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ABSTRACT We present a composite Compressed Sensing system for the acquisition and recovery of
compressible signals, where a sparse Binary Sensing Matrix aids Sparsity Order Estimation, and a Gaussian
Sensing Matrix aids reconstruction. The Binary Sensing Matrix is deterministic and is adapted according
to the varying nature of the sparsity order. We estimate the sparsity order by exploiting the sparse structure
of the Binary Sensing Matrix and the statistics of the obtained measurements. We refine the estimates of
the sparsity order using a Kalman filter with a discrete Markov model that characterizes the sparsity order
variation. A Binary Sensing Matrix-Aided Orthogonal Matching Pursuit is developed for faster recovery
of compressible signals. Simulation results on real-world and synthetic data demonstrate the merits of the
proposed sparsity order estimation and recovery methods compared to other existing methods. Our proposed
methods are practical and recover compressible signals at least 25% faster than the existing methods.

INDEX TERMS Compressed sensing, compression algorithms, discrete cosine transforms, greedy algo-
rithms, Kalman filters, Markov processes, maximum likelihood estimation, signal reconstruction, sparse
matrices, vibration measurement.

I. INTRODUCTION
Traditional data acquisition and transform-domain compres-
sion involve (i) sampling of the compressible signal at rates
at least the Nyquist rate and (ii) retaining only the significant
coefficients and their locations when the acquired samples are
transformed using a set of orthogonal bases such as Fourier,
cosine, and wavelet. The number of significant transform-
domain coefficients is the sparsity order k and the collection
of their locations is the support S of the compressible signal.
The Nyquist rate depends on the bandwidth of the compress-
ible signal, which is several orders of magnitude greater than
the sparsity of the signal, thereby resulting in more samples
(measurements). Because hardware resources and processing
power requirements are directly proportional to the number
of measurements, there is a pressing need to reduce them sig-
nificantly. Thus, considering the sparsity order instead of the
bandwidth paves the way for breaching this Nyquist barrier,
thereby drastically reducing the number of measurements
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by unifying the sensing and compression, resulting in the
development of Compressed Sensing (CS) [1]–[3].

During CS acquisition, an N−dimensional compressible
signal x with sparsity order k is directly sensed and com-
pressed into anM−dimensional measurement vector y using
an M × N−dimensional sensing matrix 2. Mathematically,
CS acquisition is represented as

y = 2x+ ϑ (1)

where ϑ is the measurement noise. Here, k < M � N ,
M ≥ ck log(N/k) for some constant c [4], [5] and the Com-
pression Ratio (CR) achieved is N/M . During CS recovery,
the compressible signal can be reconstructed from the mea-
surement vector using the same sensing matrix used during
acquisition. CS recovery is primarily performed using either
convex relaxation or greedy techniques. The key components
of CS are the combination of a sensingmatrix and the inherent
sparsity of the signal in a suitable transform domain.

A. THE PURPOSE OF SPARSITY ORDER ESTIMATION
For a practical CS system, the knowledge of exact spar-
sity order of a compressible signal is of great importance
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during CS acquisition and recovery. In the CS acquisition
stage, the sparsity order dictates the minimum number of
measurements, i.e., the size of the measurement vector to be
acquired. In the CS recovery stage, the sparsity order controls
the quality of estimation of the compressible signal.

The number of CS measurements M required for the
perfect recovery of an N−dimensional compressible signal
depends on the sparsity order k of the underlying compress-
ible signal and is given in [4], [5] as

M ≥ 2k log
(
N
k

)
(2)

when the components of sensing matrix 2 are independent
and identically distributed (i.i.d.) random Gaussian variables.

