
Received February 15, 2022, accepted February 28, 2022, date of publication March 22, 2022, date of current version March 29, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3161545

Goal-Oriented Software Design Reviews
MICHIYO WAKIMOTO AND SHUJI MORISAKI , (Member, IEEE)
Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan

Corresponding author: Michiyo Wakimoto (wakimoto.michiyo@g.mbox.nagoya-u.ac.jp)

ABSTRACT Some software requirements are omitted or ambiguous depending on the design context,
although these requirements would not necessarily be omitted or ambiguous when viewed as requirements
alone. The design context sometimes causes inconsistencies among implementations that realize the same
requirement. Existing detection and analysis methods do not limit evaluation of review materials to
implementations of context-dependent design. An evaluation technique that limits the evaluated parts to the
parts describing context-dependent design implementations is expected to be efficient. This paper proposes
a method for detecting inconsistent implementations (context-dependent requirement defects) caused by
context-dependent requirement omissions and ambiguities in design reviews. The proposed method defines
goal-oriented check items for design review using a goal tree obtained by goal-oriented requirements
analysis. Reviewers use the goal-oriented check items to detect inconsistent implementations that realize
the same requirement. This paper also evaluates the proposed method through a case study. The results of
the case study showed that the proposed method defined five goal-oriented check items and that reviewers
detected 24 context-dependent requirement defects with goal-oriented check items. The results also showed
that the sum of the estimated additional effort to define goal-oriented check items and perform design reviews
with goal-oriented check items was 19.6 person-hours. Furthermore, the results showed that an engineer with
general skills and knowledge of software development but without system-specific skills and knowledge
could define a goal tree and the corresponding goal-oriented check items.

INDEX TERMS Context-dependent requirement (CDR), goal-oriented reviews, software reviews, software
quality.

I. INTRODUCTION
Inappropriate requirements can consume substantial rework
effort in subsequent development activities. In particular,
omissions and ambiguities in requirements may lead to exten-
sive changes and corrections in the subsequent development
activities. The causes of requirement omissions include miss-
ing functionality, missing performance, missing interface,
and missing environment [1]. Ambiguity enables multiple
interpretations of the requirements document [2]. Various
approaches and methods to reduce omissions and ambigu-
ities in requirements have been proposed. Software review
is one such static analysis technique for the early detec-
tion of defects, including omissions and ambiguities, and
does not require program execution [3], [4]. Software review
is a visual software-artifact evaluation technique to detect
anomalies, defects, errors, or deviations from specifications
or standards [5]. Perspective-based reading [6] is a reading

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

technique for software review from the perspectives of the
stakeholders; it is designed to reduce omissions and ambigu-
ities in requirements through multiple perspectives. The per-
spectives provide reviewers guides for finding defects from
the viewpoint of stakeholders such as project managers, users,
and testers. Goal-oriented requirements analysis [7] prevents
missing requirements and facilitates requirements decom-
position [8], [9]. Requirements decomposition increases the
requirements coverage by defining goals at various levels of
abstraction [8].

Some requirements are omitted or ambiguous depending
on the design context, although these requirements would
not necessarily be omitted or ambiguous when viewed as
requirements alone. The design context is determined dur-
ing the software design activity. This paper refers to such
omissions or ambiguities in requirements caused by design
context as context-dependent requirement issues (CDRIs).
A CDRI occurs when two or more different implementations
realize the same requirement because the requirements are
defined before the implementations are defined. Although

32584
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4873-9616
https://orcid.org/0000-0002-8290-0584
https://orcid.org/0000-0002-2767-0501


M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

each implementation is adequately supported by the require-
ment, the implementations are not always consistent. For
example, the requirement ‘‘The data are exchanged with files.
The fields in the file must be separated by a line break’’ can
be realized by two implementations: one implementation for
writing a data file and another implementation for reading
the data file. If the two implementations are realized on the
same operating system, no CDRI occurs because the line-
break characters are the same between the implementations.
However, a CDRI occurs if the two implementations are real-
ized on different operating systems and do not consider the
line-break characters for the other operating system. Specifi-
cally, if the implementation for writing a file is realized with
UNIX (LF for a line-break character) and the implementation
for reading the file is realized with Windows (CR and LF
for a line-break character), the fields will not be separated
properly despite each of the two implementations realize the
requirement accurately. In this case, the design context is the
line-break characters for the operating systems.

Feasibility or impact analysis, which can help reviewers
find such design contexts during the requirement process,
requires extensive effort because the analyses check all imple-
mentations: not only two or more implementations, which
realize the same requirement, but also a single implemen-
tation. Identifying two or more implementations, which are
supported by a single requirement and checking consistencies
among them in the design review can help detect inconsisten-
cies caused by CDRIs.

To the best of our knowledge, no specific approach
or method to detect CDRIs or context-dependent require-
ment (CDR) defects caused by CDRIs has been proposed.
This paper proposes a design review method to identify such
inconsistencies among implementations realizing the same
requirement by using a goal tree obtained by goal-oriented
requirements analysis. The proposed method defines check
items to find inconsistencies in the implementations, where
the check items are created from the goal tree. This paper also
evaluates the proposed method through a case study with two
criteria. First, the evaluation investigates whether the check
items for design review can be defined from the goal tree
and then whether the check items can detect CDR defects.
Second, the evaluation investigates whether the proposed
method reduces the estimated rework effort to correct defects.

This paper is structured as follows. The related research
and proposed method are described in Section II and
Section III, respectively. Section IV describes a case study.
Section V discusses the results, and Section VI summarizes
this paper.

II. RELATED RESEARCH
Guided reviews are one approach to detecting defects caused
by omissions or ambiguities in requirements. Guided reviews
help reviewers comprehensively detect severe defects, includ-
ing omissions or ambiguities, by providing detailed instruc-
tions, procedures, and hints. Many studies have reported
on the effectiveness of guided reviews [1], [6], [10]–[17].

