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ABSTRACT Outdoor insulators may experience stress due to severe environmental conditions, such as
pollution and contamination. Through the identification of partial discharges by ultrasonic noise, it is possible
to assess the possibility of a power grid failure occurring. In this paper, ensemble models are used to analyze
an ultrasonic signal from an ultrasonic microphone Pettersson M500. As the insulators are susceptible to
developing irreversible failures, it will be evaluated whether the ultrasonic signal will remain over time,
so that it is possible to assess whether the discharges being captured can result in a failure in contaminated
polymeric insulators, evaluated in a high voltage laboratory under controlled conditions. The ensemble
models were used in this paper because they typically require less computational effort than techniques based
on deep learning and have acceptable performance for the problem at hand. The bagging, boosting, random
subspace, bagging plus random subspace, and stacked generalization ensemble models are evaluated, and
the best result of each model is used to compare the differences between the models. The bagging ensemble
learning model proved to be faster and have lower error than other ensemble models, long short-term memory

(LSTM), and nonlinear autoregressive (NAR).

INDEX TERMS Deep learning, machine learning, insulator testing.

I. INTRODUCTION

To guarantee the supply of electricity to consumers, it is
necessary to have a reliable power grid. Electrical power
system inspections are the key to early fault identification
and predictive maintenance [1]. Usually, during the insulation
degradation process, there are various types of manifestations
that can be caught with appropriate equipment. By moni-
toring such manifestations in regular field inspections, the
reliability of the system can be increased [2].
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There are several types of insulators degradation processes,
one of them that is common to be observed in inspections
is the build up of contamination on the surface of the
insulators in rural or polluted areas [3]. When contamination
is strongly attached to the surface of the insulator, its
conductivity may increase, making this component more
vulnerable to flashovers [4]. Some techniques to identify
the contamination can be applied for the diagnosis of the
insulator’s condition [5].

According to Lv, Zhao, and Song [6] the non-soluble
deposit density in a fog environment can be analyzed using
the finite element method (FEM) to evaluate the electric field
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in transmission line insulators. The FEM stands out for the
flexibility of the evaluation of parameter changes in electrical
equipment, thus, profile variations can be evaluated without
the need to develop several prototypes [7].

The composite materials shows advantages in this applica-
tion and are being widely used, then, it becomes increasingly
important to assess the influence of contamination on these
new components [8]. A major difference of composite mate-
rials in relation to porcelain insulators is their hydrophobicity
capacity, reducing the levels of the leakage current, which
may also reduce the degradation process, thus improving anti-
pollution performance [9].

The prediction of time series can be performed using
several models [10]—[12]. There is no model that is suitable
for all signal variations. Thus, to reach a better accuracy
is necessary to compare the models that are used for this
purpose [13]. Based on this statement the contributions of this
paper are:

o The ensemble learning methods are adequate for time
series prediction because they require less compu-
tational effort compared to deep learning structures.
To evaluate that, a comparison between the ensemble
models and the long short-term memory (LSTM) is
presented. The LSTM is an algorithm applied in deep
learning that is widely used for time series prediction.

o The second contribution is related to the possibil-
ity of variation in the structure, based on different
arrangements it is possible to apply a more efficient
structure. In this paper the bagging, boosting, random
subspace, bagging plus random subspace, and stacked
generalization models are evaluated.

« Finally, the third contribution is related to the analysis
of a chaotic time series. Signals with high noise are
difficult to be analyzed as the high frequencies can have
a nonlinear pattern. For this reason, the algorithm needs
to be robust to have a reliable result. The necessary
feature to deal with this type of data is found in the
ensemble models that are presented in this paper.

The continuation of this paper is organized as follows: In
Section II related works are presented. Section III discusses
the characteristics of polymeric insulators and presents the
laboratory test, carried out to detect the ultrasonic noise
of contaminated insulators. In Section IV the Ensemble
Learning Models are presented. In Section V the results
of the analysis are discussed and finally, in Section VI the
conclusion is described.

Il. RELATED WORK

To improve the diagnosis of possible failures in electrical
power components, an approach that has proven to be suc-
cessful is the prediction of failures [14], which is the specific
subject addressed in this paper. Among the techniques used
to improve the predictive capacity of the model, the wavelet
transform stands out for having the ability to reduce the
noise in the signal without losing its characteristic [15]. Other
techniques widely used nowadays are the LSTM and the
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support vector machine (SVM) that can be applied to different
type of problems [16].

