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ABSTRACT In the field of nonstationary signal analysis and processing, the short-time Fourier trans-
form (STFT) is frequently used to convert signals into the time-frequency domain. The instantaneous
frequency (IF) of the STFT is defined as the time derivative of the STFT phase and plays an important
role in the reassignment method and the synchrosqueezing transform (SST). In this paper, we propose a
framework to design a window function for computing the IF of STFT. Computing the IF requires the STFT
with a window and STFT with its derivative, i.e., the IF computation depends on both the window function
and its derivative. To design a window suitable for computing the IF, we formulate the window design
problem as a sidelobe minimization problem of the corresponding derivative. Two windows are designed
considering the sidelobe energy or the highest sidelobe level as cost functions for minimizing the sidelobes
of their derivatives. The SST using the proposed window provides a sharper time-frequency representation
compared to those produced using ordinary bandwidth-adjustable windows.

INDEX TERMS Short-time Fourier transform (STFT), instantaneous frequency (IF), window derivative,
adjustable window, synchrosqueezing transform (SST).

I. INTRODUCTION
Time-frequency (T-F) representations are highly important
in nonstationary signal analysis and processing. The short-
time Fourier transform (STFT) is widely used to convert
a signal into the T-F domain, owing to its simplicity and
well-understood structure [1]–[4]. The resolution of a T-F
representation obtained by the STFT is limited by Heisen-
berg’s uncertainty principle. To adjust its resolution, many
window functions have been proposed from various view-
points, such as frequency responses [5]–[14] and numerical
stability in signal processing [15]–[20].

The reassignment method and the synchrosqueezing trans-
form (SST) have been proposed to overcome Heisenberg’s
uncertainty principle [21]. The reassignment method was
first proposed by Kodera to improve the readability of
the T-F representation obtained by the STFT [22]. Then,
Auger and Flandrin popularized the reassignment method by
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discovering an efficient computational method; furthermore,
they generalized the reassignment method to T-F represen-
tations in Cohen’s class and time-scale representations [23].
Then, the reassignment method was generalized for any
filterbank [24], [25]. The reassignment method sharpens
a T-F representation using the time and frequency deriva-
tives of its phase at the expense of invertibility. The time
and frequency derivatives of the STFT phase are referred
to as the instantaneous frequency (IF) and group delay,
respectively.

In the context of audio signal analysis, Daubechies and
Maes proposed the SST [26], [27], which is a variant of
the reassignment method. The SST performs frequency-only
reassignment to a complex-valued T-F representation to
sharpen the T-F representation while ensuring invertibility.
Subsequently, the SST was also generalized for STFT [28],
[29] and other representations [25], [30] and has been widely
studied [31]–[35]. The FSST reassigns the spread compo-
nents using the IF, which is affected by the window function.
Therefore, to improve the performance of the FSST, the
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window should be designed considering the computation of
the IF.

Moreover, IF has also been employed in other applications,
such as a phase vocoder [36]–[39], T-F mask estima-
tion [40], [41], phase conversion [42]–[45], and speech pro-
cessing [46]–[48]. In the context of a phase vocoder, the effect
of a window on the IF computation has been demonstrated by
comparing several existing windows [38]. Therefore, design-
ing a window for computing the IF can also improve the
performance of its applications.

A method to compute the IF uses the STFTs with a win-
dow and with its (time-)derivative [23], which can compute
accurately even in a discrete setting. That is, the computed
IF depends on both the window and its derivative. Further-
more, interference of multiple signal components influences
the IF computation. To reduce the interference of multiple
signal components, the window and its derivative should be
designed to reduce the T-F spreading under Heisenberg’s
uncertainty.

The main purpose of a window design for reducing spread-
ing is its frequency response because the spread in the time
direction can be controlled relatively easily by the support of
the window. Hence, the sidelobes of the frequency responses
of the window and its derivative need to be reduced. In par-
ticular, the sidelobes of the window derivative should be
given more attention since the differential operator empha-
sizes high-frequency components. Several window functions
are designed by considering the continuity at their edges,
which is related to the sidelobe of their derivatives [13], [14].
However, no method has explicitly considered the frequency
response of the window derivative. Designing a window func-
tion to minimize the sidelobes of the frequency response of
its derivative is expected to obtain a window function that is
more suitable for IF computation.

Therefore, in this paper, we propose a framework for
designing a window function for IF computation. The pro-
posedmethod first designs thewindow derivative tominimize
the sidelobes and then estimates the window function from
the designed window derivative. The designed windows are
evaluated by the IF computation and an application to the
FSST.

This paper aims to expand on our five-page conference
paper [49], in which we proposed a window function that
is designed to minimize the sidelobe energy of its derivative
and validated its performance in limited experiments. The
contribution of this paper is summarized as follows:

• A detailed explanation about computing IF in continu-
ous and discrete STFT (Sec. II).

• An additional proposed window is designed to minimize
the highest sidelobe level of its derivative (Sec. IV-C).

• A proposed window estimation method from the win-
dow derivative for minimizing the truncation effect
(Sec. IV-D).

• Detailed evaluations of the proposed windows in terms
of computing IF (Sec. VI).

TABLE 1. List of notations.

TABLE 2. List of abbreviations.

• Quantitative evaluations of FSST using the Rényi
entropy and the Earth mover’s distance (Sec. VII).

The rest of this paper is organized as follows.
Sections II and III introduce the IF of the STFT and
bandwidth-adjustable windows, respectively. Then,
Section IV explains our proposed method for designing
windows. Section V presents the frequency responses of win-
dows designed by the proposed method. Section VI provides
numerical experiments to evaluate the performance of the
designed windows in terms of computing the IF. Section VII
presents the performance of applying the designed window
to the FSST, and the conclusion of this paper is presented in
Section VIII.

II. PRELIMINARY
A. NOTATION
The list of notations and abbreviations used in this paper are
summarized in Tables 1 and 2, respectively. We define the
frequency response of a discrete signal f ∈ CL as

(Ff)(ω) :=
L−1∑
l=0

f[l]e−i2πωl, (1)
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where i is the imaginary unit. The discrete Fourier transform
(DFT) F : CL

→ CL is defined as

f̂[m] := (Ff)[m] =
L−1∑
l=0

f[l]e−i
2πml
L , (2)

and its inverse F−1 : CL
→ CL is given by

f[l] = (F−1 f̂)[l] =
1
L

L−1∑
m=0

f̂[m]ei
2πml
L . (3)

B. COMPUTING IF USING STFT
The STFT of a signal f ∈ L2(R) with a window function
g ∈ L2(R) ∩ C1(R) is defined as

(Vgf )(t, ω) :=
∫
R
f (τ )g(τ − t)e−i2πωτdτ, (4)

where t ∈ R and ω ∈ R represent time and frequency,
respectively. The STFT can be represented as

(Vgf )(t, ω) =Mf
g(t, ω) · e

i2π8f
g(t,ω), (5)

where Mf
g := |Vgf | is the STFT magnitude, and 8f

g is
the STFT phase. The IF of the STFT is defined as the time
derivative of the phase [50], [51],