In many recovery algorithms, the optimal tuning of param-
eters requires knowledge of the sparsity order of the sig-
nal. For example, in the LASSO [1] techniques of convex
relaxation-based CS recovery, the recovered signal x̂ from
the CS measurement vector y = {y1, y2, . . . , yM } with the
knowledge on sensing matrix2 is given as,

x̂ = argminz
1
2

∑M

i=1
(yi − (2z)i)2 + µ

∑N

j=1
|z|j (3)

where the tuning parameter µ = σϑ
√
2 log k is a function of

the sparsity order k and the measurement noise level σϑ for
the perfect recovery. For greedy algorithms, such as Orthogo-
nal Matching Pursuit (OMP) [6] and Compressive Sampling
Matching Pursuit (CoSaMP) [7], the recovery performance
and the number of iterations depend on the sparsity order k .
Most of the CS works assume that sparsity order is known

beforehand and is not time-varying. This assumption makes
the practical applicability of CS theory difficult. An improper
assumption of sparsity order during CS acquisition results in
either an insufficient or an excess number of measurements
and affects the quality of reconstructed signal during recov-
ery. Similarly, the improper assumption during CS recovery
results in either early or late termination of CS recovery
algorithms leading to either poor reconstruction or wastage of
resources. Some greedy recovery algorithms such as Sparsity
adaptive Matching Pursuit (SaMP) and its variants [8]–[13]
and Kronecker-based recovery [14], [15] do not necessarily
require the knowledge of the sparsity order for recovery.
However, the efficiency of such recovery algorithms depends
on the ‘step size’ parameter that is greatly influenced by the
knowledge of sparsity order. If sparsity order knowledge is
not considered, a fixed smaller step size leads to a longer
recovery time, whereas a fixed larger step size leads to poor
recovery. Thus, Sparsity Order Estimation (SOE) has become
an important topic for both CS acquisition and recovery.

B. RELATED WORKS ON SOE
There are direct SOE methods that exclusively estimate the
sparsity order and apply to both CS acquisition and recovery.
The indirect SOE methods are applicable only during CS
recovery, as the sparsity order is estimated through the sup-
port estimation process of CS recovery. Recent and relevant

works on direct SOE are available in [16]–[24], and indirect
SOE are available in [8]–[15].

The direct SOE methods using specially designed sensing
matrices are available in [16]–[18]. Lopes [16] introduced
the SOE from random Cauchy sensing matrix-based mea-
surements, which are not helpful for recovery. Moreover,
the distribution of Cauchy sensing matrix entries depends on
the knowledge of noise statistics. The use of sparse random
Gaussian sensing matrices for the SOE of true sparse signals
was proposed in [17]. Both these methods [16], [17] require
a priori information about the signal statistics to construct
a sensing matrix that is practically infeasible. A specially
designed sensing matrix possessing Khatri-Rao structure for
SOE was recently presented in [18] where the matrix con-
struction depends on the signal type, and the SOE perfor-
mance is limited to lower sparsity order.

Direct SOEmethods that exploit the characteristics of sens-
ing matrices are available in [19]–[22]. In [19], a spectrum
sensing algorithm solved an optimization problem to remove
the measurement noise effect, followed by an energy min-
imization problem using QR decomposition of the sensing
matrix, and applied a threshold to obtain the sparsity order.
This algorithm requires the signal and noise power to be
known a priori to tune the threshold parameter and is not
suitable for estimating a higher sparsity order. By exploiting
the autocorrelation and cross-correlation properties of the
column vectors of the GSM, two-step adaptive compressive
spectrum sensing (TS-ACSS) was proposed in [20]. In the
first step, a coarse SOE was performed by identifying the
slope change in the ordered arrangement of the inner product
results of the column vectors of the sensing matrix with the
obtained measurements. The SOE was then refined using the
CS recovery of the spectrum, and by comparing the estimates
of the binary channel occupation in multiple iterations in the
second step. This method not only requires more measure-
ments for SOE but also involves multiple iterations that make
the method computationally intensive and slow.

Recently, SOE was performed iteratively by exploiting the
Restricted Isometry Property (RIP) of the random sensing
matrix in [21]. However, this method requires the knowledge
of two parameters: a weak-matching factor and an estimation
factor, which are dependent on the sparsity order and are
difficult to fix in practical scenarios because the sparsity
order is unknown and varies over time. In [22], a sensing
dictionary was initially constructed for CS recovery with the
same dimensions as the measurement matrix but with weak
mutual correlation. A sparsity adaptive estimation method
was presented, similar to that in [21], with the difference
of considering the mutual correlation constant instead of the
isometry constant. The efficiency of this method depends on
the step size parameter related to the unknown sparsity order.