One of the practical difficulties in identifying an insulator
with damaged properties is that defects can be hidden under
the mooring cables or under contamination [17]. Identifying a
failed component during an inspection of the electrical power
system requires great experience from the operator [18],
even then the human factor may bring uncertainties to the
process [19].

Based on the growing use of polymeric insulators and the
need to diagnose their conditions [20], this paper presents
an evaluation of the time series prediction, to determine the
development of a fault by verifying the signal variation.
The evaluation presented in this paper is related in terms of
the ability to predict a chaotic signal emitted by an ultrasound
detector, which is a specific equipment for inspection of the
electrical power system.

Increased contamination on the surface of an insulator
results in a cumulative loss of its insulating properties,
resulting in a greater likelihood of discharges occurring in its
surroundings. Partial discharges, which usually occur during
the degradation process, emit ultrasonic noise that can be
identified with specific equipment [21]. From the prediction
of increased discharges or a variation in the ultrasonic signal,
it is possible to predict a flashover before it happens.

Pre-processing the ultrasonic signal is a strategy to improve
the ability to predict a failure, however, many algorithms
that filter the signal can reduce relevant information. This
becomes a major challenge for prediction models, consid-
ering that with more nonlinearities it is more difficult to
train the model properly. Some studies have been carried
out to classify the condition of insulators using acoustic
signals [22]. In addition to classification, it is promising
to evaluate the capabilities of predicting the signal of a
contaminated insulator, considering that it is more susceptible
to failure.

Nowadays, one of the approaches that are being increas-
ingly used is the ensemble learning method, mainly because
of their lower computational effort compared to other tech-
niques. When the problem is divided into smaller problems
to be solved by simpler combined models, an efficient frame-
work is obtained for dealing with complex problems [23].
As it is possible to combine the weak models in different
ways to obtain a robust structure, it is possible to carry out
variations in the architecture until a suitable model is obtained
to be used in the problem in question. Because of this ability
to adapt the model structure to the problem and require less
computational effort, the ensemble learning models stand out
to predict chaotic time series [24].

IIl. OUTDOOR POLYMERIC INSULATORS

High voltage polymeric insulators that are used outdoors are
susceptible to tracking and erosion due to contamination,
since hidrophobicity eventually is lost [25]. From the
beginning of these effects there is a tendency to continue
until there is a flashover and the insulator is damaged [26].
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FIGURE 1. Contaminated long rod polymer insulator.

Based on this, there will be a failure in the electrical power
system that may cause a disconnection from the grid and
the components will need to be replaced through corrective
maintenance, leaving the system off [27]-[29]. Therefore,
it is necessary to detect these effects before a disruptive
fault occurs. The ultrasound can be used to assess the level
of contamination, making possible to perform predictive
maintenance, cleaning the electrical power grid, or changing
the component that may develop the failure [30].

The development of the fault can be linked to the increase
in a measure of the insulator’s condition. The leakage current
is a measure that can be used to evaluate the time series
measured according to the increase of contamination, thus
being possible to forecast the development of a failure by
the variation of this measure [2]. Regarding the time series
forecasting, several approaches are being studied to obtain a
better performance with lower computational cost, such as the
ensemble learning models which will be presented in the next
section.

According to Meyer and Pintarelli [31] the polymeric
insulators are being used in electricity distribution networks
in Brazil, considering that they are lighter and therefore
easily installed. A long rod 24.2 kV class polymer insulator
for anchoring the electrical distribution network [32], with
surface contamination was evaluated. This component is
presented in Figure 1, where the electrical potential is applied
to the top of the insulator and ground is connected to the
bottom.

A. LABORATORY SETUP

To simulate the contamination found in the field, a solid
contamination method was used with Kaolin inside the salt
spray chamber (as shown in Figure 2). Kaolin is an ore
composed of hydrated aluminium silicates that are used to
simulate contamination in outdoor insulators. Initially, the
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FIGURE 2. Laboratory analysis setup.

insulators are cleaned with isopropyl alcohol and dried in an
oven, the kaolin is weighed with a precision scale to have the
exact concentration to simulate contamination. The insulator
is immersed in a glass beaker containing a slurry of Kaolin.
The definition of the quantity of salt used for contamination
is determined by measuring the conductivity during sample
preparation [33].

