j

) × ( |3|
|6|

) 1
D

(21)

2) CONVERGENCE ANALYSIS
The R̂ diagnostic of Gelman and Rubin [42] is a favored tech-
nique for verifying the convergence of MCMC chains [43].
This diagnostic depends on running numerous chains
{Xi0,Xi1, . . . ,Xi(N−1)} for i ∈ {1, 2, 3, . . . ,m} starting at
diverse initial conditions with m being the number of chains
and N being the sample size. Using these parallel chains, two
estimators of the variance can be constructed. The estimators
are the between-the-chain variance estimate and the within-
the-chain variance. When the chain has converged, the ratio
of these two estimators should be one. The R̂ metric, which
is formally known as the potential scale reduction factor,
is defined as:

R̂ =
V̂
W

(22)

where

W =
m∑
i=1

N−1∑
j=0

(
Xij − X̄i.

)2
m(N − 1)

(23)

is the within-chain variance estimate and V̂ = N−1
N W + B

N is
the pooled variance estimate which incorporates the between-
chains

B =
N−1∑
j=0

(
X̄i. − X̄..

)2
m− 1

(24)

and within-chainW variance estimates, with X̄i. and X̄.. being
the ith chain mean and overall mean respectively for i ∈
{1, 2, 3, . . . ,m}. Values larger than the convergence threshold
of 1.05 for the R̂ metric indicate divergence of the chain [6],
[42]. In this paper, we asses the convergence of the chains by
computing the maximum R̂metric over each of the parameter
dimensions for the given target.

C. ALGORITHM PARAMETER TUNING
As mentioned in Section II, the matrix G in the MHMC
method provides an extra degree of freedom which typically
results in better sampling behavior than HMC [4], [20], [25].
It is not immediately clear how this matrix should be set - this
is still an open area of research [4], [6], [20]. In this paper,
we take direction from the inventors [4] of the method and
select only a few dimensions to be influenced by the magnetic
field. In particular, G was set such that G1i = g, Gi1 = −g
and zero elsewhere where g = 0.2 for the BLR datasets, and
g = 0.1 for all the other targets.
These settings mean that the selection of G is not nec-

essarily the optimal choice for all the target distributions
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TABLE 1. Real-world datasets used in this paper. N represents the
number of observations. BLR is Bayesian Logistic Regression, and BNN
means Bayesian Neural Networks. D denotes the number of model
parameters.

TABLE 2. Step size and trajectory length parameters used for the MCMC
methods in this manuscript. Five thousand samples were used to tune the
step size for the given trajectory length using primal-dual averaging. The
target acceptance rate was set to 80%.

considered but was adequate for our objectives as this basic
setting still leads to satisfactory performance on the SMHMC
algorithm that we present in this manuscript. Tuning G for
each target posterior should result in improved performance
compared to the results given in this manuscript. An alter-
native approach to the selection of G would have been to
follow [6] and selecting G to be a random antisymmetric
matrix. It is not immediately clear if the approach of [6] is
necessary optimal, and we plan to explore this approach in
future work.

The step size ε is tuned to target an acceptance rate of
80% using the primal-dual averaging methodology of [3].
The trajectory lengths L used vary across the different targets,
with the final step sizes and trajectory lengths used for the
diverse problems presented in Table 2.

Ten independent chainswere run for each approach on each
target distribution. Three thousand samples were generated
for each target, with the first one-thousand samples discarded
as burn-in. These settings were adequate for all the methods
to converge on all the target posteriors. All the experiments
in this manuscript were conducted on a machine with a 64bit
CPU using PyTorch.

D. SENSITIVITY TO MOMENTUM REFRESHMENT
PARAMETER
We investigate the effects of varying the momentum refresh-
ment parameter ρ on the sampling performance of the pro-
posed shadowHamiltonian method. Ten chains, starting from
different positions, of the PMHMC and shadowMHMC algo-
rithms were ran on the Australian credit dataset for ρ ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that we
exclude ρ = 1.0 as the chain is likely to no longer be
ergodic as the momentum would not be refreshed at all [5].
Figure 2 shows the results for the Australian credit dataset.
The results show that PMHMC and SMHMC have stable
acceptance rates across the different values of ρ on all this

TABLE 3. Multivariate Gaussian distribution with D = 10 results averaged
over ten runs. The time t is in seconds. The values in bold indicate that
the particular method outperforms the other methods on that specific
metric. AR stands for the acceptance rate of the generated samples post
the burn-in period.