Within the Multiple Measurement Vector (MMV) frame-
work, the direct SOE method based on the trace of the
covariancematrix of the measurements was presented in [23],
with the assumption that the signal power is known a priori.
By identifying the slope change in the ordered eigenvalues
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of the covariance matrix of the measurements, SOE was
performed in [24]. However, this method is computationally
intensive for finding eigenvalues and unsuitable for estimat-
ing a higher sparsity order.

A relative threshold-based sparsity estimation method
(RTSE) was proposed in [8]. It performs SOE based on
a reconstruction algorithm. The threshold for finding the
largest components is based on the training set and can-
not be fixed a priori, limiting its application. The SaMP
algorithm [9] and its variants Adaptive Step size-SaMP
(AS-SaMP) algorithm [10], Modified CoSaMP (MCoSaMP)
algorithm [11], and sparsity adaptive segmented orthogonal
matching pursuit (SAStOMP) algorithm [12] estimate the
sparsity indirectly through a variable step size, and gradu-
ally increase the estimated support set to match the orig-
inal. However, these SaMP algorithms require a step size,
whose optimal value depends on an unknown sparsity order.
AnOptimizedAdaptiveMatching Pursuit (OAMP) algorithm
was proposed in [13] which is similar to SaMP except for
the energy entropy-based order determination in updating
the support. Recently, the deterministic binary block diago-
nal (DBBD) matrix-based sensing [14] and Kronecker-based
recovery [15] have been proposed for acquiring and recover-
ing compressible signals. The DBBD sensing matrix reduced
hardware complexity. However, its structure accumulates the
energy of significant neighboring components, making sup-
port estimation difficult under noisy settings and leading to
degraded recovery performance.

C. MOTIVATION
The issues with the existing SOE methods are summarized as
follows.

1) Existing SOE methods have the following assump-
tions and constraints that are not suitable for practical
applications.
• The signal and noise statistics are known
a priori [16]–[19].

• The support is time-invariant [20], [23], [24].
• The sparsity order is restricted [18], [19], [24].
• The algorithm parameters depend on sparsity
order [8]–[15], [21].

2) They are computationally intensive [17], [20], [22].
3) They require separatemeasurements only for SOE [16].
Therefore, there is a strong need to develop an SOE

algorithm suitable for both CS acquisition and recovery.
Motivated by the purpose of SOE and to overcome the afore-
mentioned limitations of existing SOE methods, we propose
an efficient and practically implementable CS measurement
system that performs a novel instantaneous SOE on the fly
using the same set of measurements acquired for use during
recovery. The proposed SOEmethod is suitable for estimating
the time-varying sparsity order and does not require any prior
information regarding signal and noise statistics. We estimate
the signal statistics from the obtained measurements and
adapt our CS measurement system according to the time-
varying signal statistics and sparsity order.

Inspired by the SOE methods that perform estimation
exploiting the characteristics of sensing matrix design,
we propose a composite CS measurement system for max-
imizing the SOE and recovery performance. In general,
sensing or measurement matrices can be classified into two
categories: random and deterministic. The entries of the ran-
dom sensingmatrices are i.i.d. Gaussian or Bernoulli variates.
Random sensingmatrices satisfy an important property called
RIP with a high probability required for the perfect recovery
of the signal from the obtained measurements. They are
nonadaptive and suitable for recovering all types of sparse or
compressible signals. However, they are not optimal because
they are primarily unstructured and not designed to exploit
the structure of the signals.