Typical techniques of guided reviews are checklist-based
reading (CBR) [3], perspective-based reading (PBR) [12],
defect-based reading (DBR) [11], usage-based reading
(UBR) [13], and traceability-based reading [18]. CBR is a
reading technique in which reviewers use a list of ques-
tions to help them understand what defects to examine [14].
PBR [6], [19], [20] is a scenario-based reading (SBR) [11]
that defines the perspectives of the stakeholders and assigns
the perspectives to reviewers. DBR is a SBR that focuses on
detecting specific types of defects [11], [14]. UBR prioritizes
the use cases and detects the most critical defects in the
target materials alongwith the prioritized use cases [14], [18].
However, these reading techniques do not require that guides
including checklists and scenarios verify inconsistencies
among different implementations for the same requirement.

Goal-oriented requirements analysis [7], [21] is one of
the methods to reduce omissions or ambiguities in require-
ments. Goal-oriented requirements analysis defines soft-
ware requirements by clarifying the structured goals of the
software. Goal-oriented requirements analysis also clarifies
the background and necessities for requirements, facilitates
requirements analysis discussions, and enhances the vali-
dation and tracking of changes to the requirements. Many
goal-oriented requirements analysis methods have been stud-
ied, including the KAOS method [22]–[26], the i∗ frame-
work [27]–[31], and the NFR framework [32]–[35]. However,
detecting omissions or ambiguities in requirements caused
by the design context determined in the design process is
difficult because goal-oriented requirements analysis is per-
formed during the requirements processes.

Traceability between requirements and design elements
can verify that the requirements have been implemented as
design elements in the design document [36]–[41]. Trace-
ability studies have strongly focused on requirements trace-
ability, with the objective of studying how to describe and
follow requirements in both the forward and backward direc-
tions [37], [40]. Traceability is an effective guide to detect
CDRIs; however, it is unclear whether traceability can exam-
ine consistencies among implementations. Although two
methods [42], [43] check consistencies between requirements
and design documents, both of them check consistencies
between different types of UML documents. Thus, they can-
not always detect inconsistencies among the implementations
in the same UML document.

Change impact analysis identifies where the changes
affect [44]–[46], estimates the effort for implementing a
change request [47], [48], and predicts necessary regres-
sion tests according to the set of changes [49]. However,
change impact analysis cannot always detect inconsis-
tencies among implementations. Automotive-SPICE [50]
recommends analyzing the operational (execution) envi-
ronment, including platforms, to analyze the feasibility
of the requirements. Such operational environment anal-
ysis can detect implementation inconsistencies. However,
it does not explicitly refer to detecting inconsistencies among
implementations.

VOLUME 10, 2022 32585



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

III. PROPOSED METHOD
A. PREREQUISITE
In the proposed method, reviewers attempt to detect incon-
sistencies among design implementations and ensure that
the implementations satisfy the goal using goal-oriented
check items. This paper refers to the inconsistencies as CDR
defects. CDR defects are caused by CDRIs. The proposed
method defines goal-oriented check items taking a goal
tree as input. The goal tree provides traceability links from
high-level strategic objectives to low-level technical require-
ments [8]. The proposed method adds goal-oriented check
items to the leaf nodes of the goal tree, which is created by
goal-oriented requirements analysis. The goal tree consists of
the top goal and subgoals.The top goal is the root node of the
goal tree. The root node has a label describing the objective or
state that the system should achieve. The top goal is decom-
posed into one or more subgoals (child nodes) because, with-
out the decomposition, a goal tree may not provide technical
requirements. The goal-oriented check items defined from
the subgoals that do not satisfy the desired requirement can-
not detect inconsistencies among context-dependent imple-
mentations. Thus, the decomposition should be performed
carefully. The goal-oriented requirements analysis [24], [33]
categorizes goals into three categories: functional require-
ments, non-functional requirements, and external constraints.
Thus, the top goal and subgoals for the proposed method can
be categorized into three categories. The node has a label
describing the purpose or the status required to achieve the
parent goal (parent node). Subgoals are recursively decom-
posed into sub-subgoals. The label description is a prescrip-
tive statement of intent that the system should satisfy [22].

B. PROCEDURE
1) Identify the goal tree (top goal and subgoals). If goal-

oriented requirements analysis has created a goal tree
in advance (e.g., requirements analysis), the goal tree
is reused. If the goal tree does not exist, the analyst
describes the goal of the system as the label of the top
goal G. The analyst then decomposes the top goal G
into subgoals G1, G2,. . . , Gm. The analyst creates a
simple label for each subgoal and adds the subgoals as
child nodes of the top goal. The analyst decomposes the
subgoals (G1, G2, . . . , Gm) into sub-subgoals (G1.1,
G1.2, G1.3, . . . , G2.1, G2.2, . . . , Gm.1, G m.2, . . . ) and
continues decomposing the subgoals until the subgoals
are complete, consistent, and minimal.

2) Prune unnecessary subgoal nodes. The analyst selects
and prunes unnecessary subgoal nodes, which do not
need to be broken down further for consideration, such
as duplicated subgoals. After pruning, each leaf node
of the goal tree is marked as a leaf subgoal node.

3) Define goal-oriented check items. Goal-oriented check
items verify whether the design implementations are
consistent and satisfy the corresponding subgoal. Goal-
oriented check items are determined by two or more

implementations that realize the same subgoal. The
analyst defines one or more goal-oriented check items
for each of the leaf subgoal nodes except pruned sub-
goals. The analyst then adds goal-oriented check items
as child nodes of the leaf subgoal nodes. Fig. 1 shows
an example goal tree. Goal nodes and goal-oriented
check-item nodes are labeled with symbols G and C,
respectively. The pruned subgoals are indicated by red
circles, as shown in G1.1.2 and G2.

4) Perform goal-oriented software design review. Review-
ers use the goal-oriented check items to attempt to
detect inconsistencies among implementations realiz-
ing the same requirement.

FIGURE 1. An example of a goal tree. Red circles represent leaf subgoal
nodes.