TABLE 4. Protein dataset results averaged over ten runs. The time t is in
seconds. The values in bold indicate that the particular method
outperforms the other methods on that specific metric. AR stands for the
acceptance rate of the generated samples post the burn-in period.

TABLE 5. Heart dataset results averaged over ten runs. The time t is in
seconds. The values in bold indicate that the particular method
outperforms the other methods on that specific metric. AR stands for the
acceptance rate of the generated samples post the burn-in period.

target. SMHMC has higher acceptance rates and ESS than
PMHMC for the same step size. However, due to the high
execution time of SMHMC, PMHMC produced better time-
normalised ESS compared to SMHMC. The methods show
a general trend of increasing ESS and time-normalised ESS
with increasing ρ.

VI. RESULTS AND DISCUSSION
Figure 3 shows the diagnostic trace-plots of the negative
log-likelihood across various target posteriors. The results
show that all three methods have converged on the four target
densities analysed in this paper.

The performance of the algorithms across different metrics
is shown in Figure 4 and Tables 3 to 6. In Figure 4, the plots
on the first row for each dataset show the effective sample
size, and the plots on the second row show the effective
sample size normalised by execution time. The results are
for the ten runs of each algorithm. The execution time t in
Figure 4 and Tables 3 to 6 is in seconds. The results in Tables 3
to 6 are the mean results over the ten runs for each algorithm.
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FIGURE 2. Acceptance rates, ESS and ESS/Time for ten chains of PMHMC (blue) and SMHMC (orange) the Australian credit dataset with varying choices
of ρ. The ESS metrics are an increasing function of ρ with the acceptance rate of SMHMC being larger than PMHMC for the same step size ε.

FIGURE 3. Diagnostic trace-plots of the negative log-likelihood across various targets averaged over ten runs of each method. These results show that
all the MCMC methods have converged on all the targets.

TABLE 6. Pima dataset results averaged over ten runs. The time t is in
seconds. The values in bold indicate that the particular method
outperforms the other methods on that specific metric. AR stands for the
acceptance rate of the generated samples post the burn-in period.

We use the mean values over the ten runs in Tables 3
to 6 to form our conclusions about the performance of the
algorithms.

Tables 3 to 6 show that SMHMC produces the high-
est acceptance rate across all the targets. Furthermore, the
SMHMC algorithm produces the largest ESS on all the tar-
gets. In particular, it outperforms PMHMC, which shows that
the method is doing something extra than just incorporating

partial momentum refreshment into the MHMC. However,
the source of the outperformance of SMHMC seems to be
mostly driven by the incorporation of the partial momen-
tum refreshment, highlighting the benefits of utilising par-
tial momentum refreshment in Hamiltonian dynamics-based
samplers in general.

The results show that the MHMC and PMHMC pro-
duce the lowest execution times across all the targets, with
SMHMC having the largest execution time, sometimes as
much as two times that of the MHMC method. The large
execution time of SMHMC can be attributed to the multiple
times that the shadow Hamiltonian is evaluated, as well as
the extra MH step for the momenta generation. The slow
execution time is the key drawback of SMHMC, and hinders
the performance of the method on a time-normalised ESS
basis. We find that PMHMC outperforms all the methods on
a time-normalised ESS basis. SMHMC outperforms MHMC
on the BLR datasets on a time-normalised ESS basis, with
MHMC outperforming SMHMC on the other targets on
the same basis. Furthermore, the R̂ metric shows that all
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FIGURE 4. Results for the datasets over ten runs of each method. For each dataset, the plots on the first row show the multivariate effective sample size
and the plots on the second row show the multivariate effective sample size normalised by execution time (in seconds). For all the plots, the larger the
value, the better the method. The dark horizontal line in each violin plot represents the mean value over ten runs of each algorithm.

the methods have converged, with PMHMC and SMHMC
producing marginally better convergence behaviour com-
pared to MHMC.

VII. CONCLUSION
We introduce the novel SMHMC algorithm, which combines
the non-canonical dynamics of MHMC with the benefits
of sampling from a shadow Hamiltonian. This combination
results in improved exploration of the posterior when com-
pared to MHMC. The empirical results show that the new
algorithm provides a significant improvement on the MHMC
algorithm in terms of higher acceptance rates and larger effec-
tive sample sizes, even as the dimensionality of the problem
increases.

A primary limitation of the proposed algorithm is the
computational time associated with the method, mainly since
it involves the computation of the Hessian matrix of the
target distribution. This leads to poor performance on a
time-normalised ESS basis. A straightforward approach to
circumvent the computational burden is to use closed-form
expressions for the first-order derivatives and the Hessian
matrix. This approach, however, restricts the possible targets
that can be considered. We aim to address this issue in the
future by using a surrogate model to approximate the shadow
Hamiltonian during the burn-in period of the method as an
active learning task.