IFfg(t, ω) :=
∂

∂t
8f
g(t, ω). (6)

For instance, let us consider the IF of a continuous sinusoid

s(t) = Asei(2πξst+φs). (7)

The STFT of s(t) is explicitly expressed as

(Vgs)(t, ω) = Aseiφs
∫
R
g(τ − t)e−i2π (ω−ξs)τdτ

= Aseiφs−i2π(ω−ξs)t
∫
R
g(τ )e−i2π(ω−ξs)τdτ

= ĝ(ξs − ω)Aseiφs−i2π(ω−ξs)t , (8)

where ĝ(ω) is the Fourier transform of g(t). Then, its phase is
given by

8s
g(t, ω) =

φs + Arg
{
ĝ(ξs − ω)

}
2π

− (ω − ξs)t. (9)

Consequently, the IF of s(t) is calculated as

IFsg(t, ω) =
∂

∂t
8s
g(t, ω) = ξs − ω. (10)

This corresponds to the difference between the frequency of
the sinusoid ξs and the frequency axis ω, which allows us to
observe detailed frequency information from the spread T-F
representation obtained by the STFT. Some studies refer to it
as the relative instantaneous frequency [52].1

The straightforward approach for computing IFfg from (6)
in the discrete setting is an approximation of the time deriva-
tive of the phase by finite differences. However, this suffers

1This comes from defining STFT as (4), and other definitions will change
this expression. More details are given in [45].

from the phase unwrapping problem [53]. Avoiding such
problems, [23] proposed an alternative expression of the IF
given by

IFfg =
1
2π
=

{
1

Vgf
·
∂

∂t
Vgf

}
= −

1
2π
=

{Vg′ f
Vgf

}
, (11)

where g′ = dg/dt is the derivative of the window g. This is
derived from the following calculation using the chain rule:

∂

∂t
(Vgf )(t, ω) = ei2π8

f
g ·

∂

∂t
Mf

g +Mf
ge

i2π8f
g · i2π

∂

∂t
8f
g

= ei2π8
f
g ·

∂

∂t
Mf

g + Vgf · i2π
∂

∂t
8f
g. (12)

In addition, the derivative of the STFT with respect to time
can be rewritten as

∂

∂t
(Vgf )(t, ω) = −

∫
R
f (τ )

dg
dt

(τ − t)e−i2πωτdτ

= −(Vg′ f )(t, ω). (13)

According to (11), computing the IF requires the STFT using
the window function g and its derivative g′. Hence, the com-
puted IF depends on both windows.

C. COMPUTING IF IN DISCRETE STFT
The discrete version of the STFT for a discrete signal f ∈ CL

with a discrete window function g ∈ CL is written as

(Vgf)[n,m] :=
L−1∑
l=0

f[l]g[l − n]e−i
2πml
L (14)

where n = 0, 1, . . . ,L − 1 is the time-shift index and
m = 0, 1, . . . ,L− 1 is the modulation index. g[l] outside the
domain [0,L− 1] is evaluated as an L-periodic sequence [2],
i.e.,

g[l + L] = g[l]. (15)

As in (11), the IF of the discrete STFT can be computed by
the window g and its spectral derivative g′ = Dg,

IFfg[n,m] = −
1
2π
=

{
(Vg′ f)[n,m]
(Vgf)[n,m]

}
. (16)

The spectral differentiation operator D is defined as

(Dg)[l] :=
1
L

L−1∑
m=0

d[m]ĝ[m]ei
2π lm
L

= (F−1 diag(d)Fg)[l], (17)

where

d[m] :=


i2πm/L, if 0 ≤ m < L/2
0, if m = L/2
i2π (m− L)/L, if L/2 < m ≤ L − 1

(18)

The rationale for using the spectral derivative as a counterpart
to the continuous-time derivative is given by [24].2

2To be precise, [24] considered a counterpart of the continuous-time
derivative for an infinite-length sequence. The rationale for using the spectral
derivative was derived by a straightforward adaptation of [24] for a discrete
and finite-length signal.

VOLUME 10, 2022 32077



T. Kusano et al.: Window Functions With Minimum-Sidelobe Derivatives for Computing IF

FIGURE 1. Spectral differentiation of a window function supported on
[0,N − 1] (N = 7).

An example of a window function and its derivative
obtained by spectral differentiation is illustrated in Fig. 1.
In Fig. 1, the signal length is L = 18, and the window is
supported on [0,N −1] (N = 7). The spectral differentiation
corresponds to the differentiation of a function obtained by
the Fourier interpolation of a discrete signal. A function
obtained by the Fourier interpolation of the window oscillates
slightly outside of [0,N−1], even if the window is supported
on [0,N − 1]. Therefore, the support of the window does
not coincide with the support of its derivative. In general, the
spectral derivative of a window supported on [0,N − 1] does
not have the same support when N < L. When N = L, the
STFT requires computing the DFT of the entire signal, which
reduces its applicability to real-time processing or lengthy
signal analysis [54]–[56]. In practice, the window derivative
is truncated to have the same support as the original window.

D. COMPARISON OF SPECTRAL AND ANALYTICAL
DERIVATIVES
When the window function is initially defined as a differen-
tiable continuous function, an alternative to spectral differ-
entiation is to calculate the window derivative analytically
and sample the derivative. Let us illustrate this method using
the Hann window, which is one of the most famous of such
window functions. The Hann window supported on [0,N−1]
is defined as

g(t) =


1
2

(
1− cos

(
2π t
N − 1

))
, if t ∈ [0,N − 1]

0, otherwise.
(19)

Its analytical derivative is given by

g′(t) =


π

N − 1
sin
(

2π t
N − 1

)
, if t ∈ [0,N − 1]

0, otherwise.
(20)

Here, we compare the spectral and analytical derivatives in
terms of the computed IF of a sinusoid. Considering a discrete
complex sinusoid

s[l] = Asei(2πξsl+φs), (21)

FIGURE 2. Comparison of derivatives of the Hann window. The left and
right sides show the frequency responses of the window derivatives and
the errors of the IF computation using these window derivatives.

for l = 0, 1, . . . ,L − 1, we evaluated the error between the
analytical IF of the sinusoid (10) and the computed IF

e[n,m] =
(
ξs −

m
L

)
− IFsg[n,m]. (22)

With the same manipulations in (8), the STFT of sinusoid s
is calculated as

(Vgs)[n,m] = (Fg)
(
ξs −

m
L

)
Aseiφs−i2π(

m
L −ξs)n. (23)

Then, the IF of sinusoid s is calculated as

IFsg[n,m] = −
1
2π
=

{
(Vg′s)[n,m]
(Vgs)[n,m]

}
= −

1
2π
=

{
(Fg′)(ξs − m

L )

(Fg)(ξs − m
L )

}
, (24)

which is independent of the time index n. When g is real-
valued, (24) is simplified as

IFsg[n,m] = −
1
2π
=

{
(Fg′)(mL − ξs)
(Fg)(mL − ξs)

}
. (25)

Thus, the error (22) is rewritten as

e[m] =
(
ξs −

m
L

)
+

1
2π
=

{
(Fg′)(mL − ξs)
(Fg)(mL − ξs)

}
. (26)

Fig. 2 shows the frequency responses of thewindow deriva-
tives and errors of IF computation using these window deriva-
tives. The window length and the signal length were set to
N = 27 and L = 212. The mainlobe width ωMW is defined
as the first null point of the frequency response except for
ω = 0. The error in the IF computed by the analytical deriva-
tive is larger than that of the spectral derivative. Therefore,
this paper focuses on spectral differentiation, even if these
windows are analytically differentiable.