C. EXAMPLE OF A GOAL TREE AND CHECK ITEMS
1) OVERVIEW OF AN EXAMPLE SYSTEM
This subsection presents a goal tree and the corresponding
goal-oriented check items for an example system. Table 1 and
Fig. 2 show an overview of the example system. The design
implementations for the same subgoal can differ among the
three units because the units had different developers.

TABLE 1. Overview of an example system.

2) PROCEDURE
Fig. 3 shows the goal tree and goal-oriented check items. The
procedure is detailed as follows.

32586 VOLUME 10, 2022



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

FIGURE 2. Architecture of an example system.

Step (1). The analyst identifies the goal tree. The identified
goal tree consists of the following:

Top goal G: The electric kettle heats water and keeps
the water temperature constant.

The analyst decomposes the top goal G into the following
subgoals:

G1: The electric kettle can heat the water if the water
temperature is less than the threshold.

G2: The electric kettle can keep the water temperature
constant if the water temperature is greater than or
equal to the threshold.

G3: The electric kettle cannot heat the water or keep the
water temperature constant if the water level is less
than the minimum level.

The analyst decomposes subgoal G1 into the following
subgoals:
G1.1: The electric kettle can heat the water with electricity.
G1.2: The electric kettle can measure the water tempera-

ture periodically.
The analyst decomposes subgoal G2 into the following
subgoals:
G2.1: The electric kettle can keep the water temperature

constant using electricity.
G2.2: The electric kettle can measure the water tempera-

ture periodically.
The analyst decomposes subgoal G3 into the following
subgoals:
G3.1: The electric kettle can measure the water level

periodically.
G3.2: The electric kettle cannot heat the water or keep the

water temperature constant if the water level is less
than the minimum level.

Step (2). The analyst prunes unnecessary subgoal node G2.2
because G2.2 duplicates G1.2.

Step (3). The analyst defines goal-oriented check items as
child nodes of the subgoals. The analyst defines the following
goal-oriented check items from G1.1:
C1.1.1: Is the voltage control method during heating speci-

fied? If one or more descriptions are specified, are
they consistent?

The analyst defines the following goal-oriented check items
from G1.2:
C1.2.1: Is the water temperature measurement period spec-

ified? If one or more descriptions are specified, are
they consistent?

C1.2.2: Is the unit system of the water temperature speci-
fied? If one or more descriptions are specified, are
they consistent?

The analyst defines the following goal-oriented check item
from G2.1:
C2.1.1: Is the voltage control for keeping the water tempera-

ture constant specified? If one or more descriptions
are specified, are they consistent?

The analyst defines the following goal-oriented check items
from G3.1:
C3.1.1: Is the water level measurement period specified?

If one or more descriptions are specified, are they
consistent?

C3.1.2: Is the unit system of the water level specified? If
one or more descriptions are specified, are they
consistent?

The analyst defines the following goal-oriented check item
from G3.2:
C3.2.1: Is the procedure to stop heating or to stop keeping

the water temperature constant specified? If one or
more descriptions are specified, are they consistent?

Step (4). The reviewer performs goal-oriented software
design review using the goal-oriented check items. For exam-
ple, in G1.2, the developers of the sensor unit considered
and defined the water temperature in Fahrenheit, whereas
the developers of the control unit considered and defined the
temperature in Celsius. The reviewer can detect this incon-
sistency between the definitions and implementation with
goal-oriented check item C1.2.2.

IV. CASE STUDY
A. GOAL
The goal of the case study is to investigate the effec-
tiveness and efficiency of the proposed method. The case
study was conducted with a commercial software system.
An overview of the commercial software system is described
in Subsection IV.B. The case study evaluated whether the
proposed method could define goal-oriented check items,
whether the proposed method could detect CDR defects, and
whether detecting CDR defects in design reviews contributed
to a reduction of the rework effort for correcting the defects.

B. SYSTEM CONTEXT
We selected the subsystems of System A developed in a
Japanese software development Company S for this case
study. System A was a communication network control sys-
tem. Table 2 and Fig. 4 shows the details. The development
period was from April 2017 to March 2019. System A con-
sisted of 12 subsystems. Each subsystemwas developed from
scratch. The number of developers for each subsystem varied

VOLUME 10, 2022 32587



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

FIGURE 3. A goal tree for the example system.

TABLE 2. Overview of system A.

from three to seven. The number of years of software develop-
ment experience of the developers varied from 2 to 25 years.
The lines of source code of the subsystems varied from
3100 to 8400 lines in C language.

FIGURE 4. Architecture of system A.

The standard software development process was based on
the waterfall model and followed the process areas Orga-
nizational Process Definition (OPD) and Integrated Project
Management (IPM) defined in CMMI-DEV V.1.3 [51]. The

32588 VOLUME 10, 2022



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

TABLE 3. Metrics for the evaluation.

standard process also defined software measurements and
metrics. For each software development, the standard pro-
cess required that the defects detected in reviews should be
recorded in a defect list and that the defects detected in
testing should also be recorded. The standard software devel-
opment process required that each project perform design
reviews (standard design reviews), record the design review
logs (meeting minutes), and use the standard design review
checklists. The standard software development process of
Company S also required that each reviewer complete the
review training and have detailed knowledge of the system
domain to participate in the review.

C. METRICS
The metrics cH, grH, gwH, grD, srD, and gtD (Table 3) were
measured for this evaluation in addition to the metrics in
the standard software development process of Company S.
These metrics are defined in Table 3. The metrics cH and
grH are efforts for the preparation of the proposed method;
metrics grD, srD, and gtD are the number of detected defects.
Note that the metric gwHwas the estimated additional rework
effort (person-hours) that would be needed if the CDR defects
detected in the proposed method were overlooked in goal-
oriented software design reviews and detected and corrected
in subsequent software testing.