Compared to random sensing matrices, deterministic
sensing matrices are fully structured and are signal or
application-specific. Chirp sensing matrices, Reed-Muller
sensing matrices, Binary Sensing Matrices (BSM) such as
Quasi-Cyclic Low-Density Party Check (QC-LDPC) matri-
ces, and binary Bose-Chaudhuri-Hocquenghem (BCH) are
examples of deterministic sensing matrices. Recently, sparse
BSM [25]–[31] based CS measurement systems have been
considered because they are multiplier-less (for time-domain
sparse signals) and perform faster compression. Although
these matrices are simple to implement, they possess a
weaker RIP and require more measurements for recovery.
However, the measurements obtained using these matri-
ces have specific statistical properties that are suitable
for SOE.

Considering the guaranteed RIP and SOE using random
and deterministic matrices, respectively, the sensing matrix
can be a composite matrix comprising of both types of matri-
ces for efficient CS acquisition and recovery. Studies have
been conducted on composite sensing matrices [16], [32] for
SOE and support estimation. A Hybrid Compressed Sensing
(HCS) method was proposed in [32], where two submatrices
are a sparse complex-valued submatrix for support estimation
and a random dense real-valued submatrix for reducing the
number of measurements. Using this method, the success
of signal recovery depends on the size of both submatri-
ces, which is a function of the sparsity order. The Lopes
method [16] uses a different composite CS measurement
system comprising two random sensing submatrices, i.e.,
Cauchy and Gaussian matrices. The random Cauchy matrix
preserves the `1 norm suitable for SOE, whereas random
Gaussian matrix preserves the `2 norm suitable for recov-
ery. However, this method is inefficient because the Cauchy
matrix is designed with a priori knowledge on statistics of
the noise, and the measurements obtained with the Cauchy
matrix are not helpful for recovery. Thus there is a need to
have a composite sensing matrix suitable for SOE and recov-
ery. We propose a composite CS measurement system that
comprises a deterministic sparse BSM and a random GSM to
maximize the SOE and recovery performances, respectively.
Here measurements obtained using both BSM and GSM are
helpful for recovery.
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As real-world compressible signals are time-varying, the
sparsity order also varies with time. Here, we consider a birth-
death process to model the time-varying sparsity order. The
model employs a Kalman filter to improve the estimates of
time-varying sparsity order.

D. CONTRIBUTIONS
Our main contributions are summarized as follows.
(1) A composite CS system comprising BSM and GSM

matrices is proposed for the sensing and recovery of
compressible signals with better performance.

(2) A novel BSM-based SOE (BSOE) method for estimat-
ing the sparsity order of compressible signals is derived
by exploiting the sparse structure of the BSM and the
statistics of significant coefficients of the signal that are
obtained from the measurements.

(3) The estimates of the time-varying sparsity order are
refined using the Kalman filter. The Kalman filter uses
the temporal correlation of the sparsity order to make it
less sensitive to measurement fluctuations and further
minimize the SOE error (SOEE).

(4) A novel BSM aided greedy recovery algorithm is
proposed for CS recovery. The proposed recovery algo-
rithm reduces the number of iterations required to iden-
tify the support, resulting in faster recovery without
compromising the quality of the recovered signal.

We demonstrate that the proposed CS system and SOE
methods are designed suitable for both CS acquisition and
recovery than most SOE methods developed for CS recovery.
The design of the BSM in our CS system not only aids in SOE
but in support indices recovery also. Thus, all the obtained
measurements are useful. The ability of SOE in the absence
of statistics of signal and noise makes the proposed system
suitable for real-world applications.

The remainder of this paper is organized as follows.
Section II introduces CS theory. Section III introduces a com-
posite CS acquisition model for acquiring compressible sig-
nals and a model for sparsity order variation. In Section IV,
the BSM-based measurements are used to derive the BSOE
for both true sparse and compressible signals. The prop-
erties of BSOE are discussed, and it is shown that BSOE
is Maximum Likelihood (ML) optimal. In Section V, the
Kalman filter is designed to refine the BSOE. The sensitivity
of the sparsity order of the BSM to the variance of BSOE
is discussed in Section VI. The practical implementation
of the proposed composite CS method using simple hard-
ware elements is presented in Section VII. In Section VIII,
BSM aided CS recovery and its performance are discussed.
Section IX investigates the performance metrics of the pro-
posed composite CS and Kalman-filtered BSOE methods
during the acquisition and recovery of synthetic compressible
signals and real-world vibration signals. Finally, Section X
presents a discussion of the results.