After the contamination is evenly distributed over the
insulation surface, the insulator is dried in the oven and
installed in the chamber for measurements. The chamber
has a volume of 8 m?, being 2 m high, 2 m wide and
2 m deep. The salt spray chamber is designed for laboratory
analysis to be carried out under controlled conditions.
To perform the artificial contamination contamination the
international electrotechnical commission (IEC-507) [34]
was used, which is specific for determining the characteristics
of the tolerably of artificial pollution. This standard is
developed by the insulator studies commission for overhead
lines and substations, which is specific for tests on artificial
pollution in high voltage insulators [35].

The chamber has a conductive metal arc that is energized
with high voltage to simulate the electrical cables, this arc is
connected to a porcelain bushing, which in turn is connected
to an external muffle which is connected to an isolated
medium voltage cable, which in its other termination also
has an external muffle connected. The muffle is connected
to the high voltage of a single-phase transformer. The low
voltage of the transformer is connected to a voltage regulator
that is connected to the mains. The voltage is measured by
a multimeter connected to a high voltage probe at the high
voltage terminal of the transformer.

The chamber was used because it is completely sealed
and helps to reduce possible external interference in the
ultrasound measurements. In this way, the insulator was
connected to the ring with electrical voltage applied and the
other side of the insulator was grounded. The microphone
was positioned inside the chamber directed to the subject
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FIGURE 3. Ultrasonic signal recorded in the laboratory of the clean and
contaminated insulators.

insulator, at a distance of approximately 50 cm from the
insulator. The microphone was connected to a notebook and
then measurements were made.

In this paper, 10,000 samples recorded in the measurement
were considered. In this way, all ultrasonic frequencies
are within the analyzed spectrum and the signal becomes
processable [36]. Due to the high amount of the data, the hold-
out approach [37] is adopted in this paper. For training and
testing 70% and 30% were respectively used in the machine
learning models.

For comparative purposes, Figure 3 presents the image of
the signal recorded by the ultrasound detector of an insulator
in good condition (which is clean and new), and an insulator
that is contaminated. A window of the recorded signals was
presented with only 500 samples, then it is possible to better
visualize the differences. In this work, in particular, the signal
evaluated was that of the contaminated insulator.

It can be observed that the signal of the contaminated
insulator has a greater amplitude as well as variations
containing lower frequencies. The visual difference between
the signals is small, which makes it difficult to identify a fault
in the field. When an insulator develops its leakage current
the signal amplitude becomes even higher with frequencies
that have its origin in partial discharges and/or dry band
arcing [38].

Due to the large amount of non-linearities in the signal
caused by discharges, forecasting the time series of a signal
based on ultrasonic noise is a difficult task, making it
necessary to use advanced prediction models such as deep
learning strategies or techniques that combine several weaker
learners to obtain a stronger model, such as ensemble-based
techniques that will be the focus of this paper.

The identification that there is an increase in the amplitude
of the signal is possible through advanced artificial intelli-
gence techniques [39]. The choice of which technique is most
suitable for the problem is difficult, since some techniques
have a high computational effort [40]. Based on the problem
presented in this section, ensemble models are used to predict
the signal produced by ultrasound, these models are presented
in the next section.

IV. ENSEMBLE LEARNING MODEL
The ensemble learning models are approaches that combine
weak learners to obtain an algorithm with greater regression

VOLUME 10, 2022

capability. These methods have currently stood out in
applications related to the electrical system, as their main
advantage is their superior convergence speed compared to
deep learning strategies [41].

In this paper, the weak learners used for the ensemble
models are the support vector regression (SVR) type [42].
The SVR to perform the relationship between input and
output of the data is given by:

F®=we¢x+b (1)

where f(x) is the forecasting values and ¢ is the mapping of
the input vector x [43]; w and b are adjustable the coefficients
calculated by minimizing the risk function (R):

N
R = 2 D Le (v W' (5 +5) @)
i=1

where L, is the loss function to penalize the training errors,
calculated by:
0 fly—f®l=e
Le (y.f (%)) = ; 3
ly —f (X)| — & otherwise
The use of the loss function in the regularized function
leads to a quadratic programming problem [44]. The
minimization of the regularized function can be rewritten as
the equivalent optimization problem, which is often called the
primal problem:
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Given the Karush-Kuhn-Tucker (KKT) conditions for the
primal problem [45], the dual form of the regression function
is:

n
FO =) (i—af)K (xixj) +b ©)
i=1
wherein o; and o] are the Lagrangian multipliers [46].