D. EVALUATION AND PROCEDURE
We selected four subsystems from the 12 subsystems of Sys-
tem A. We selected two subsystems 1a and 2a from the four
subsystems for Evaluations 1 and 2. For Evaluation 3, from
the remaining subsystems, we selected subsystem 1b with a
goal similar to that of subsystem 1a. Similarly, we selected
subsystem 2b with a goal similar to that of subsystem 2a.

1) EVALUATION 1: CAN AN ANALYST DEFINE
GOAL-ORIENTED CHECK ITEMS USING THE
PROPOSED METHOD?
Evaluation 1 evaluated whether an analyst (engineer)
could identify a goal tree and define the correspond-
ing goal-oriented check items. Following the steps in

Subsection III.B, the analyst identified goal trees and defined
goal-oriented check items for subsystems 1a and 2a. The
analyst is a quality assurance engineer and one of the authors.

2) EVALUATION 2: CAN THE PROPOSED METHOD DETECT
CDR DEFECTS AND REDUCE THE DEFECT
CORRECTION EFFORT?
Evaluation 2 consisted of the following evaluations:

Evaluation 2.1: Can reviewers detect CDR defects in
goal-oriented software design reviews?
Evaluation 2.2: Can the proposed method reduce the
estimated additional rework effort to correct CDR
defects?

Evaluation 2.1 measured the number of CDR defects
detected in goal-oriented software design reviews (grD).
In addition, Evaluation 2.1 measured the number of CDR
defects detected in subsequent testing (gtD) because over-
looked CDR defects in goal-oriented software design reviews
could be detected in subsequent software testing. Evaluation
2.2 measured the effort to define goal-oriented check items
(cH), the effort for goal-oriented software design reviews
(grH), and the estimated additional rework effort (gwH) to
investigate whether the proposed method required less effort
than the standard design reviews and the subsequent test-
ing defined by the standard process. Specifically, Evalua-
tion 2.1 deemed that the proposed method was feasible if
CDR defects were detected in goal-oriented software design
reviews (grD> 0) and the number of CDR defects detected in
subsequent testing (gtD) was sufficiently small. In Evaluation
2.2, if the sum of the effort to define goal-oriented check
items and the effort for goal-oriented software design reviews
was smaller than the estimated additional rework effort (cH+
grH < gwH), the proposed method was efficient.
Reviewers performed goal-oriented software design

reviews for subsystems 1a and 2a using the goal-oriented
check items defined in Evaluation 1. The goal-oriented soft-
ware design reviews were performed in addition to the stan-
dard design reviews. After the goal-oriented software design
reviews, the subsequent development activities, including
software testing, were performed according to the standard

VOLUME 10, 2022 32589



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

FIGURE 5. The goal tree and goal-oriented check items for system A.

software development process. The analyst measured and
recorded the metrics in Table 3 (excluding srD). The analyst
then categorized the CDR defects detected in goal-oriented
software design reviews and the subsequent testing into
defect groups corresponding to goal-oriented check items
defined in Evaluation 1.

3) EVALUATION 3: ARE CDR DEFECTS DETECTED IN OTHER
SIMILAR SUBSYSTEMS?
Evaluation 3 measured the number of CDR defects detected
in the standard design reviews (srD) and subsequent test-
ing (gtD) for subsystems 1b and 2b to investigate the
applicability of the proposed method in other subsys-
tems. Specifically, Evaluation 3 measured srD to investigate
whether the standard design reviews detected CDR defects
and gtD to investigate whether the standard design reviews
overlooked CDR defects.

Evaluation 3 deemed that CDR defects existed in design
documents for subsystems 1b and 2b if CDR defects were
detected in the standard design reviews and/or subsequent
testing (srD + gtD > 0). If CDR defects were present and
the proposed method was carried out, goal-oriented software
design reviews could possibly detect CDR defects. If CDR
defects were detected in the standard design reviews and the

number of detected CDR defects in the subsequent testing
was sufficiently small (srD > 0 and srD >> gtD), the stan-
dard design reviews were considered to be able to detect
most of CDR defects. If CDR defects were not detected in
the standard design reviews or in subsequent testing (srD =
gtD = 0), CDR defects were not considered to have been
injected in the design documents.

Reviewers performed the standard design reviews for sub-
systems 1b and 2b. After the standard design reviews, the
subsequent development activities, including software test-
ing, were performed according to the standard software devel-
opment process. The analyst categorized the CDR defects
detected in the standard design reviews and subsequent test-
ing into defect groups corresponding to the goal-oriented
check items defined in Evaluation 1.

E. RESULTS
1) RESULTS OF EVALUATION 1
Fig. 5 shows the goal tree and the goal-oriented check items,
which the analyst identified and defined. In Fig. 5, sub-
goals G1 and G2 were realized by subsystems 1a and 2a,
respectively. Notably, subgoals G2.1.2 and G2.2 were not
broken down further because these subgoals were realized by

32590 VOLUME 10, 2022



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

the reused software whose reliability was already proven in
another system in operation.

2) RESULTS OF EVALUATION 2
As shown in Table 4, the value of grD was six for subsystem
1a and eighteen for subsystem 2a. For subsystem 1a, the sum
of cH and grH was 8.3 and the value of gwH was 42.0. The
sum of cH and grH was 19.6% of the value of gwH. For
subsystem 2a, the sum of cH and grH was 9.0 and the value
of gwH was 54.0. The sum of cH and grH was 16.7% of the
value of gwH.

TABLE 4. Results for evaluation 2.

Table 5 shows the goal-oriented check items and the num-
ber of defects categorized as the defect groups, which could
be detected with the goal-oriented check items for subsys-
tem 1a. For subsystem 1a, the reviewer detected four defects
for C1.1.1 and two defects for C1.2.2. No CDR defect was
detected in subsequent software testing for subsystem 1a.

TABLE 5. Number of defects for goal-oriented check items for
subsystem 1a.