The operators commonly used in this paper are ‖ . ‖p,
Pr[.], E{.}, and VAR{.} which refer to the `p norm, prob-
ability, expectation, and variance functions, respectively.

The operators b.e, b.c, and d.e, round the argument to the
nearest integer, greatest preceding integer and least succeed-
ing integer, respectively. The notations R, Z, and O indi-
cate the real-number domain, integer-number domain, and
order of complexity, respectively. The expression

( k
L

)
refers

to the number of ways to choose L elements from a set
of k elements. A Gaussian random variable X with mean
µ and variance σ 2 is denoted by X ∼ N (µ, σ 2) and a
Bernoulli random variable Y such that Pr[Y = 0] = λ and
Pr[Y = 1] = 1− λ is denoted by Y ∼ B(0, λ).

II. BACKGROUND TO CS THEORY
CS is an alternative to the well-known Nyquist-Shannon
theory provided that the signal under consideration is either
sparse or compressible. CS theory involves (i) sparse rep-
resentation of the signal, (ii) CS acquisition to obtain com-
pressed samples or measurements from the signal, and
(iii) CS recovery to reconstruct the signal using the obtained
measurements.

A. SPARSE REPRESENTATION
The majority of signals in nature exhibit inherent redundancy
in a suitable transform domain with the help of (i) orthonor-
mal basis functions, such as Fourier, wavelet, and cosine,
or (ii) overcomplete dictionaries containing a combination of
different orthonormal basis functions. A sparse representa-
tion identifies redundancy and determines the most concise
representation of a signal in terms of a linear combination of
vectors of a basis function or atoms of an overcomplete dictio-
nary. A concise representation is a true sparse or compressible
version of the original signal.

1) TRUE SPARSE SIGNAL
A signal x is true sparse if it can be represented on a suitable
orthonormal basis or dictionary 9 such that x = 9s, and the
representation s has very few nonzero components or coeffi-
cients compared to its dimension. Some real-world examples
of true sparse signals are the channel state information (CSI)
of OFDM channels and the spectrum occupancy state of
cognitive radio.

2) COMPRESSIBLE OR SPARSE-APPROXIMATED SIGNAL
The signal x is compressible or sparse-approximated if its
representation s has all nonzero coefficients and the descend-
ing order sorted magnitudes of nonzero coefficients obey
the power-law decay i.e., |s̃j| ≤ Cj−r , where |s̃j| is the jth

sorted magnitude, C > 0 and r > 0 are constants. A faster
decay indicates that only a few coefficients are significant
with larger magnitudes, and the remaining coefficients are
insignificant with near-zero magnitudes. Most real-world sig-
nals such as image, video, and audio are examples of com-
pressible signals.

The sparsity order k is the number of nonzero coefficients
in the sparse representation for the true sparse signal or the
number of significant coefficients above a certain threshold
in the sparse representation for the compressible signal.
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B. CS ACQUISITION
CS acquisition is a linear mapping of the N – dimensional
signal x using an M × N – dimensional measurement or
sensing matrix2 to obtain anM – dimensional measurement
vector y, as shown in (1). The measurement matrix 2 is
designed such that it satisfies the RIP, a property akin to the
orthonormality of Fourier or wavelet matrices, for recovering
all signals with sparsity order k . The RIP is given as,

(1− δk) ≤
‖2x‖22
‖x‖22

≤ (1+ δk) (4)

where δk ∈ (0, 1) is the isometry constant and the RIP
guarantees that no two sparse signals of sparsity order k can
be mapped to the same y through2.

C. CS RECOVERY
Since (1) is a system of underdetermined equations as
M � N , there are infinite solutions. However, utilizing the
fact that the solution is a sparse one, CS recovery solves (1)
using either convex relaxation techniques or greedy tech-
niques. Convex relaxation techniques are based on `1 norm
minimization. These techniques are accurate. However, they
have higher computational complexity and recovery time.