Another limitation of the method is the need to tune the
momentum refreshment parameter. Although typically higher
values of the parameter improve the effective sample sizes,
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a more robust approach to selecting the parameter is still
required. In future work, we plan on improving the proposed
method by establishing an automated process to tune the
momentum refreshment parameter.

APPENDIX
A. DERIVATIVES FROM POISSON BRACKETS
We now present the derivatives derived from the non-
canonical Poisson brackets:

{K ,U} = −∇pK∇wU +∇wK∇pU

+∇pKG∇pU − KpUw

{K , {K ,U}} = −KpUwwKp − KpGKppUw

{U ,K } = UwKp

{U , {U ,K }} = UwKppUw (25)

ACKNOWLEDGMENT
The computations in this work were performed on resources
provided by the Center for High Performance Comput-
ing (CHPC) at the Council of Scientific and Industrial
Research (CSIR) South Africa.

REFERENCES
[1] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. New York,

NY, USA: Springer-Verlag, 2012.
[2] M. Girolami and B. Calderhead, ‘‘Riemann manifold Langevin and Hamil-

tonian Monte Carlo methods,’’ J. Roy. Statist. Soc. B, Stat. Methodol.,
vol. 73, no. 2, pp. 123–214, Mar. 2011.

[3] M. D. Hoffman and A. Gelman, ‘‘The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo,’’ J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 1593–1623, Apr. 2014.

[4] N. Tripuraneni, M. Rowland, Z. Ghahramani, and R. Turner, ‘‘Magnetic
Hamiltonian Monte Carlo,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 3453–3461.

[5] C. Heide, F. Roosta, L. Hodgkinson, and D. Kroese, ‘‘Shadow manifold
Hamiltonian Monte Carlo,’’ in Proc. Int. Conf. Artif. Intell. Statist., 2021,
pp. 1477–1485.

[6] J. A. Brofos and R. R. Lederman, ‘‘Non-canonical Hamiltonian
Monte Carlo,’’ 2020, arXiv:2008.08191.

[7] G. E. Hinton and D. van Camp, ‘‘Keeping the neural networks simple by
minimizing the description length of the weights,’’ in Proc. 6th Annu. Conf.
Comput. Learn. Theory (COLT), 1993, pp. 5–13.

[8] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, ‘‘Stochastic vari-
ational inference,’’ J. Mach. Learn. Res., vol. 14, no. 5, pp. 1303–1347,
2013.

[9] F. Ruiz and M. Titsias, ‘‘A contrastive divergence for combining varia-
tional inference and MCMC,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 5537–5545.

[10] T. Salimans, D. Kingma, andM.Welling, ‘‘Markov chain Monte Carlo and
variational inference: Bridging the gap,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 1218–1226.

[11] W. K. Hastings, ‘‘Monte Carlo sampling methods usingMarkov chains and
their applications,’’ Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970.

[12] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, ‘‘Hybrid
Monte Carlo,’’ Phys. Lett. B, vol. 195, pp. 216–222, Sep. 1987.

[13] M. Graham and A. Storkey, ‘‘Continuously tempered Hamiltonian Monte
Carlo,’’ in Proc. Conf. Uncertainty Artif. Intell. (UAI), 2017. [Online].
Available: http://auai.org/uai2017/proceedings/papers/289.pdf

[14] Z. Liu and Z. Zhang, ‘‘Quantum-inspired Hamiltonian Monte Carlo for
Bayesian sampling,’’ 2019, arXiv:1912.01937.

[15] M. Graham and A. Storkey, ‘‘Continuously tempered Hamiltonian
Monte Carlo,’’ in Proc. Adv. Approx. Bayesian Inference, NIPS
Workshop, 2016. [Online]. Available: http://approximateinference.org/
accepted/GrahamStorkey2016.pdf

[16] R. Luo, J. Wang, Y. Yang, J. Wang, and Z. Zhu, ‘‘Thermostat-assisted
continuously-tempered Hamiltonian Monte Carlo for Bayesian learning,’’
in Advances in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Red Hook, NY, USA: Curran, 2018, pp. 10673–10682.

[17] W. T. Mongwe, R. Mbuvha, and T. Marwala, ‘‘Magnetic Hamiltonian
Monte Carlo with partial momentum refreshment,’’ IEEE Access, vol. 9,
pp. 108009–108016, 2021.