Table 6 shows the goal-oriented check items and the
number of defects in defect groups corresponding to the
goal-oriented check items for subsystem 2a. For subsys-
tem 2a, the reviewer detected thirteen defects for C2.1.1.1 and
five defects for C2.1.1.2. No CDR defects were detected in
subsequent software testing for subsystem 2a.

3) RESULTS OF EVALUATION 3
As shown in Table 7, the value of srD was two for sub-
system 1b and five for subsystem 2b. Table 7 also shows
that the value of gtD was one for subsystem 1b and two for
subsystem 2b.

Table 8 shows the goal-oriented check items for subsys-
tem 1b and the number of detected defects for the check items.
For subsystem 1b, the reviewer detected two CDR defects
for C1.2.1 in the standard design reviews. Subsequent testing
detected one CDR defect for C1.1.1.

Table 9 shows the goal-oriented check items for subsys-
tem 2b and the number of detected defects for the check items.

TABLE 6. Number of defects for goal-oriented check items for
subsystem 2a.

TABLE 7. Results for evaluation 3.

TABLE 8. Number of defects for goal-oriented check items for
subsystem 1b.

TABLE 9. Number of defects for goal-oriented check items for
subsystem 2b.

For subsystem 2b, the reviewer detected two CDR defects for
C2.1.1.1 and three CDR defects for C2.1.1.2 in the standard
design reviews. Subsequent software testing detected one
CDR defect for C2.1.1.1 and one CDR defect for C2.1.1.2.

V. DISCUSSION
A. EVALUATION RESULTS
In Evaluation 1, a quality assurance engineer defined both
a goal tree and the corresponding goal-oriented check items
without additional explanations for System A. This indicated
that the proposed method does not require a domain expert as
an analyst. In discussion, another engineer of the case study
said, ‘‘Although the quality assurance engineer is not a mem-
ber of the development team, the engineer could define the
goal tree and the corresponding goal-oriented check items.

VOLUME 10, 2022 32591



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

For future development, I suppose that engineers with soft-
ware quality assurance skills can define them.’’

Evaluation 2.1 showed that the reviewers could per-
form goal-oriented software design reviews and detect CDR
defects. In addition, Evaluation 2.2 showed that the estimated
additional rework effort for the detected defects in subse-
quent testing was reduced by the defects detected in the
goal-oriented software design reviews. The case study results
showed that the CDR defects were detected by goal-oriented
software design reviews in both subsystems 1a and 2a. In sub-
sequent activities, including testing, releasing, operating, and
maintenance, no CDR defect was detected.

Evaluation 3 suggests that non-expert reviewers can detect
CDR defects in goal-oriented software design reviews. For
example, in subsystem 2b, a defect was detected in the design
review: ‘‘The definition of a port-level monitoring method
for a certain device is omitted.’’ The defect could have been
detected by goal-oriented check item C2.1.1.1: ‘‘Is the mon-
itoring procedure specified? If one or more descriptions are
specified, are they consistent?’’ Thus, even if the reviewers
are not experts in the system, they might have noticed an
omission in the definition of the monitoring procedure.

The results of the case study suggest that the proposed
method can potentially detect CDR defects. In the case study,
CDR defects were detected with goal-oriented check items.
An example of a detected CDR defect is ‘‘Some devices could
not communicate with other devices because of incompatible
communication protocol versions.’’ This defect was detected
with the goal-oriented check item C1.1.1: ‘‘Is the communi-
cation protocol version compatible between the devices?’’ In
the requirement definition activity, the requirement explicitly
specified the communication protocol name but did not spec-
ify the version of the communication protocol.

Sharing a goal tree before goal-oriented software design
reviews can reduce the effort for goal-oriented software
design reviews. In a discussion with an engineer of the case
study, the engineer pointed out that sharing and discussing a
goal tree in advance facilitates understanding the correspond-
ing goal-oriented check items and prevents engineers from
misunderstanding the specification. He also mentioned that
sharing and discussing a goal tree ensure that all reviewers
reach a consensus on the specifications before starting the
design reviews.

B. THREATS TO VALIDITY
1) INTERNAL VALIDITY
Defining a goal tree and the corresponding goal-oriented
check items may require expert-level skills and knowledge
in the domain, and personnel overhead. In the case study,
the quality assurance engineer who was responsible for the
verification of System A defined the goal tree and the cor-
responding goal-oriented check items. The engineer had
general quality-assurance skills but did not have system-
specific skills and knowledge and was not a member of the
development team. Thus, an engineer with general skills and

knowledge of software development and the target system
can define a goal tree and the corresponding goal-oriented
check items. In addition, the case study showed that the
personnel overhead for the proposed method would be small.
In the case study, the engineer took 1 hour to identify the
goal tree and define the goal-oriented check items for each
subsystem 1a and 2a.

If the goal-oriented check items and the check items in the
checklist defined in the standard software development pro-
cess of Company S overlap, the effectiveness of goal-oriented
software design reviews will be insufficient. If each goal-
oriented check item is included in the standard checklist,
reviewers can detect all CDR defects with the standard check-
list in standard design reviews. In this case study, the standard
design review checklist did not include any goal-oriented
check items because the standard design review check items
were more general and comprehensive; they were intended
for use in the development of various software in the com-
munication network domain, whereas the goal-oriented check
items were system-specific.

2) EXTERNAL VALIDITY
If the target system has various goals, such as in the case
of a customer relationship management (CRM) system or
enterprise resource planning (ERP) system, the effectiveness
of the proposed method might be limited. In this case study,
the top goal could be easily identified and defined because
the communication system had a simple goal tree. By con-
trast, the goal tree may be more complex in other systems
such as CRM and ERP systems. However, goal-oriented
requirements analysis methods are not limited by the types
of systems. Once a goal tree has been defined, goal-oriented
software design reviews can be performed.

A larger number of subgoals may require a larger effort to
define goal-oriented check items and perform goal-oriented
software design reviews. An engineer who participated in the
case study stated that the subgoals needed to be prioritized
in case of a larger number of subgoals. Although the pro-
posed method does not consider the priorities of subgoals,
the proposed method can easily incorporate subgoal priority
via decision-making methods such as an analytic hierarchy
process (AHP) [52].