For faster reconstruction, greedy techniques such as OMP,
CoSaMP, etc., are generally used. These greedy techniques
exploit the orthonormal properties of the column vectors of
the measurement matrix to search for the support indices of
the signal in an iterative manner. In each step, one or more
indices of the support are identified based on some greedy
rules. The identified supporting indices are stored, and their
effects are nullified from the obtained measurements. The
number of steps required to complete the search depends on
the sparsity order. After completing the search, the signal is
recovered using the least-squares method as follows:

x̂ =
(
2T

S2S
)−1

2T
Sy (5)

where the submatrix2S has column vectors of2 identified
by the support S of the signal. It has been shown that if the
measurement matrix satisfies the RIP, then greedy techniques
perform similarly to convex relaxation techniques with an
overwhelming probability [6], [7].

Thus, the sparsity order k is a vital parameter governing
all the three aspects of CS: sparse representation, CS acqui-
sition, and CS recovery. In this paper, we assume that the
signal is compressible on a known orthonormal basis func-
tion. We focus on modeling the CS acquisition and recovery
systems followed by the derivation, analysis, and efficiency
of the proposed SOE method.

III. THE PROPOSED CS ACQUISITION SYSTEM
The proposed CS acquisition system as shown in Fig. 1 com-
prises of the following elements: (A) compressible sig-
nal, (B) composite sensing matrix, (C) measurement vector,
(D) SOE system, and (E) measurements size (number of

FIGURE 1. The block diagram of the proposed CS Acquisition System.
Here Green color-filled circle A specifies the compressible signal input,
Skyblue color-filled B block represents the sensing circuit, Orange
color-filled circle C specifies the measurement vector output, Magenta
color-filled D represents the SOE block and dark Blue color-filled circle E
represents the estimator block for the size of the measurement vector.

measurements or entries in the measurement vector ) estima-
tor. The continuous-time compressible signal x(t) is acquired
using a composite sensing system2 comprising of a total of
M (n) Gaussian and impulse basis functions (both basis func-
tions are modulated a priori using the inverse of compressible
signal’s representation basis). The basis functions indepen-
dently multiply the compressible signal and perform integrate
and dump in every T seconds to produce the measurement
vector y(n). Here t represents the continuous-time index,
nT represents the sampling time index, and n represents
the discrete time step. Using y(n) and 2, the sparsity order
k(n) is estimated using the BSM-based SOE technique and
is refined using the Kalman filter by exploiting the temporal
correlation of the time-varying sparsity order. We know that
sparsity order k(n) has to be estimated from the obtained
measurements y(n). However, the measurements sizeM (n) of
y(n) must be estimated based on the sparsity order k(n) before
obtaining y(n) using (2). Thus, it is practically impossible
to simultaneously estimate the sparsity order and size of
the measurements for the current time step, n. Hence, the
estimated sparsity order k̂(n) for the current time step, n is
used to determine the number of measurements M (n + 1)
for the next time step, n + 1, because naturally occurring
time-varying compressible signals are quasi-static exhibiting
stronger temporal correlation.

The models for (i) the compressible signal, (ii) its sparsity
order, and (iii) CS measurement of the proposed composite
CS acquisition system are discussed in this section as follows.
The SOE system and the measurements size estimator are
explained in subsequent sections.

A. COMPRESSIBLE SIGNAL MODEL
Consider a continuous-time dynamic compressible signal
x(t) which has an N – dimensional representation s(t) =
{s1(t), s2(t), . . . , sN (t)} on an orthonormal sparsifying basis
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9 = {ψ1(t), ψ2(t), . . . , ψN (t)} at t th time as given below.