III. BANDWIDTH-ADJUSTABLE WINDOWS
One aim of the window design is to control T-F spreading
under Heisenberg’s uncertainty principle. The spread in the
time direction can be controlled by setting the length of the
window function. We assume that a window g is supported
on [0,N − 1] and let w ∈ CN denote its nonzero part, i.e.,

g[l] =

{
w[l], if l = 0, 1, . . . ,N − 1
0, otherwise.

(27)

32078 VOLUME 10, 2022



T. Kusano et al.: Window Functions With Minimum-Sidelobe Derivatives for Computing IF

FIGURE 3. Sidelobe energy and highest sidelobe level of a window
function.

To obtain a well-localized T-F representation, a window
should be designed so that its frequency response has a nar-
row mainlobe and low sidelobe levels under the defined win-
dow length N . However, a window function has a trade-off
between the mainlobe width and the sidelobe level. The
mainlobe width is closely related to the appearance of the
T-F representation and can be intuitively chosen according to
the application. Thus, the sidelobe characteristics should be
optimized under the mainlobe width ωMW chosen according
to the application. The sidelobe energy (SE) and highest
sidelobe level (HSL) are used to evaluate the localization of
the frequency response of the window functions, which are
defined as

SE = 10 log10

∫ 1
2

−
1
2
WωMW (ω) |(Fw)(ω)|2 dω∫ 1

2

−
1
2
|(Fw)(ω)|2 dω

, (28)

HSL = 10 log10
maxωWωMW (ω) |(Fw)(ω)|2

maxω |(Fw)(ω)|2
, (29)

whereWωMW (ω) is a weight function,

WωMW (ω) =

{
0, if |ω| < ωMW

1, if |ω| ≥ ωMW.
(30)

The SE and HSL of a window function are shown in Fig. 3.
Many windows, such as the rectangular window, Bartlett

window, Hann window, Blackman window, and Nuttall win-
dow [13] depend only on the window length. However,
some window functions contain additional parameters for
adjusting the bandwidth; these are referred to as adjustable
windows. The Dolph–Chebyshev window [5], the Slepian
window [6], theKaiser window [8], the Saramäki window [9],
the ultraspherical window [10], [11], the cosh window [12],
and the Tukey window (tapered cosine window) [57] belong
to this class. Among them, the Slepian window and the
Dolph–Chebyshev window are characterized by the follow-
ing optimization problems:

minimize
w

∫ 1
2

−
1
2
WW (ω) |(Fw)(ω)|2 dω∫ 1

2

−
1
2
|(Fw)(ω)|2dω

, (31)

FIGURE 4. Block diagrams of (a) the conventional computation of a
window function and a window derivative pair and (b) the proposed
method.

minimize
w

max
ω∈[− 1

2 ,
1
2 ]

WW (ω)|(Fw)(ω)|

max
ω∈[− 1

2 ,
1
2 ]
|(Fw)(ω)|

, (32)

respectively, whereW ∈ (0, 12 ]. These windows are designed
to have a well-localized frequency response in terms of SE
and HSL, and they certainly show better characteristics than
other window functions (as indicated in the left side of
Fig. 10).

IV. PROPOSED METHOD
We now propose a window design method to reduce the
influence of the sidelobes of the window derivative on the
IF computation. A comparison between the conventional and
proposed methods of computing a window function and a
window derivative pair is illustrated in Fig. 4. In general,
to obtain a window and its derivative, the window function is
first designed, and then the window derivative is calculated by
differentiating the designed window [Fig. 4 (a)]. By contrast,
our method first designs the window derivative to minimize
the sidelobes and then estimates the window function from
the window derivative [Fig. 4 (b)].

A. PROBLEM FORMULATION
To restrict the spread in the time direction, we assume that the
window derivative is supported on [0,N − 1], i.e.,

g′[l] =

{
z[l], if l = 0, 1, . . . ,N − 1
0, otherwise,

(33)

where z ∈ CN corresponds to the nonzero part of g′. Calcu-
lating the window derivative from the window function can
be performed straightforwardly by spectral differentiation.
Conversely, from z such that 〈z, 1N 〉 = 0, g can be calculated
as the spectral integration:

g = F−1 diag(b)FPL,N z+ c1L , (34)
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where

b[m] :=


0, m = 0
−iL/2πm, if 0 < m < L/2
0, if m = L/2
−iL/2π (m− L), if L/2 < m ≤ L − 1,

PL,N ∈ RL×N is the zero-padding matrix,

PL,N :=
[
IN ,ON ,L−N

]T
, (35)

and c is an integral constant. 〈z, 1N 〉 = 0 constrains the
integration of the Fourier series to also be a Fourier series.
Therefore, we formulate the design of the window derivative
as

minimize
z

2(z)

subject to 〈z, 1N 〉 = 0, (36)

where 2(z) is an objective function measuring the sidelobes
of the frequency response of z, which corresponds to the
SE or HSL of z. In summary, we first design the window
derivative z by (36) and then estimate the window function
from z by (34).

In the remainder of this section, Sec. IV-B and Sec. IV-C,
we explain the methods for designing the window derivative
to minimize the SE and HSL, respectively. Estimating the
original window w from the designed window derivative z
is introduced in Sec. IV-D. Hereafter, the window derivatives
minimizing the SE and HSL are referred to as the Slepian
window derivative and the Chebyshev window derivative,
respectively.

B. SLEPIAN WINDOW DERIVATIVE
This subsection explains the design of the Slepian window
derivative. Considering the case where the cost function2(z)
in (36) is the ratio of the energy outside [−W ,W ] to the total
energy, the design problem of the Slepian window derivative
is formulated as

minimize
z

∫ 1
2

−
1
2
WW (ω) |(Fz)(ω)|2 dω∫ 1

2

−
1
2
|(Fz)(ω)|2dω

subject to 〈z, 1N 〉 = 0. (37)

The cost function in Eq. (37) can be rewritten as the Rayleigh
quotient:

zTz− zTSN z
zTz

= 1−
zTSN z
zTz

, (38)

where SN ∈ RN×N is a real-symmetric matrix whose ele-
ments are given by

SN [m, n] = 2W sinc(2W (m− n)), (39)

sinc(x) :=


sin(πx)
πx

, if x 6= 0

1, if x = 0.
(40)

Fixing zTz = 1 and reducing the constant 1 not relevant to
minimization, (37) can be rewritten as

minimize
z

− zTSN z

subject to zTz = 1, zT1N = 0. (41)

Such a problem can be simplified to an eigenvalue prob-
lem [58].