In an iterative development process including agile devel-
opment process [53]–[56], design and source code are
updated in each iteration. Thus, CDR defects are poten-
tially injected in each iteration. Although design reviews
might not be explicitly performed in some iterative devel-
opment processes, CDR defects are detected in activities
such as architectural discussion, testing, and implementation
of the test and product codes. The rework effort can be
reduced if CDR defects are detected using the essence of
the proposed method for architectural discussion, testing, and
implementation of the test and product codes. For example,
potential CDR defects can be identified in end-of-iteration
reviews, one of the recommended practices for constant
feedback on technical decisions and customer requirements

32592 VOLUME 10, 2022



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

in agile development process [53], [57]. Specifically, when
a context-dependent requirement is implemented in two or
more iterations, the implementation can be inconsistent in
the iterations. The potential inconsistencies (potential CDR
defects) in subsequent iterations can be identified in the
end-of-iteration review of the first iteration, in which the
context-dependent requirement is implemented. Further work
is required to establish the viability of the proposed method to
iterative development processes including agile development
process.

To generalize the results of the case study, further eval-
uations in other systems are needed. Because of the lim-
ited analysis effort, we carried out lightweight evaluations
for other systems developed in Company S. The results of
the lightweight evaluations showed that context-dependent
ambiguous requirements injected CDR defects and that the
CDR defects were overlooked in design reviews and detected
in subsequent testing. The CDR defects include inconsisten-
cies among the unit of distance, the notations of time, and the
significant digits of numbers. In the lightweight evaluation,
we identified the subgoal ‘‘The speed of the moving object
can be calculated from the distance moved and the elapsed
time.’’ We also defined the goal-oriented check item ‘‘Are the
measurement methods of the distance moved and the elapsed
time correct?’’ These results imply that the proposed method
can be applied to other systems.

VI. CONCLUSION
This study proposed a method to detect CDR defects by
design reviews using a goal tree created via goal-oriented
requirements analysis. CDR defects are caused by incon-
sistencies among design implementations, which are sup-
ported by the same requirement (the same subgoal). First,
the proposed method creates a goal tree of the target soft-
ware via goal-oriented requirements analysis. Second, the
proposed method defines goal-oriented check items to detect
inconsistencies among implementations that realize the same
requirement and examine whether the goal and subgoals are
satisfied. Third, reviewers perform goal-oriented software
design reviews with the goal-oriented check items.

To evaluate the effectiveness of the proposed method,
we conducted a case study. The case study evaluated whether
the goal-oriented check items could detect CDR defects. The
case study also evaluated whether the effort to create a goal
tree, define the goal-oriented check items, and perform goal-
oriented software design reviews was smaller than the esti-
mated rework effort if the detected defects were overlooked
in design review and corrected in subsequent testing. The
estimated saved rework effort was calculated as the difference
between the sum of the estimated effort for investigating,
fixing, and regression testing and the sum of the effort for fix-
ing defects detected in goal-oriented software design reviews
assuming that the defect was overlooked in the goal-oriented
software design review and detected in subsequent testing.
The results of the case study showed that the proposedmethod
detected CDR defects and that other CDR defects were not

detected in subsequent testing. The results also showed that
the estimated savings in additional rework effort for defects
detected by the proposed method was larger than the sum
of the effort for preparing and performing the proposed
method. Furthermore, the case study investigated whether
CDR defects were detected by design reviews without the
proposed method and subsequent testing in other subsystems
sharing the same goal tree of the target subsystems. The
results showed that CDR defects were detected in the other
subsystems.

As shown in the case study, we can evaluate the effective-
ness percentage of the proposed method by comparing the
number of CDR defects detected in goal-oriented software
design reviews with the number of CDR defects detected in
subsequent testing. More broadly, the effectiveness percent-
age can be defined as the percentage of CDR defects detected
by the proposed method among the CDR defects detected in
the entire software development lifecycle.

REFERENCES
[1] A. Porter and L. Votta, ‘‘Comparing detection methods for software

requirements inspections: A replication using professional subjects,’’
Empirical Softw. Eng., vol. 3, no. 4, pp. 355–379, 1998.

[2] D. M. Berry and E. Kamsties, ‘‘Ambiguity in requirements specification,’’
in Perspectives on Software Requirements. Norwell, MA, USA: Kluwer,
2004, pp. 7–44.

[3] M. E. Fagan, ‘‘Design and code inspections to reduce errors in program
development,’’ IBM Syst. J., vol. 15, no. 3, pp. 182–211, 1976.

[4] B. Dhanalaxmi, G. A. Naidu, and K. Anuradha, ‘‘A fault prediction
approach based on the probabilisticmodel for improvising software inspec-
tion,’’ Indian J. Sci. Technol., vol. 9, no. 45, pp. 1–9, Dec. 2016.

[5] H. Potter, M. Schots, L. Duboc, and V. Werneck, ‘‘InspectorX: A game
for software inspection training and learning,’’ in Proc. IEEE 27th Conf.
Softw. Eng. Educ. Training (CSEE&T), Klagenfurt, Austria, Apr. 2014,
pp. 55–64.

[6] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumgård,
and M. V. Zelkowitz, ‘‘The empirical investigation of perspective-based
reading,’’ Empirical Softw. Eng. J., vol. 1, no. 2, pp. 133–164, 1996.

[7] A. Van Lamsweerde and E. Letier, ‘‘Integrating obstacles in goal-driven
requirements engineering,’’ in Proc. 20th Int. Conf. Softw. Eng., Kyoto,
Japan, 1998, pp. 53–62.

[8] A. van Lamsweerde, ‘‘Goal-oriented requirements engineering: A guided
tour,’’ in Proc. 5th IEEE Int. Symp. Requirements Eng., Toronto, ON,
Canada, Aug. 2001, pp. 249–262.