The kernel functions K (x;, x;) used in this paper were linear
(LIN) (10), radial basis function (RBF) (11), and polynomial
(POLY) (12).

K(x;, Xj) = X/ X;. (10)
K(xi, %)) = exp(— ||x; — x;[ ). (11)
Kxi,x) = (1 +xx;)7. (12)

The optimizers used in the SVR were soft-margin mini-
mization via quadratic programming (L1QP), iterative single
data algorithm (ISDA), and sequential minimal optimization
(SMO) [47].

Using the L1QP a linear approximation is considered in the
space resource. The approximation function is calculated by
minimizing the approximation error for training and response
data [48]. This is accomplished by minimizing:

vl + c%c- (13)
2 i=1 l
subject to
yiw p(x) +b) = 1 — ¢ (14)
for
i=1,....M (15)

where M is the number of training data, w is the weight
vector, x; is the training data, y; is the response variable, C
is the margin parameters, and ¢; is the positive slack variable.

ISDA is designed to avoid the use of typical solvers [49].
The important feature of the algorithm is that it deals with one
data point at a time to develop the objective function. SMO
systematically solves many small optimization problems
that are divided into subsets, including only 2 Lagrange
multipliers at a time [50].

One of the great difficulties in using ensemble models is
that there is a wide range of approaches and defining the best
strategy is a difficult task [51]. Based on this premise, this
paper aims to compare variations of these algorithms for a
chaotic time series prediction problem, specifically, bagging,
boosting, random subspace, and stacking ensemble learning
models will be evaluated. The differences between these
models are mainly given by the way that the weak learners are
organized, being usually these structures bagging, boosting,
random subspace, and stacked generalization.

The bagging ensemble learning will focus on getting an
ensemble model with less variance than its components, with
stacking mainly trying to produce strong models less skewed
than its components [52]. To fit several independent models
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FIGURE 4. Bagging ensemble learning model.

and calculate the average of their predictions to obtain less
variance would be necessary to have a very large dataset, then
the bagging model is considered to approximate properties
of bootstrap samples to fit the model, which are almost
independent [53].

Initially, examples are created for each new bootstrap that
acts as other approximately independent datasets taken from
the true distribution. Thus, each weak learners is adjusted for
the samples and these are aggregated obtaining an average
of their results [54]. In Figure 4 the bagging ensemble
learning model is presented, it is possible to see that the
strategy consists of adjusting several base models in different
bootstrap samples to build a model that is the average of these
results.

The meta-learner is the combination of the weak learners,
which can be realized in several ways besides bagging
ensemble learning. From an ensemble learning framework,
the use of SVR for regression the meta-learner is given by:

1 L
SO =72 wl) (16)
=1

here the final meta-learner function is S(-) and each weak-
learner regression is given by wy(-), where L is the number of
weak learners [49].

Some strategies like boosting and stacking work similarly
to aggregate the weak learners and obtain a model with
better performance [55]. The boosting model consists of
sequentially adjusting several weak learners in an adaptive
way, SO more importance is given to observations that were
poorly handled by previous models in the sequence [56].

The boosting ensemble learning presented in Figure 5
focuses its efforts on observations that are more difficult
to fit, therefore, the resultant has less bias. Weak models
tend to have low variance and high bias [49]. Based on
this characteristic the models have little degrees of freedom
when parameterized. As the fit of models cannot be done in
parallel, it can be computationally expensive to sequentially
fit complex models [57].

To perform a comparison between the ensemble learning
models, SVRs weak learners were used. Thus, it is possible
to perform a comparison between the ensemble structures
to assess which model is more suitable for the problem in
question. The SVR determines support vectors close to a
hyperplane that maximize the margin between the two-point
classes obtained in relation to the difference between a target
value and a threshold value [51].
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As with other strategies, the stacking ensemble performs
a combination of weak models to result in a model with
greater processing capacity (meta-model). For a classification
task, beyond the SVR the weak learners can be, for
instance, support vector machine (SVM) [58]-[60], k-nearest
neighbors (k-NN) [59], [61], [62], or decision trees [63]-[65].
The artificial neural network will take as inputs the results of
the weak learners and it will return the final predictions based
on these [66]. The structure of the stacking ensemble model
is shown in Figure 6.