Let the Lagrangian function associated with (41) be

L(z, µ, η) = −zTSN z+ µ(zT z− 1)+ 2ηzT1N , (42)

whereµ and η are the Lagrangemultipliers. The optimal solu-
tion z? to (41) satisfies the following necessary conditions:

∂

∂z
L(z?, µ?, η?) = 2

(
−SN z? + µ?z? + η?1N

)
= 0, (43)

∂

∂µ
L(z?, µ?, η?) = z?Tz? − 1 = 0, (44)

∂

∂η
L(z?, µ?, η?) = z?T1N = 0. (45)

Multiplying (43) on the left by 1TN , η
? can be calculated as

η? =
1
N
1TNSN z

?. (46)

Substituting η? into (43), we obtain

TNSN z? = µ?z?, (47)

where TN = IN − 1
N 1N1

T
N is the projection matrix onto{

z ∈ CN
∣∣ zT1N = 0

}
. Hence, denoting KN = TNSN , the

eigenvectors of KN are candidates for the solution to the
problem (41). Furthermore, since the eigenvectors of KN
satisfy (44) and (45), multiplying (47) on the left by zT, we get

zTTNSN z = µzTz,

zTSN z = µ. (48)

Therefore, the eigenvector corresponding to the largest eigen-
valueµ0 is the solution to the problem (41). However, finding
the eigenvalues of KN is numerically ill-conditioned; like-
wise, SN . This ill-conditionedness follows from the following
fact and proposition.
Fact 1: The eigenvalues of SN are nondegenerate and take

values between zero and one. Furthermore, most eigenvalues
of SN are clustered around 1 or 0 [6].
Fact 2: Let λ0, λ1, . . . , λN−1 denote the eigenvalues of SN

such that

1 > λ0 > λ1 > · · · > λN−1 > 0, (49)

and their corresponding eigenvectors be v0, v1, . . . , vN−1,
whose norm and signs are determined so that

‖vk‖ = 1,
N−1∑
n=0

vk [n] ≥ 0 for k = 0, 1, . . . ,N − 1. (50)

The eigenvectors v0, v1, . . . , vN−1 of SN have the following
properties [6]:

Orthogonality : 〈vj, vk 〉 = 0 for j 6= k, (51)
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FIGURE 5. Eigenvalues of SN and KN for N = 27 and W = 0.03.

Symmetry : vk [n] = (−1)kvk [N − n− 1], (52)

for k = 0, 1, . . . ,N − 1.
Proposition 1: vk for k = 1, 3, . . . , 2bN/2c − 1 are the

eigenvectors of KN .
Proof: According to (52), vk for k = 1, 3, . . . ,

2bN/2c − 1 satisfies

TNvk = vk . (53)

Then, the following relationship holds:

KNvk = TNSNvk
= λkTNvk
= λkvk . (54)

Therefore, λk and vk are the eigenvalues and eigenvectors of
KN , respectively. �
Finding the eigenvalues of SN is numerically ill-

conditioned since most eigenvalues of SN are clustered
around 1 or 0, as shown by the blue line in Fig. 5. Even if the
eigenvalues of SN are nondegenerate, they behave as if they
are degenerate because of rounding errors in the numerical
computation. According to Proposition 1, its eigenvalues λk
for k = 1, 3, . . . , 2bN/2c − 1 are also eigenvalues of KN .
Hence, most eigenvalues ofKN are also clustered around 1 or
0, as shown by the red line in Fig. 5.

Here, KN is centrosymmetric since both TN and SN are
centrosymmetric [59]. Thus, the eigenvectors are symmetric
or antisymmetric, but their order is unclear. When z are
symmetric or antisymmetric, (Fz)(ω) can be represented
as the cosine or sine series [60]. Fig. 6 shows (Fz)(ω)
localized in [−W ,W ] under 〈z, 1N 〉 = 0. Note that the
linear phase of the frequency response is ignored to make
the spectrum real-valued for display. The symmetric case
contains an extra extremum in [−W ,W ] compared with the
antisymmetric case to satisfy the constraint 〈z, 1N 〉 = 0.
From this observation, the antisymmetric window localizes
the frequency response in [−W ,W ] under the constraint
〈z, 1N 〉 = 0 more than the symmetric window. Since vk
for k = 1, 3, . . . , 2bN/2c − 1 are antisymmetric from
Proposition 1, the eigenvector v1 corresponding to the second

FIGURE 6. Frequency responses (Fz)(ω) localized in [−W ,W ] under
〈z,1N 〉 = 0 of symmetric and antisymmetric windows. Note that the
linear phase of the frequency response is ignored for display.

largest eigenvalue λ1 is the solution to (37). To compute the
eigenvector v1, efficient methods for computing the eigenvec-
tors of SN [61], [62] are available instead of computing the
eigenvectors of KN directly.

C. CHEBYSHEV WINDOW DERIVATIVE
In this subsection, we consider the design problem of the
Chebyshev window derivative. Similar to (37), the direct
formulation of the design problem of the Chebyshev window
derivative is

minimize
z

max
ω∈[− 1

2 ,
1
2 ]

WW (ω)|(Fz)(ω)|

max
ω∈[− 1

2 ,
1
2 ]
|(Fz)(ω)|

subject to 〈z, 1N 〉 = 0. (55)

Considering the constraint 〈z, 1N 〉 = 0 and the symmetry
of the cost function with (37), the solution to (55) should be
antisymmetric.

When z is antisymmetric, the following decomposition of
(Fz)(ω) is proposed by McClellan and Parks [60]:

(Fz)(ω) = ei(
π
2 −(N−1)πω)Q(ω)P(ω,α), (56)

where

P(ω,α) =
K−1∑
k=0

α[k] cos(2πωk), (57)

Q(ω) =

{
sin(2πω), if N is odd
sin(πω), if N is even,

(58)

α ∈ RK , and K = bN/2c. The derivation of (56) and
the relation between α and z are explained in Appendix A.
The linear phase ei(

π
2 −(N−1)πω) has no effect on the cost

function of (55). SinceQ(ω)P(ω,α) is antisymmetric, finding
the highest sidelobe level only needs to consider the positive
frequency. Furthermore, since the constraint 〈z, 1N 〉 = 0 is
always satisfied when z is antisymmetric, (55) can be rewrit-
ten as

minimize
α

max
ω∈[0, 12 ]

WW (ω)|Q(ω)P(ω,α)|

max
ω∈[0, 12 ]

|Q(ω)P(ω,α)|
. (59)
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FIGURE 7. P(ω, α) and Q(ω) (left) and their product Q(ω)P(ω, α) (right).