[9] A. Lapouchnian, ‘‘Goal-oriented requirements engineering: An overview
of the current research,’’ Dept. Comput. Sci., Univ. Toronto, Toronto, ON,
Canada, Tech. Rep., Jun. 2005, vol. 32.

[10] M. Ciolkowski, O. Laitenberger, and S. Biffl, ‘‘Software reviews, the state
of the practice,’’ IEEE Softw., vol. 20, no. 6, pp. 46–51, Nov./Dec. 2003.

[11] A. A. Porter, L. G. Votta, and V. R. Basili, ‘‘Comparing detection methods
for software requirements inspections: A replicated experiment,’’ IEEE
Trans. Softw. Eng., vol. 21, no. 6, pp. 563–575, Jun. 1995.

[12] F. Shull, I. Rus, and V. Basili, ‘‘How perspective-based reading can
improve requirements inspections,’’ Computer, vol. 33, no. 7, pp. 73–79,
Jul. 2000.

[13] T. Thelin, P. Runeson, and B. Regnell, ‘‘Usage-based reading—An exper-
iment to guide reviewers with use cases,’’ Inf. Softw. Technol., vol. 43,
no. 15, pp. 925–938, Dec. 2001.

[14] T. Thelin, P. Runeson, and C. Wohlin, ‘‘An experimental comparison
of usage-based and checklist-based reading,’’ IEEE Trans. Softw. Eng.,
vol. 29, no. 8, pp. 687–704, Aug. 2003.

[15] S. A. Ebad, ‘‘Inspection reading techniques applied to software artifacts—
A systematic review,’’ Comput. Syst. Sci. Eng., vol. 32, no. 3, pp. 213–226,
2017.

[16] B. P. de Souza, R. C. Motta, and G. H. Travassos, ‘‘The first version
of SCENARIotCHECK,’’ in Proc. XXXIII Brazilian Symp. Softw. Eng.,
Salvador, Brazil, Sep. 2019, pp. 219–223.

VOLUME 10, 2022 32593



M. Wakimoto, S. Morisaki: Goal-Oriented Software Design Reviews

[17] B. P. de Souza, R. C. Motta, D. D. O. Costa, and G. H. Travassos, ‘‘An IoT-
based scenario description inspection technique,’’ in Proc. XVIII Brazilian
Symp. Softw. Quality, Fortaleza, Brazil, Oct. 2019, pp. 20–29.

[18] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, ‘‘Detecting defects
in object-oriented designs: Using reading techniques to increase software
quality,’’ ACM SIGPLAN Notices, vol. 34, no. 10, pp. 47–56, 1999.

[19] O. Laitenberger, ‘‘Cost-effective detection of software defects through
perspective-based inspections,’’ Empirical Softw. Eng., vol. 6, no. 1,
pp. 81–84, 2001.

[20] F. Shull, ‘‘Developing techniques for using software documents: A series
of empirical studies,’’ M.S. thesis, Dept. Comput. Sci., Univ. Maryland,
College Park, MD, USA, 1998.

[21] A. I. Anton, ‘‘Goal-based requirements analysis,’’ in Proc. 2nd Int. Conf.
Requirements Eng., 1996, pp. 136–144.

[22] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. New York, NY, USA: Wiley,
2009.

[23] A. van Lamsweerde, ‘‘Elaborating security requirements by construction
of intentional anti-models,’’ inProc. 26th Int. Conf. Softw. Eng., Edinburgh,
U.K., 2004, pp. 148–157.

[24] A. van Lamsweerde, R. Darimont, and P. Massonet, ‘‘Goal-directed
elaboration of requirements for a meeting scheduler: Problems and
lessons learnt,’’ in Proc. IEEE Int. Symp. Requirements Eng., York, U.K.,
Mar. 1995, pp. 194–203.

[25] S. Tueno, R. Laleau, A. Mammar, and M. Frappier, ‘‘Integrating domain
modeling within a formal requirements engineering method,’’ in Implicit
and Explicit Semantics Integration in Proof-Based Developments of Dis-
crete Systems. Singapore: Springer, 2021, pp. 39–58.

[26] C. Kartiko, A. C. Wardhana, and W. A. Saputra, ‘‘Requirements engi-
neering of village innovation application using goal-oriented requirements
engineering (GORE),’’ Jurnal Infotel, vol. 13, no. 2, pp. 38–46, May 2021.

[27] X. Franch, L. López, C. Cares, and D. Colomer, ‘‘The i∗ framework
for goal-oriented modeling,’’ in Domain-Specific Conceptual Modeling.
New York, NY, USA: Springer, 2016, pp. 485–506.

[28] E. S. K. Yu, ‘‘Towards modelling and reasoning support for early-phase
requirements engineering,’’ in Proc. 3rd IEEE Int. Symp. Requirements
Eng. (ISRE), Annapolis, MD, USA, Jan. 1997, pp. 226–235.

[29] E. S. K. Yu, ‘‘Modeling organizations for information systems require-
ments engineering,’’ in Proc. IEEE Int. Symp. Requirements Eng.,
San Diego, CA, USA, Jan. 1993, pp. 34–41.

[30] Y. Wang, T. Li, Q. Zhou, and J. Du, ‘‘Toward practical adoption of i∗

framework: An automatic two-level layout approach,’’ Requirements Eng.,
vol. 26, no. 3, pp. 301–323, Sep. 2021.

[31] A. S. Vingerhoets, S. Heng, and Y. Wautelet, ‘‘Using i∗ and UML for
blockchain oriented software engineering: Strengths, weaknesses, lacks
and complementarity,’’ Complex Syst. Informat. Model. Quart., vol. 149,
no. 26, pp. 26–45, 2021.

[32] J.Mylopoulos, L. Chung, and B. Nixon, ‘‘Representing and using nonfunc-
tional requirements: A process-oriented approach,’’ IEEE Trans. Softw.
Eng., vol. 18, no. 6, pp. 483–497, Jun. 1992.