The first step in this algorithm is to adjust the data
referring to the input of the network and the second step
adjust the meta-model using predictions made by previous
weak learners [67]. The data division is performed in such
a way that the training of weak learners is not relevant
for the training of the meta-model, only the combination
of its results has an influence on the training process [68].
To obtain better reliability in the model, cross-validation can
be applied to separate the dataset. For the stacking approach
the combination of weak learners is presented in Figure 6.

To prevent overfitting a regularization parameter is used.
In the boosting structure, new models are iteratively trained,
focusing on observations that previous models had greater
difficulty in predicting, making this structure predictive.
As the goal is to reduce the bias of the simplest predictors,
it is suitable to use a simpler model with high bias and low
variance [49].

To generate the meta learner in the boosting approach,
weak learners are added one by one in an iterative
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optimization process, according to:

s10) = 5121C) + cwi(+) (17

where the weights ¢; and w; are chosen so that s; is the model
that fits better the training data (improving s;—1). The process
is done until convergence, when S(-) = s;(-).

The random subspace method is similar to bagging, except
those resources are randomly sampled for each learner. This
causes individual learners to not focus on features that appear
to be predictive or descriptive in the training set [69]. Thus,
in this model, random subspaces are a promising choice for
large problems where there are more resources than training
dataset [70].

The random subspace ensemble learning model, shown
in Figure 7, was developed to deal with high-dimensional
problems. This approach combines weak learners trained
in random subspaces in an iterative process, which results
in a suitable approach to problems with a large number of
resources [71].

For comparison purposes, the LSTM [72] and the nonlinear
autoregressive (NAR) [73] models will be used to compare
to the ensemble approach. The LSTM is used as a deep
learning strategy and the NAR is used as a classical approach
to perform a complete comparison.

A. LONG SHORT-TERM MEMORY

The LSTM model stands out for applications in time series,
considering its ability to deal with non-linear variations of
the system [74]. The LSTM can be calculated through the
equations:

iy = 0g(Wix; + Rihy—1 + by),
i = og(Wrxy + Rehy—1 + by),
Oy = Ug(W()xl + Rohi—1 + by). (18)

where R and W are earning matrices and b is the polarization
matrix, whose values are assigned by the net training. The o,
is the activation function of gate. To achieve the predicted
values of future time steps, the responses of the training
sequences are shifted by one time step. Thus, for each input
time step, the network learns to forecast the value of the next
time step [75].

For global analysis, two optimizers will be used,
these being the stochastic gradient descent with momen-
tum (SGDM) [76] and the adaptive moment estimation
(ADAM) [75]. The SGDM is a classic optimizer that has
been used by several researchers due to its simplicity and
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satisfactory result, ADAM is a modern optimizer that is
standing out for artificial intelligence applications [77].

In addition to the analysis of the optimizers, the use
of deeper layers is evaluated, being a strategy that is
currently being widely researched given the popularization
of the deep learning approach. For comparison purposes the
hyperparameters were set: 200 hidden units, initial learn rate
of 0.005, gradient threshold of 1, learn rate drop period of
125, and learn rate drop factor of 0.2. The model used in this
paper is a standard structure sequence-to-sequence regression
LSTM network, available in MathWorks of Matlab.

B. NONLINEAR AUTOREGRESSIVE

To perform a comparative analysis with shallow learning
structures [78], the NAR was used to predict the time series,
given by:

f) =f0—1),...

where y() is the predicted output of the model given d past
values and another series of x(¢) [79].

Like the compared models, NAR is applied for multi-step
prediction of a sequence of values in a time series.” In this
approach, when external feedback is missing, the closed-loop
can continue to predict using internal feedback.

To evaluate the configuration parameters, the Levenberg-
Marquardt (LM) [80] and bayesian regularization (BR) [81]
optimizers were applied. All evaluated models were com-
pared using the same settings, following the performance
measures presented in the next subsection.

Y —d),) + e, 19)

C. PERFORMANCE MEASURES

The signal error is calculated by the difference in the observed
value y; to the predicted output y; [82]. Thus, for an overall
evaluation in relation to the forecast error, mean-square error
(MSE), root-mean-square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE)
were used, which are calculated as follows:

MSE = % Zn; (i = 5)? (20)
=
1)
L
MAE = ;;|yi—§li| (22)
MAPE = Ly [y 23)
n Yi

i=1
where n is the length of the original signal [83]. In this paper,
simulations were performed using an Intel Core 15-7400,

1 https://www.mathworks.com/help/deeplearning/ug/time-series-
forecasting-using-deep-learning.html

2https://www.mathworks.c0m/help/deeplearning/ug/multistep—neural—
network-prediction.html
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20 GB of Random-Access Memory (RAM), with Matlab
software.