Fixing the denominator to be 1 as in (41), (59) can be rewrit-
ten as

minimize
α

max
ω∈[0, 12 ]

WW (ω)|Q(ω)P(ω,α)|

subject to max
ω∈[0, 12 ]

|Q(ω)P(ω,α)| = 1. (60)

This optimization problem is still difficult to solve due to
this equality constraint, hence it needs to be further rewritten.
Here, the role of the constraint is to preserve the large peaks of
|Q(ω)P(ω,α)| in [−W ,W ] while reducing the sidelobe level.
Fig. 7 shows P(ω, α), Q(ω) and their product Q(ω)P(ω,α).
According to Fig. 7, the peaks of Q(ω)P(ω,α) in [−W ,W ]
are composed of the product of Q(ω) and the mainlobe of
P(ω,α) in [−W ,W ]. Since Q(ω) is independent of α, con-
straining P(0,α) to a nonzero value will preserve the large
peaks of |Q(ω)P(ω,α)| in [−W ,W ]. Based on these obser-
vations, we formulate the design problem of the Chebyshev
window derivative as

minimize
α

max
ω∈[0, 12 ]

WW (ω)|Q(ω)P(ω,α)|

subject to P(0,α) = 1. (61)

(61) can be solved using the modified Remez (MRemez)
algorithm [63], which is an extension of the Parks–McClellan
algorithm [64] to deal with an equality-constrained minimax
approximation problem. Introducing a weight function

W̃ε
W (ω) =


1
ε
, if ω = 0

0, if 0 < |ω| < W
Q(ω), if W ≤ |ω|,

(62)

(61) is rewritten as the unconstrained optimization problem,

minimize
α

max
ω∈[0, 12 ]

|E(ω,α)|, (63)

where

E(ω,α) = lim
ε→0

W̃ε
W (ω) [P(ω,α)− D(ω)] , (64)

D(ω) =

{
1, if ω = 0
0, if ω 6= 0.

(65)

Denoting the solution of (61) as α?, there
exist K + 1 frequencies ω?0, ω

?
1, . . . , ω

?
K satisfying

0 = ω?0 < ω?1 < · · · < ω?K ≤
1
2 such that [65]

P(ω?k ,α
?) =


1, if k = 0
(−1)k

W(ω?k )
δ?, if k = 1 . . . ,K

(66)

where

|δ?| = max
ω∈[0, 12 ]

|E(ω,α?)|. (67)

The MRemez algorithm finds ω?0, ω
?
1, . . . , ω

?
K using the fol-

lowing procedure:
Step 1. Initialize reference frequencies ω0, ω1, . . . , ωK so

that ω0 = 0 and W ≤ ω1 < · · · < ωK ≤ 1/2.
Step 2. Compute δ and P(ω,α) by the barycentric formula:

δ = lim
ε→0

∑K
k=0 βkD(ωk )∑K

k=0(−1)kβkW̃ε
W (ωk )

, (68)

P(ω,α) =

∑K
k=0

βk
cos(2πω)−cos(2πωk )

pk∑K
k=0

βk
cos(2πω)−cos(2πωk )

, (69)

where

pk = lim
ε→0

D(ωk )+
(−1)k

W̃ε
W (ωk )

δ, (70)

βk =

K∏
i=0,i6=k

1
cos(2πωk )− cos(2πωi)

. (71)

Step 3. Compute E(ω,α) by (64) and find the new refer-
ence frequencies ω+0 , ω

+

1 , . . . , ω
+

K satisfying [66]

sign
[
E(ω+k−1,α)

]
= − sign

[
E(ω+k ,α)

]
, (72)

|δ| ≤ |P(ω+k ,α)|, (73)

where at least one of the inequalities is strict.
Step 4. Repeat 2–3 until convergence.
After estimating ω?0, ω

?
1, . . . , ω

?
K using the MRemez algo-

rithm, the Chebyshev window derivative z can be computed
from its frequency response by sampling and performing the
inverse DFT,

z = F−1ẑ, (74)

ẑ[m] = e
i
(
π
2 −

N−1
N πm

)
Q(m/N )P(m/N ,α?), (75)

for m = 0, 1, . . . ,N − 1. P(m/N ,α?) can be calculated from
ω?0, ω

?
1, . . . , ω

?
K by the barycentric formula (Step. 2).

D. WINDOW ESTIMATION FROM THE WINDOW
DERIVATIVE
In the previous subsections, two window derivatives were
introduced as solutions to (36). This subsection presents the
method for estimating the window from the obtained window
derivative.

Denoting g0 = F−1 diag(b)FPL,N z, (34) is rewritten as

g = g0 + c1L . (76)
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FIGURE 8. Spectral integration of a window derivative supported on
[0,N − 1] (N = 7).

Recall that c is the integral constant, which has to be
determined for estimating the window g. In our conference
paper [49], estimating c is formulated as the minimization
problem of the ratio of the energy outside [−W ,W ] to the
total energy, similar to the Slepian window,

minimize
c

1−
(g0 + c1L)T SN (g0 + c1L)

(g0 + c1L)T (g0 + c1L)
, (77)

to obtain the well-localized frequency response.
An example of the window obtained by the spectral inte-

gration from a window derivative supported on [0,N − 1]
(N = 7) is illustrated in Fig. 8. As with the spectral dif-
ferentiation, even if window derivatives are supported on
[0,N − 1] (N < L), the integrated windows are not sup-
ported on [0,N−1]. The integrated windows are truncated to
have the same support as the window derivatives in practice.
This truncation may change the frequency response of the
window and decrease the accuracy of the IF computation.
In this paper, we propose a method for estimating c based
on minimizing the truncation effect.

The truncated window outside [0,N −1] can be expressed
using the zero-padding matrix PL,N as

PL,NPT
L,N (g0 + c1L). (78)

We estimate c by minimizing the squared error of the window
before and after truncation, i.e., our proposed estimation
problem is formulated as

minimize
c

1
2

∥∥∥(IL − PL,NPT
L,N )(g0 + c1L)

∥∥∥2
2
. (79)

IL −PL,NPT
L,N can be interpreted as a projection onto the set

of vectors that take a zero value in [0,N − 1]. Note that the
cost function of (79) does not go to zero since g0[l] outside
[0,N−1] oscillates similarly to the spectral differentiation in
Fig. 1. This problem is a linear least squares problem, so the
solution c? to (79) satisfies

1TL(IL − PL,NPT
L,N )

T(IL − PL,NPT
L,N )(g0 + c

?1L) = 0.

Because IL − PL,NPT
L,N is a diagonal projection matrix and

1TL
(
IL − PL,NPT

L,N

)
1L = L − N , the solution c? to (79) is

given by

c? = −
1

L − N
1TL(IL − PL,NPT

L,N )g0. (80)

Since this formulation minimizes the energy of the outer
components, the proposed integration method is applicable
for the case N < L. The proposed integration method is
effective when the window width is limited, as in real-time
processing, because the effect of truncation can be significant.

V. FREQUENCY RESPONSES OF DESIGNED WINDOWS
This section compares the proposed windows with the
Slepian and Dolph–Chebyshev windows. Hereafter, the win-
dows calculated from the Slepian window derivative and the
Chebyshev window derivative are referred to as the pro-
posed Slepian window and the proposed Chebyshev window,
respectively.