[18] C. R. Sweet, S. S. Hampton, R. D. Skeel, and J. A. Izaguirre, ‘‘A sepa-
rable shadow Hamiltonian hybrid Monte Carlo method,’’ J. Chem. Phys.,
vol. 131, no. 17, Nov. 2009, Art. no. 174106.

[19] J. A. Izaguirre and S. S. Hampton, ‘‘Shadow hybrid Monte Carlo: An effi-
cient propagator in phase space of macromolecules,’’ J. Comput. Phys.,
vol. 200, no. 2, pp. 581–604, Nov. 2004.

[20] W. T. Mongwe, R. Mbuvha, and T. Marwala, ‘‘Antithetic mag-
netic and shadow Hamiltonian Monte Carlo,’’ IEEE Access, vol. 9,
pp. 49857–49867, 2021.

[21] R. Mbuvha, W. T. Mongwe, and T. Marwala, ‘‘Separable shadow Hamil-
tonian hybrid Monte Carlo for Bayesian neural network inference in wind
speed forecasting,’’ Energy AI, vol. 6, Dec. 2021, Art. no. 100108.

[22] E. Akhmatskaya and S. Reich, ‘‘The targeted shadowing hybrid
Monte Carlo (TSHMC) method,’’ in New Algorithms for Macromolecular
Simulation. Berlin, Germany: Springer-Verlag, 2006, pp. 145–158.

[23] T. Radivojević and E. Akhmatskaya, ‘‘Modified Hamiltonian Monte Carlo
for Bayesian inference,’’ 2017, arXiv:1706.04032.

[24] M. Gu and S. Sun, ‘‘Neural Langevin dynamical sampling,’’ IEEE Access,
vol. 8, pp. 31595–31605, 2020.

[25] J. A. Brofos and R. R. Lederman, ‘‘Magnetic manifold Hamiltonian
Monte Carlo,’’ 2020, arXiv:2010.07753.

[26] W. T. Mongwe, R. Mbuvha, and T. Marwala, ‘‘Adaptive magnetic
Hamiltonian Monte Carlo,’’ IEEE Access, vol. 9, pp. 152993–153003,
2021.

[27] E. Hairer, ‘‘Backward error analysis for multistep methods,’’ Numerische
Math., vol. 84, no. 2, pp. 199–232, Dec. 1999.

[28] W. T. Mongwe, R. Mbuvha, and T. Marwala, ‘‘Utilising partial momentum
refreshment in separable shadow Hamiltonian hybrid Monte Carlo,’’ IEEE
Access, vol. 9, pp. 151235–151244, 2021.

[29] W. T. Mongwe, R. Mbuvha, and T. Marwala, ‘‘Quantum-inspired mag-
netic Hamiltonian Monte Carlo,’’ PLoS ONE, vol. 16, no. 10, Oct. 2021,
Art. no. e0258277.

[30] R. M. Neal, ‘‘Probabilistic inference using Markov chain Monte Carlo
methods,’’ Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech.
Rep. CRG-TR-93-1, Jan. 1993.

[31] R. M. Neal, ‘‘Bayesian learning via stochastic dynamics,’’ in Advances
in Neural Information Processing Systems. San Francisco, CA,
USA: Morgan Kaufmann, 1993, pp. 475–482. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645753.667903

[32] R. Neal, ‘‘MCMC using Hamiltonian dynamics,’’ in Handbook of Markov
Chain Monte Carlo, S. Brooks, A. Gelman, G. L. Jones, and X. L. Meng,
Eds. London, U.K.: Chapman & Hall, 2011, pp. 116–162.

[33] J. Sohl-Dickstein, M. Mudigonda, and M. DeWeese, ‘‘Hamiltonian Monte
Carlo without detailed balance,’’ in Proc. Int. Conf. Mach. Learn., 2014,
pp. 719–726.

[34] M. Betancourt, ‘‘A conceptual introduction to Hamiltonian Monte Carlo,’’
2017, arXiv:1701.02434.

[35] H. M. Afshar, R. Oliveira, and S. Cripps, ‘‘Non-volume preserving
HamiltonianMonte Carlo and no-u-turnsamplers,’’ inProc. Int. Conf. Artif.
Intell. Statist., 2021, pp. 1675–1683.

[36] E. Hairer, M. Hochbruck, A. Iserles, and C. Lubich, ‘‘Geometric numerical
integration,’’ Oberwolfach Rep., vol. 3, no. 1, pp. 805–882, 2006.