V. ANALYSIS OF RESULTS

In this section, the evaluation of the parameters change in
the considered models will be presented and discussed. The
learner kernel base change in the SVR and solver optimizer
will be evaluated. The configuration that obtains the best
results will be used to compare the differences between each
model. The best results for each metric for the used model will
be highlighted in bold. In Table 1 is presented the evaluation
of ensemble learning models.

The best configuration for the bagging model was obtained
using the SMO solver from the LIN kernel as learner
base, considering that using this configuration there was a
significant improvement in MSE and RMSE, and the time
to convergence was among the best results. Using SMO, the
best MAPE was obtained with the RBF kernel, however, there
was a wide variation of results using this metric, which does
not make its analysis reliable. The best convergence time was
also obtained with the RBF kernel, however, using the ISDA
solver.

In this initial analysis, it was noticed that the metrics do
not necessarily indicate the same solver and configuration as
the best choice. This requires a deeper analysis of the results
to determine which metric is more interesting to be evaluated
for more consistent analysis.

The boosting model had similar results to the bagging
model. The best MSE and RMSE were obtained using
LIN kernel from the SMO solver, being among the best
speed results for convergence. In this analysis, the MAPE
values were more approximate, with the exception of the
RBF kernel using the L1QP, which resulted in a MAPE
considerably higher than the other configurations. This result
is not promising, as there is no stability regarding this metric.

In the evaluation of the random subspace ensemble model,
there was also a great variation of MAPE, and the best
result was obtained using the SMO solver with the POLY
kernel function. The best result of the speed for convergence
of the algorithm were also obtained using the SMO solver.
Considering that the best MSE and RMSE were obtained
using L1QP with kernel function LIN with a median
convergence time, this setting was considered for the final
evaluation.

In the bagging plus random subspace model, the best result
considering the MSE and RMSE was obtained using the SMO
solver with the were also obtained using the SMO solver,
however with the RBF kernel function. In this evaluation,
there was less MAPE variance in relation to the configuration
change of the analyzed model, and the best result obtained in
this metric was using the ISDA solver with the LIN kernel
function.

The best values for the MSE and RMSE of the stacking
ensemble learning model were obtained using the L1QP
solver with the RBF kernel function. The best MAPE value
was obtained using the ISDA solver and in this case, there
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TABLE 1. Results of ensemble learning model.

Model Solver gf;‘clfl MSE RMSE MAE MAPE  Time (s)
LIN 1.06x10~% 1.03x10~° 5.88x10~° 2.65 13.56

LIQP ~RBF 129100 1.14x10°° 6.68x10-° 11.62  7.49

POLY 1.39x10°© 1.18x10 5 9.35x10 ° 4.13 6.93

LIN 1.06x10°° 1.03x10 ° 577x10°° 127 5.00

Bagging ISDA ~RBF 129100 1.14x10°° 6.35x10°° 6.03 1.92
POLY 1.38%x10°© 1.18x10 5 1.03x10-° 3.73 120.12

LIN 8.97x10~ 7 947x10 % 5.67x10 ° 36.71 2.36

SMO " RBF 131100 1.14x10°° 6.0Ix10-° 1.19 2.02

POLY 1.23x10°° 1.11x103 973x10°° 548 62.57

LIN 1.13x10~%  1.06x10~° 3.11x10~% 0.46 17.44

LIQP ~RBF 157x10°° 1.25x10 3 4.19x10°° 37.00 15.70

POLY 245x10°° 157x10 3 2.15x10 % 4.39 1751

LIN 1.23x10°° 1.11x10°° 286x10-° 148 2.82

Boosting ISDA ~RBF 142x10°° 1.19x10° 3 4.16x10°° 0.77 2.98
POLY 1.76x10°° 133x10 ° 123x10 % 0.39 249.62

LIN 11Ix10°° 1.06x10 3 1.55x10 ° 1.33 3.03

SMO " RBF 1.39x10° 0 1.18x10 ° 1.24x10°%* 1.83 2.84

POLY 1.85x10°° 1.36x10 ° 237x10~ % 0.65 131.05

LIN 1.24x10-% 1.11x10~3 7.70x10~° 2343 15.51

LIQP ~RBF 132x10° 0 1.15x10 3 797x10-° 261 16.84

POLY 1.35x10°° 1.16x10 3 3.80x10-° 3.61 16.98

LIN 137100 1.17x10 3 1.64x10-* 543 3.14

Random subspace  ISDA ~ RBF 1.58x10° 0 1.26x10 ° 1.67x10 * 6441 2.79
POLY 1.32x10°° 1.I5x10 3 1.93x10-* 21.82 9818