First, Fig. 9 illustrates the shapes and frequency responses
of the windows and the window derivatives. The length of
the windows was set to N = 27, and the signal length for the
spectral differentiation/integration was set to L = 212. Each
parameter W for the window was chosen such that ωMV =

0.03. Note that the frequency responses in Fig. 9 were nor-
malized such that the maxima are 0 dB. The derivatives of the
Slepian and Dolph–Chebyshev windows have nonzero values
outside [0,N−1], as in Fig. 1, which are omitted in Figs. 9(c)
and (g) since they are too small for illustration. The red lines
in Figs. 9(d) and (h) show the frequency responses when
these outside values are truncated. Conversely, the proposed
Slepian and Chebyshevwindows have nonzero values outside
[0,N − 1] due to the spectral integration. The frequency
responses of the truncatedwindows are plotted as the red lines
in Figs. 9(j) and (n).

In the time domain, there is little difference between
the shapes of the four windows. The derivative of the
Dolph–Chebyshev window (Fig. 9(g)) has a slight oscil-
lation at both ends compared with the others. Accord-
ing to Figs. 9(b) and (l), the Slepian window derivative
has a similar sidelobe decay to the Slepian window. Like-
wise, the sidelobe decay of the Chebyshev window deriva-
tive in Fig. 9(f) resembles that of the Dolph–Chebyshev
window in Fig. 9(p). Additionally, the proposed Slepian
and Chebyshev windows have better sidelobe decays than
the Slepian and Dolph–Chebyshev windows, respectively,
although their highest sidelobe levels are slightly higher.
This is because estimating a window from its derivative win-
dow in (34) suppresses the high frequencies. Furthermore,
Fig. 9(d), (h), (j), and (n) show that the proposed Slepian and
Chebyshev windows have smaller effects on the frequency
responses caused by truncation compared with the Slepian
and Dolph–Chebyshev windows. The result indicates that the
proposed design method can reduce the effect of truncation.

Then, the sidelobe energy and the highest sidelobe level of
each window at various bandwidths ωMW are summarized in
Fig. 10. Fig. 10 also shows the SE and HSL of four well-
known windows: Hann, Blackman, Nuttall, and truncated
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FIGURE 9. Results of designed windows. Each column shows (from left to right) the window functions, their frequency responses, the window
derivatives, and the frequency responses of the window derivatives. Each row represents the results of a type of window function. The red lines show
the frequency responses when the conventional window derivatives or the proposed windows are truncated outside [0,N − 1]. The broken black lines
indicate the bandwidths ωMW.

Gaussian windows. The truncated Gaussian window is rep-
resented by

wσ [n] = e−
{n−(L−1)/2}2

2σ2 , (81)

where σ is a parameter to control the mainlobe ωMW.
Although they were originally defined as continuous func-
tions, we computed these derivatives by the spectral dif-
ferentiation as mentioned at the end of Sec. II. The jumps
in the mainlobe widths seen in the truncated Gaussian and
Dolph–Chebyshev are due to nonzero minima in the fre-
quency responses, as shown on the right side of Fig. 11.
When the bandwidth W was set to a higher value, the SE

and HSL of the Slepian, Dolph–Chebyshev, proposed Slepian
and proposed Chebyshev windows decreased. Fig. 10 con-
firms that the Slepian window derivative and the Chebyshev
window derivative were correctly designed with the desired
optimality.

VI. EVALUATION OF IF COMPUTATION
This section compares the four windows in terms of the IF
computation. Throughout this section, the window length

N = 27 and the signal length L = 212. Each parameter W
for the window was chosen so that ωMV = 0.03.

A. COMPARING WINDOW INTEGRATION METHODS
First, the proposed integration method in (79) was compared
with the conventional estimation method (77) [49]. They
were assessed based on the error in computing the IF of the
sinusoid in (25).

The frequency responses of the estimated windows from
the Slepian and Chebyshev window derivatives using the two
integration methods are shown in Fig. 12. The SE and HSL
of each window are shown in the upper right corner of each
subfigure. Although the conventional method determines c
by minimizing the energy outside of [−W ,W ] to reduce the
SE, the frequency responses of the windows estimated by the
twomethods have comparable SE. However, for both window
derivatives, the changes due to truncation of the windows
estimated by the proposed method were smaller than those
of the conventional method.

The errors of the IF using two integrated windows are
shown in Fig. 13. The errors using the conventional method
increase due to truncation, but this is not seen in the results of
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FIGURE 10. Sidelobe energy and highest sidelobe level of designed windows. The top and bottom rows show the sidelobe energy and highest sidelobe
level of the window functions, respectively. The left and right columns correspond to the results of the window functions and the window derivatives.
Each line color represents a different type of window.

the proposed method. This suggests that the proposed method
can estimate the window to avoid an increase in the error due
to truncation effects. Additionally, with or without truncation,
the errors using the proposed method are smaller than those
using the conventional method in [0, ωMW]. This may be
because minimizing the outer energy reduces the oscillation
of the frequency responses.

B. COMPARISON OF WINDOWS FOR IF COMPUTATION
OF A SINUSOID
Second, the four windows were compared in terms of com-
puting the IF of a sinusoid. They were also evaluated by the
error in (26).

The IF errors using the four windows are shown in Fig. 14.
Regardless of truncation, the errors using the proposed win-
dows are smaller than those using the conventional windows.
In particular, the error using the proposed Chebyshev window
was smaller than that using the Slepian window, shown in
Fig. 14, even though they have similar frequency responses,
shown in Fig. 9. The results indicate that the proposed

FIGURE 11. Truncated Gaussian windows with different σ .

window design method can improve the accuracy of the IF
computation of the sinusoid.

C. COMPARISON OF WINDOWS FOR IF COMPUTATION IN
THE PRESENCE OF ANOTHER SINUSOID
Then, we consider estimating the IF of the sinusoid s from a
signal composed of two complex sinusoids,

x = s+ i, (82)
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FIGURE 12. Frequency responses of estimated windows from Slepian and
Chebyshev window derivatives using two integration methods. The left
and right columns correspond to the frequency responses of the
conventional and proposed methods, respectively.

FIGURE 13. IF computation error in a sinusoid using the windows shown
in Fig. 12. The left and right columns correspond to the results of the
conventional and proposed integration methods, respectively.

where

i[l] = Aiei(2πξil+φi), (83)

for l = 0, 1, . . . ,L − 1. s and i correspond to the target and
interference signals, respectively. The IF of x is expressed as

IFxg[n,m]

= −
1
2π
=

{
(Vg′x)[n,m]
(Vgx)[n,m]

}
= −

1
2π
=

{
rei1φ(Fg′)(mL − ξs)+ (Fg′)(mL − ξi)
rei1φ(Fg)(mL − ξs)+ (Fg)(mL − ξi)

}
,

(84)

where

r =
As
Ai
, 1φ = 2πξsn+ φs − (2πξin+ φi).

The error of the IF between s and x is given by

e = IFxg[n,m]− IFsg[n,m]

FIGURE 14. IF computation error in a sinusoid using the four windows.
The left and right columns correspond to the results without and with
truncation, respectively.

FIGURE 15. IF computation error in the sum of two sinusoids. Each row
shows (from top to bottom) the results for the Slepian window,
Dolph–Chebyshev window, proposed Slepian window, and proposed
Chebyshev window.

FIGURE 16. Error at m/L = ξs in Fig. 15. Each color represents the result
of a different window.