[33] L. Chung, B.A.Nixon, E. Yu, and J.Mylopoulos,Non-Functional Require-
ments in Software Engineering. Berlin, Germany: Springer, 2012.

[34] J. Mylopoulos, L. Chung, and E. Yu, ‘‘From object-oriented to goal-
oriented requirements analysis,’’Commun. ACM, vol. 42, no. 1, pp. 31–37,
Jan. 1999.

[35] S. S. Paradkar, ‘‘A framework for modeling non-functional requirements
for business-critical systems,’’ Int. J. Innov. Res. Comput. Sci. Technol.,
vol. 9, no. 1, pp. 15–19, Jan. 2021.

[36] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems Trace-
ability. New York, NY, USA: Springer, 2012.

[37] O. C. Z. Gotel and C. W. Finkelstein, ‘‘An analysis of the require-
ments traceability problem,’’ in Proc. IEEE Int. Conf. Requirements Eng.,
Colorado Springs, CO, USA, Apr. 1994, pp. 94–101.

[38] G. Spanoudakis and A. Zisman, ‘‘Software traceability: A roadmap,’’
in Handbook of Software Engineering and Knowledge Engineering.
Singapore: World Scientific, 2005, pp. 395–428.

[39] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and
K. Kamran, ‘‘Requirements traceability: A systematic review and industry
case study,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 3, pp. 385–433,
May 2012.

[40] S. Nair, J. L. De La Vara, and S. Sen, ‘‘A review of traceability research at
the requirements engineering conference,’’ inProc. 21st IEEE Int. Require-
ments Eng. Conf. (RE), Rio de Janeiro, Brazil, Jul. 2013, pp. 222–229.

[41] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, ‘‘Traceability
transformed: Generating more accurate links with pre-trained BERT mod-
els,’’ in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), Madrid,
Spain, May 2021, pp. 324–335.

[42] A. Zisman and A. Kozlenkov, ‘‘Knowledge base approach to consistency
management of UML specifications,’’ in Proc. 16th Annu. Int. Conf. Auto-
mated Softw. Eng. (ASE), San Diego, CA, USA, 2001, pp. 359–363.

[43] A. Kozlenkov and A. Zisman, ‘‘Are their design specifications consistent
with our requirements?’’ in Proc. IEEE Joint Int. Conf. Requirements Eng.,
Essen, Germany, Sep. 2002, pp. 145–154.

[44] J. Hassine, J. Rilling, and J. Hewitt, ‘‘Change impact analysis for require-
ment evolution using use case maps,’’ in Proc. 8th Int. Workshop Princ.
Softw. Evol. (IWPSE), Lisbon, Portugal, 2005, pp. 81–90.

[45] S. Lehnert, ‘‘A review of software change impact analysis,’’ Dept.
Softw. Syst./Process Inform., Ilmenau Univ. Technol., Ilmenau, Germany,
Tech. Rep., 2011.

[46] T. Jalaja, T. Adilakshmi, and P. S. R. Abhishek, ‘‘Automation of change
impact analysis for Python applications,’’ in Smart Computing Techniques
and Applications. New York, NY, USA: Springer, 2021, pp. 259–267.

[47] S. B. R. Arnold, Software Change Impact Analysis (Tutorial Series).
Los Alamitos, CA, USA: Wiley, 1996.

[48] S. A. Bohner, ‘‘Impact analysis in the software change process: A
year 2000 perspective,’’ in Proc. Int. Conf. Softw. Maintenance (ICSM),
Monterey, CA, USA, 1996, pp. 42–51.

[49] B. G. Ryder and F. Tip, ‘‘Change impact analysis for object-oriented
programs,’’ in Proc. ACM SIGPLAN-SIGSOFT Workshop Program Anal.
Softw. Tools Eng. (PASTE), Snowbird, UT, USA, 2001, pp. 46–53.

[50] Automotive SPICE Process Assessment and Reference Model Version
3.1, Qual. Manage. Center, Sect. German Automot. Ind. Assoc., Berlin,
Germany, 2017.

[51] CMMI for Development, Version 1.3, Softw. Eng. Inst., Carnegie Mellon
Univ., Pittsburgh, PA, USA, 2010.

[52] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation. New York, NY, USA: McGraw-Hill, 1980.

[53] J. Highsmith andA. Cockburn, ‘‘Agile software development: The business
of innovation,’’ Computer, vol. 34, no. 9, pp. 120–127, 2001.

[54] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, ‘‘New
directions on agile methods: A comparative analysis,’’ in Proc. 25th Int.
Conf. Softw. Eng., Portland, OR, USA, 2003, pp. 244–254.

[55] A. L. Lorca, R. Burrows, and L. Sterling, ‘‘Teaching motivational models
in agile requirements engineering,’’ in Proc. IEEE 8th Int. Workshop
Requirements Eng. Educ. Training (REET), Banff, AB, Canada, Aug. 2018,
pp. 30–39.

[56] N. Potter and M. Sakry, ‘‘Implementing SCRUM (Agile) and CMMI
together,’’ Process Group-Post Newslett., vol. 16, no. 2, pp. 1–6, 2009.

[57] E. Rubin and H. Rubin, ‘‘Supporting agile software development through
active documentation,’’ Requirements Eng., vol. 16, no. 2, pp. 117–132,
Jun. 2011.

MICHIYO WAKIMOTO received the master’s degree in management of
technology from Ritsumeikan University, Japan. She is currently pursuing
the Ph.D. degree with the Graduate School of Informatics, Nagoya Univer-
sity, Japan. Her research interests include empirical software engineering and
software quality.

SHUJI MORISAKI (Member, IEEE) received the D.E. degree in information
science from the Nara Institute of Science and Technology, Japan, in 2001.
He is currently an Associate Professor. Previously, he was a Software
Engineer with Japanese Software Industry. His research interests include
empirical software engineering and software quality.

32594 VOLUME 10, 2022