LIN 130x10°° 1.14x10 3 217x10 ° 3445 351

SMO " RBF 148%x10°° 1.22x10° 3 1.05x10~%* 096 2.39

POLY 1.26x10°° 1.12x10° 3 227x10° 027 52.63

LIN 121x10~%  1.10x10~3 827x10~° 3.79 7.89

LIQP ~RBF 135x10°° 1.16x10°° 1.69x10- % 7.04 8.05

POLY 145x10°° 1.21x10 3 1.87x10 * 237 7.56

Bagging plus LIN 1.27><10—Z 1.13><10—j 5.49><10—‘; 0.42 2.52
random subspace  \SPA  _RBF 1.40x10~ 1.I19x10~ 9.84%x10~ 0.88 2.89
POLY 1.29x10°© 1.14x10 5 1.85x10 ° 18.21 26.90

LIN 132x10°9 1.15x10°° 127x10~% 343 2.44

SMO " RBF 14010 1.18x10~° 3.29x10°° 8.94 1.87

POLY 1.13%x10 © 1.06x10 ° 471x10°° 483 11.35

LIN 1.88x10~ %  1.37x10~3 3.94x10~° 3.16 443

LIQP ~RBF 1.40x10~° 1.18x10 3 1.14x10° % 4.80 3.46

POLY 1.71x10°° 131x10 3 7.61x10°° 435 3.52

LIN 1.83x10°° 1.35x10 3 9.34x10°° 0.8 1.51

Stacking ISDA ~RBF 1.6Ix10°° 127x10 3 642x10°° 093 1.58
POLY 1.97x10°° 140x10 3 5.50x10° 045 15.83

LIN 1.65x10°° 1.29x10 3 992x10-° 2.02 1.49

SMO " RBF 1.79%10°° 1.34x10 3 2.50x10°° 0.53 1.50

POLY 1.97x10°° 140x10 3 427x10 ° 1.08 8.48

TABLE 2. Results of all compared ensemble learning models.

was not such an expressive variation as in the other models.
The best conference time was obtained using the SMO solver
with the LIN kernel function. The subsection V-A provides a
comparison between all models in order to obtain an overall
performance comparison.

A. OVERALL COMPARISON OF THE ENSEMBLE METHODS
Using the best optimizer configuration and kernel function,
all simulations were performed again to obtain a comparison
between the best results of each model, this evaluation is
presented in Table 2.

As can be seen, bagging and boosting models have similar
results in all metrics evaluated in this work. They can be
considered the best models for the application in question,
since they have the lowest values of RMSE, MSE, MAPE,
and time to convergence. Comparing all the results, the best
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Ensemble Time
Model MSE RMSE MAPE
Bagging 1.12x10-%  1.06x10=3 3.74 0.92
Boosting 1.13x1076  1.06x1073 276 1.48
Random Sub.  1.26x10~6 1.12x1073  49.66 12.61
B+RS 1.28x1076  1.13x1073  11.62 11.53
Stacking 1.63x1076  1.28x1073 285 1.06

model for this application was the bagging invest which had
the best MSE, being a faster model for convergence in this
evaluation. The forecast result using the bagging model is
shown in Figure 8.

B. LONG SHORT-TERM MEMORY RESULTS
For a comparison using another approach in Table 3 the
results of the LSTM are presented, which is an algorithm that
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FIGURE 8. Results of the predicted signal based on the observed data.

TABLE 3. Results of long short-term memory model.

Optimizer E MSE RMSE MAPE Tz?)‘e
1  130x10°% 1.14x10°3 244 30.93
2 131x107%  1.14x1073 1.3 51.64

SGDbM 3 131x107%  1.14x1073 1.64 76.01
4 133%x107%  1.15x1073  0.87 98.44
1 138x10°% 1.17x10=3 0.33 30.99
2 134x1076  1.16x1073 1.48 55.24

ADAM 3 1.32x107%  1.15x1073  6.65 75.73
4 133x107% 115x1073 3.8l 105.51

has stood out for time series prediction due to its ability to
deal with non-linear data, being an approach widely applied
in deep learning. In this evaluation, the SGDM and ADAM
optimizers were used and the use of deeper layers (DL) in the
LSTM structure were evaluated.