= −
1
2π
=


(Fg′)(mL −ξi)
(Fg)(mL −ξi)

−
(Fg′)(mL −ξs)
(Fg)(mL −ξs)

rei1φ
(Fg)(mL −ξs)
(Fg)(mL −ξi)

+ 1

 . (85)

According to (12), the real part of the numerator of (85) is
zero since the STFTmagnitude of a complex sinusoid is time-
invariant. Hence, (85) can be rewritten using IFig and IFsg as

e = <

 IFig[n,m]− IFsg[n,m]

rei1φ
(Fg)(mL −ξs)
(Fg)(mL −ξi)

+ 1

 . (86)

The transitions of e associated with the initial phase φs,
φi, and the time index n are irrelevant to the evaluation.
Moreover, from (25), the IF of a complex sinusoid is con-
stant regardless of the time index n. Therefore, we con-
sider the worst case of e in any 1φ. The error e becomes
large regardless of sidelobe level when m/L is outside the
mainlobe of the target signal or inside the mainlobe of the
interference signal. Under these conditions, it is challenging
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to obtain a meaningful IF unless the amplitude ratio is quite
large. Thus, we consider the case where m/L is inside the
mainlobe of the target signal and outside the mainlobe of
the interference signal. Assume that the amplitude ratio r
satisfies |(Fg)(m/L − ξs)/(Fg)(m/L − ξi))| > 1/r . This
assumption is mild in the condition we considered because
|(Fg)(m/L − ξs)/(Fg)(m/L − ξi))| should be large. Then,
the worst case of e by choosing 1φ is given by

emax =
IFig[n,m]− IFsg[n,m]

1− r
∣∣∣ (Fg)(mL −ξs)
(Fg)(mL −ξi)

∣∣∣ . (87)

The deviation of (87) is shown in Appendix B. (87) indicates
that as the amplitude ratio r decreases, the error of the IF
increases.

Fig. 15 plots the error of the IF computation in (87) for
r = 1. The bright central areas in the four results correspond
to cases where the twomainlobes overlap. The top and bottom
bright regions in the four results represent the errors of the IF
outside the mainlobe of s. In addition, the error at m/L = ξs
in Fig. 15 is shown in Fig. 16.

The IF using the Dolph–Chebyshev window had the most
significant error among the four windows. In contrast, the
results for the proposed Slepian window had the smallest
error. The results using the Slepian window and the proposed
Chebyshev window had comparable errors. These results
suggest that reducing the sidelobe of the window derivative
decreases the error of the IF computation.

VII. APPLICATION TO FSST
As an application for IF computation, the proposed windows
were applied to the FSSTs of an artificial signal and a speech
signal. The FSST of a signal f with a window function g is
defined as

Sf
g[n,m] :=

L−1∑
k=0

ei
2πkn
L (Vgf)[n, k]δ

[
m− m̃[n, k]

]
, (88)

where

m̃[n,m] :=
⌊
m+ L · IFfg[n,m]

⌉
, (89)

and δ[l] is the Kronecker delta. We used the Rényi entropy
as a metric of the energy concentration of the FSST spectro-
gram [67]. The Rényi entropy of the FSST spectrogram is
given by

Hα :=
1

1− α
log2

∑
n,m


∣∣∣Sf

g[n,m]
∣∣∣∑

n,m

∣∣∣Sf
g[n,m]

∣∣∣
α
− log2(L),

with α > 2 being recommended for the T-F domain
measures [67]. α = 3 is chosen throughout the
experiments.

As shown in Fig. 10, sidelobes can be reduced by increas-
ing the mainlobe width. In contrast, if the mainlobes of
multiple components overlap, the IF error becomes large.
Therefore, an appropriate mainlobe width must be selected

FIGURE 17. Rényi entropies of FSST spectrograms of a synthesized signal.

TABLE 3. Minimum values of the Rényi entropies in Fig. 17 and the
corresponding bandwidths.

TABLE 4. Minimum values of the Earth mover’s distance in Fig. 18 and
the corresponding bandwidths.

to reduce both effects. The Rényi entropy has also been used
as a metric to select the variance of the Gaussian window in
STFT and FSST [68], [69]. Since the mainlobe widths of the
designed windows will also affect the Rényi entropy of the
FSST, we evaluated the Rényi entropy of the FSST for various
mainlobe widths.

To further evaluate the FSST of an artificial signal, we used
the Earth mover’s distance [70]. The Earth mover’s dis-
tance is an index that measures between two distributions
and has been used to evaluate the synchrosqueezing-based
method [34], [35], [71]. This evaluation consists of averaging
the 1D Earth mover’s distance between the estimated T-F rep-
resentation and the ideal representation at each time index n.
If the ideal representation is known, the Earth mover’s dis-
tance is a more valid metric for estimating the T-F represen-
tation than the Rényi entropy.

A. FSST OF ARTIFICIAL SIGNALS
The proposed windows were evaluated with the FSST of
a real-valued artificial signal, which contained a sinusoid,
a linear chirp, and a quadratic chirp. The window length was
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FIGURE 18. Earth mover’s distance of FSST spectrograms of a synthesized
signal.

FIGURE 19. FSST spectrograms of an artificial signal. Each column shows
(from left to right) the spectrograms, FSST spectrograms, and
enlargements of the FSST spectrograms in the red box. Each row shows
(from top to bottom) the results for the Slepian, Dolph–Chebyshev,
proposed Slepian, proposed Chebyshev, and truncated Gaussian
windows.

set to N = 26 because the calculation of the Rényi entropy of
FSST was numerically unstable when N = 27.
The Rényi entropies of the FSST with different main-

lobe widths ωMW are plotted in Fig. 17. Table 3 shows

FIGURE 20. Rényi entropies of FSST spectrograms of a speech signal.

the minimum values of the Rényi entropies in Fig. 17 and
the corresponding bandwidths. Compared to the other four
windows, the widely used truncated Gaussian window shows
poor performance. The Slepian window and the proposed
Chebyshev window show approximately equivalent perfor-
mance. The proposed Slepian window achieves the best per-
formance among the five windows. Then, the Earth mover’s
distance of FSST with different mainlobe widths ωMW are
shown in Fig. 18, and their minimum values are shown in
Table 4. Although the mainlobe widths that obtain the min-
ima are different, the FSST spectrogram using the proposed
Slepian has the smallest distance. These results indicate that
the proposed Slepian window provides the most concentrated
FSST spectrogram of the five windows.

Fig. 19 illustrates the T-F representations obtained by the
STFT and FSST in the case of Table 3. Focusing on the
enlargement in the red box (the right column of Fig. 19), it can
be confirmed that the component outside the center frequency
is reduced using the proposed Slepian window. The FSST
spectrogram using the proposed Chebyshevwindow is almost
as sharp as that using the Slepian window.

B. FSST OF SPEECH SIGNAL
We considered a speech signal with a sampling frequency
of 7,418 Hz. The window length was set to N = 27. Since
the ideal T-F representation is unknown, the Earth mover’s
distance cannot be used for evaluation, and only the Rényi
entropy is used in this experiment.