[37] K.-C. Chen, ‘‘Noncanonical Poisson brackets for elastic and micro-
morphic solids,’’ Int. J. Solids Struct., vol. 44, no. 24, pp. 7715–7730,
Dec. 2007.

[38] R. D. Skeel and D. J. Hardy, ‘‘Practical construction of modified Hamil-
tonians,’’ SIAM J. Scientific Comput., vol. 23, no. 4, pp. 1172–1188,
Jan. 2001.

[39] A. M. Horowitz, ‘‘A generalized guided Monte Carlo algorithm,’’ Phys.
Lett. B, vol. 268, no. 2, pp. 247–252, Oct. 1991.

[40] D. Vats, J. M. Flegal, and G. L. Jones, ‘‘Multivariate output analysis for
Markov chain Monte Carlo,’’ Biometrika, vol. 106, no. 2, pp. 321–337,
Jun. 2019.

[41] L. Kish, ‘‘Survey sampling. HN29, K5,’’ Wiley, New York, NY, USA,
Tech. Rep. 4, 1965.

34350 VOLUME 10, 2022



W. T. Mongwe et al.: Shadow Magnetic Hamiltonian Monte Carlo

[42] A. Gelman and D. B. Rubin, ‘‘Inference from iterative simula-
tion using multiple sequences,’’ Statist. Sci., vol. 7, pp. 457–472,
Nov. 1992.

[43] V. Roy, ‘‘Convergence diagnostics for Markov chain Monte Carlo,’’ Annu.
Rev. Statist. Appl., vol. 7, no. 1, pp. 387–412, Mar. 2020.

WILSON TSAKANE MONGWE was born in
Tembisa, Gauteng, South Africa. He received the
B.Sc. degree in computing from the University of
South Africa, and the Bachelor of Business Sci-
ence (B.Bus.Sci.) degree in actuarial science and
the master’s degree in mathematical finance from
the University of Cape Town. He was a recipient of
the Google Ph.D. Fellowship in machine learning,
which supports his current Ph.D. research with the
University of Johannesburg. His research interests

include Bayesian machine learning andMarkov chainMonte Carlo methods.

RENDANI MBUVHA was born in Venda,
Limpopo, South Africa. He received the B.Sc.
degree (Hons.) in actuarial science and statis-
tics from the University of Cape Town, and the
M.Sc. degree in machine learning from KTH,
Royal Institute of Technology, Sweden. He is
currently a Senior Lecturer in statistics and actuar-
ial science with the University of Witwatersrand,
Johannesburg. He is a Qualified Actuary and a
Holder of the Chartered Enterprise Risk Actu-

ary Designation. He was a recipient of the Google Ph.D. Fellowship in
machine learning, which supported his Ph.D. research with the University
of Johannesburg.

TSHILIDZI MARWALA (Senior Member, IEEE)
was born in Duthuni, Venda, Limpopo,
South Africa, in July 1971. He received the bache-
lor’s degree in mechanical engineering from Case
Western Reserve University, Cleveland, OH, USA,
in 1995, the master’s degree in mechanical engi-
neering from the University of Pretoria, Pretoria,
South Africa, in 1997, and the Ph.D. degree in
engineering from the University of Cambridge
(St. Johns College), Cambridge, U.K., in 2000.

He is currently a Registered Professional Engineer (Pr. Eng.) with the
Engineering Council of South Africa. He has also completed other lead-
ership courses from the Columbia Business School, National University of
Singapore, GIBS University of Pretoria, Harvard Business School, and the
University of South Africa. Some of his accomplishments include being a
fellow of Cambridge Commonwealth Trust, in 1997, CSIR, in 2005, South
African Academy of Engineering, in 2007, TWAS, The World Academy of
Science, in 2010, African Academy of Science, in 2013, and South African
Institute of Electrical Engineers, in 2016. He has won many awards, includ-
ing notably, the Bronze Order of Mapungubwe awarded by the President of
the Republic of South Africa, in 2004, and the TWAS-AAS-Microsoft Award
for Young Scientists, in 2009. His contributions in artificial intelligence field
come in forms of over 15 books he has authored, over 50 peer-reviewed
chapters, over 50 journal publications and over 150 conference publications.
He also holds the Deputy Chairperson of the Presidential Fourth Industrial
Revolution Commission of South Africa position and has contributed to over
50 articles to local press and journals on the subject of Fourth Industrial
Revolution and Economics. He is currently the Vice-Chancellor and the
Principal of the University of Johannesburg.

VOLUME 10, 2022 34351