The first observation regarding the results is that the LSTM
needs a longer time for convergence considering that it uses
more computational effort. This observation becomes even
clearer when deeper layers are used. The best result obtained
in this evaluation was using the SGDM optimizer, being
the best MSE, RMSE, and time to convergence. From this
optimizer, the inclusion of deeper layers did not result in a
reduction of the error and resulted in a considerable increase
in the time needed for convergence.

Using the ADAM optimizer, the best result was obtained
with 3 deeper layers. However, this result was lower than
the values obtained using the SGDM optimizer and the time
needed for convergence was considerably higher with this
number of deeper layers. Comparing these results with the
bagging ensemble model, the biggest noticeable difference
is in relation to the time to convergence, as this model was
much faster. Another difference is the error, given by lower
MSE and RMSE, making it clear that this model is more
appropriate to be used in the problem in question.

C. NONLINEAR AUTOREGRESSIVE RESULTS

For a comparative analysis, using a nonlinear autoregressive
model for time series forecasting, Table 4 presents the results
of the use of different optimizers and variations in the number
of hidden neurons (HN).
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TABLE 4. Results of nonlinear autoregressive model.

Optimizer ﬁ MSE RMSE MAPE TE;‘;C
I 197x10~3 443x10~2 2.64 48.96
LM 2 1.98x1073  445x10~2 0.65 27.40
3 1.97x1073  4.44x1072 144 32.51
4 195x1073  4.42x1072  0.62 27.51
1 1.95x10°° 442x10° 2 0.65 57.24
BR 2 197x1073  4.44x10=2 0.61 28.18
3 1.97x1073  443x10~2 2.65 31.41
4 196x1073 443x10=2 1.65 61.46

Although the NAR model is usually fast in the training
process, for this dataset the improvement in the training time
was not so significant compared to LSTM. The training time
in all compared ensemble models was faster. Furthermore, all
error results calculated by the MSE and RMSE were superior,
the NAR model did not show promise for this evaluation. For
this approach, the variation of parameters did not result in
expressive variations in the results.

VI. CONCLUSION

Improved fault detection in electrical system inspections
can help electrical utility companies increase reliability
in the electrical power system. Ultrasound is promising
equipment for fault identification, considering that indirect
detection is directional equipment. From a failure prediction
model based on an analysis of equipment that are on the
threshold of breakdown, it will be possible to identify failures
before they occur and perform maintenance. From predictive
maintenance, it is possible to reduce the maintenance costs
of the network and mainly to reduce the need for corrective
maintenance, which in some situations can leave the system
off and reduce the reliability in the power supply by the
electric power utility.

Based on the results obtained from the ensemble learning
models analysis, it was found that this type of structure
was able to handle highly non-linear data to perform the
prediction. Among the compared models the bagging and
boosting resulted in lower error values considering MSE and
shorter time to convergence than the other models, with a
MSE of 1.12 x 10_6, and 1.13 x 10_6, and a convergence
time of 0.92 and 1.48 seconds respectively.

It was also observed that the random subspace and bagging
plus random subspace models obtained similar results,
regarding the MSE of approximately 1.3 x 10~¢, which makes
it clear that depending on the fact that there may be great
variation in the results, it is necessary to evaluate different
structures to obtain promising results for forecasting time
series.

Comparatively, ensemble models are faster to converge
than LSTM in all variations of the approaches, considering
the use of the best configuration for each one of them, since
the LSTM with a deep layer using the SGDM optimizer had
a time to convergence of 30.93 seconds, being the fastest
configuration in this category, while the bagging, boosting
and stacking ensemble models need less than 2 seconds
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to converge. Another point to be noted is that despite the
greater computational effort of the LSTM, the error values
considering the MSE and RMSE were higher than the
ensemble models, except the stacking model, which resulted
in a greater error than the LSTM. The best result using the
LSTM was a RMSE of 1.14 x 1073 while the bagging and
boosting models had a RMSE of 1.06 x 1073,

Considering the promising results presented in this work,
it becomes feasible to use filters to further improve its
processing capacity as high-frequency noise can increase the
forecast error. The wavelet transform, among other filters, can
reduce signal noise, and then improve the predictive power of
the model. With this, there is room to use hybrid models in
future works, thus improving signal prediction.
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