Fig. 20 and Table 5 show Rényi entropies of SST with
different bandwidths and their minimum values, respectively.
As in the case of the synthesized signal, FSST with the pro-
posed Slepianwindow achieves the best performance in terms
of the Rényi entropy. Fig. 21 depicts the T-F representations
obtained by the STFT and FSST in the case of Table 5.
Although the appearances of the spectrograms are similar,
the proposed Slepian window provides the sharpest FSST
spectrogram of the four windows. The results confirmed that
the proposed Slepian window provides the sharpest FSST
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FIGURE 21. FSST spectrograms of a speech signal. Each column shows
(from left to right) the spectrograms, FSST spectrograms, and
enlargements of the FSST spectrograms in the red box. Each row shows
(from top to bottom) the results for the Slepian, Dolph–Chebyshev,
proposed Slepian, proposed Chebyshev, and truncated Gaussian
windows.

TABLE 5. Minimum values of the Rényi entropies in Fig. 20 and the
corresponding bandwidths.

spectrogram of the four windows for a real speech signal as
well.

The proposed Slepian window showed the best perfor-
mance throughout the experiments in this section. Therefore,
the proposed Slepian window can be useful for FSST appli-
cations. However, the proposed Chebyshev window may be
preferable depending on the signal of interest because the
sidelobes of the Chebyshev window derivative near the main-
lobe are smaller than those of the Slepian window derivative.

VIII. CONCLUSION
In this paper, we proposed a framework to design a window
function for the IF computation. The proposed method first
designs the window derivative to minimize the sidelobes
and then estimates the window function from the designed

window derivative. We designed two minimum-sidelobe
derivatives to minimize the SE and HSL, referred to as the
Slepian and Chebyshevwindow derivatives, respectively. The
integral constant that appears when integrating the designed
window derivative is estimated to minimize the truncation
effect. In the IF computation of a sinusoid, the proposed
windows reduce the error compared to certain other windows.
In addition, the proposed Slepian window showed the best
performance in the FSST among the several windows.

Some phase-aware techniques use not only the IF but
also the group delay and higher-order derivatives of the
phase [33]–[35]. Moreover, phase derivatives also play an
important role in wavelet synchrosqueezing transform and
other filterbank-based methods. Therefore, future work will
include generalizing the proposed method to these elements
and investigating the method’s computational efficiency.

APPENDIX A
TRIGONOMETRIC REPRESENTATION OF THE FREQUENCY
RESPONSE OF THE WINDOW DERIVATIVE
This appendix explains the derivation of (56) and the relation
between α and z based on [60]. The frequency response of the
antisymmetric window z can be represented as a sine series.
When N is odd,

(Fz)(ω) = ei(
π
2 −(N−1)πω)

K∑
k=1

a[k] sin(2πωk), (90)

whereK = (N−1)/2 and a[k] = 2z[K−k] for k = 1, . . . ,K ,
and z[K ] = 0. When N is even,

(Fz)(ω) = ei(
π
2 −(N−1)πω)

K∑
k=1

a[k] sin
(
2πω

(
k −

1
2

))
(91)

where K = N/2 and a[k] = 2z[K − k] for k = 1, . . . ,K .
(90) and (91) can be rewritten as a cosine series using the
trigonometric identities,

cos θ1 cos θ2 =
1
2
[cos(θ1 + θ2)+ cos(θ1 − θ2)] , (92)

cos θ1 sin θ2 =
1
2
[sin(θ1 + θ2)− sin(θ1 − θ2)] . (93)

When window length N is odd,

K∑
k=1

a[k] sin(2πωk) = sin(2πω)
K−1∑
k=0

α[k] cos(2πωk), (94)

where

a[k]

=


α[0]−

1
2
α[2], if k = 1

1
2
(α[k − 1]− α[k + 1]), if k = 2, 3, . . . ,K − 2

1
2
α[k − 1], if k = K − 1,K .

(95)
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When window length N is even,

K∑
k=1

a[k] sin
(
2πω

(
k −

1
2

))

= sin(πω)
K−1∑
k=0

α[k] cos(2πωk), (96)

where

a[k]=


α[0]−

1
2
α[1], if k = 1

1
2
(α[k − 1]− α[k]), if k = 2, 3, . . . ,K − 1

1
2
α[k − 1], if k = K .

(97)

Hence, using (57) and (58), (Fz)(ω) in the odd and even cases
can be uniformly rewritten as

(Fz)(ω) = ei(
π
2 −(N−1)πω)Q(ω)P(ω,α), (98)

which equals (56).
After obtaining the solutionα? by solving (61), the window

derivative z is calculated using (95) and

z[n] =


1
2
a[K − n], for n = 0, . . . ,K − 1

0 for n = K

−
1
2
a[n− K ], for n = K + 1, . . . ,N − 1

(99)

when N is odd, and (97) and

z[n] =


1
2
a[K − n], for n = 0, . . . ,K − 1

−
1
2
a[n− K ], for n = K , . . . ,N − 1

(100)

when N is even.

APPENDIX B
DERIVATION OF (87)
Let ρ ∈ R+ and ϕ ∈ (−π, π] such that

rei1φ
(Fg)(m/L − ξs)
(Fg)(m/L − ξi)

=: ρeiϕ . (101)

Then, (85) can be rewritten as

e = <

{
(IFig[n,m]− IFsg[n,m])(ρe

−iϕ
+ 1)

(ρeiϕ + 1)(ρe−iϕ + 1)

}
. (102)

Since IFsg and IFig are real,

e =
(IFig[n,m]− IFsg[n,m])(ρ cosϕ + 1)

ρ2 + 2ρ cosϕ + 1
. (103)

When e becomes extrema, ϕ must satisfy

∂e
∂ϕ
=

(IFig[n,m]− IFsg[n,m])ρ(1− ρ
2) sinϕ

(ρ2 + 2ρ cosϕ + 1)2
= 0. (104)

Because we assumed that |(Fg)(m/L − ξs)/(Fg)(m/L − ξi)|
> 1/r , ρ must be greater than 1. Thus, the denominator of

(104) is not zero, and ∂e
∂ϕ

becomes zero if ϕ = 0 or ϕ = π .
Substituting ϕ = 0 or ϕ = π for (102),

e0 =
(IFig[n,m]− IFsg[n,m])(ρ + 1)

ρ2 + 2ρ + 1

=
IFig[n,m]− IFsg[n,m]

1+ ρ
, (105)

eπ =
(IFig[n,m]− IFsg[n,m])(−ρ + 1)

ρ2 − 2ρ + 1

=
IFig[n,m]− IFsg[n,m]

1− ρ
. (106)

The difference between the squares of these is

e20 − e
2
π = (IFig[n,m]− IFsg[n,m])

2
{

1
(1+ ρ)2

+
1

(1− ρ)2

}
= (IFig[n,m]− IFsg[n,m])

2 −4ρ
(1− ρ2)2

< 0.

Hence, the worst-case error is eπ , and eπ is equal to (87) by
substituting ρ = r |(Fg)(m/L − ξs)/(Fg)(m/L − ξi)|.
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