x(t) =
∑N

j=1
sj(t)ψj(t) (6)

where sj(t) is the coefficient of the jth basis ψj(t).
Using the basis 9 given in (6), the sparse representation

s(t) has only k significant coefficients and the remaining
coefficients are insignificant. The k significant coefficients
havemagnitudes well above a specified threshold and contain
most of the energy of the compressible signal, thus defining
the sparsity order of the signal. The collection of indices of
these k significant coefficients is the support set Ss(t). Any
classical compression technique retains these k significant
coefficients as well as their support Ss(t) and leaves out the
remainingN−k insignificant coefficients to obtain the signal
sS (t), which is a k−sparse approximation of s(t). The error
due to this approximation has energy E{‖ s(t)− sS (t) ‖22} =
(1 − Es)E{‖ s(t) ‖22}, where Es is user defined and typically
≥0.95. It determines the threshold for distinguishing between
the significant and insignificant coefficients. Thus, the rep-
resentation s(t) can be written as the sum of two disjoint
signals, a k – sparse signal sS (t), and an (N − k) – sparse
signal sε(t), i.e.,

s(t) = sS (t)+ sε(t) (7)

where sS (t) contains k nonzero significant coefficients and
N − k zeros, and sε(t) contains N − k nonzero insignificant
coefficients and k zeros.

Based on the compressible distributions given in [33], the
insignificant coefficients are approximated as i.i.d. Gaussian
noise such that sj(t) ∼ N (0, σ 2

ε ), when the jth coefficient is
insignificant. At the same time, significant coefficients are
independent and have different means and variances, i.e.,
sj(t) ∼ N (µsj , σ

2
sj ), when the jth coefficient is significant.

B. COMPOSITE CS ACQUISITION MODEL
The CS acquisition model acquires x(t) for every T seconds
to obtain anM – dimensional measurement vector y(t) using
M composite sensing basis functions 2 = {θi(t)}Mi=1. An i

th

measurement yi(nT ) : n ∈ Z is obtained as follows:

yi(nT ) =
∫ nT

t=(n−1)T
θi(t)x(t)dt + ϑi(nT ), 1 ≤ i ≤ M (8)

where
1. a few of θi(t) are generated using sparse impulse basis

functions and the rest are with dense Gaussian basis
functions.

2. ϑi(nT ) ∼ N (0, σ 2
ϑ ) is the i

th component of measure-
ment noise ϑ(t) and is generally modeled as i.i.d zero-
mean Gaussian noise [7].

Without loss of generality, the CS acquisition model is
represented in the discrete domain now onwards for better
understanding.

The discrete versions of (6), (7), and (8) are given as,

x(n) = 9s(n), x(n) ∈ RN×1 (9)

s (n) = sS (n)+ sε (n) , s (n) ∈ RN×1 (10)

y(n) = 2x(n)+ ϑ(n), y(n) ∈ RM×1 (11)

where continuous-time t is substituted with discrete-time n.
The discrete compressible signal x(n) = {xj(n)}Nj=1 has N
samples at every time step of duration T seconds and has
a representation s(n) = {sj(n)}Nj=1 when projected onto an
N × N orthonormal signal basis matrix 9. The discrete
version of the sensing basis is anM×N – dimensional sensing
matrix2.
Substituting (9) into (11), the discrete CS acquisition

model becomes,

y(n) = 29s(n)+ ϑ(n). (12)

The2 considered is a composite matrix such that

2 =

[
8BSM9

−1

8GSM9
−1

]
(13)

where 8BSM is the MBSM × N – dimensional deterministic
sparse BSM, 8GSM is theMGSM × N – dimensional random
GSM, and M = MBSM + MGSM . The multiplication of the
BSM andGSMwith the inverse of sparsifying basis, i.e.,9−1

results in the direct acquisition of s(n). Thus, (12) becomes,

y(n) =
[
yBSM
yGSM

]
(n) =

[
8BSM
8GSM

]
s(n)+ ϑ(n), (14)

= 8s (n)+ ϑ (n) (15)

where 8 =
[
8BSM
8GSM

]
.

By substituting (10) in (15), the measurement model
becomes,

y(n) = 8sS (n)+8sε(n)+ ϑ(n), (16)

= yS (n)+ yε (n)+ ϑ (n) (17)

where yS (n) and yε(n) are the components of the measure-
ment corresponding to the significant and insignificant coef-
ficients, respectively.

1) STATISTICS OF BSM MEASUREMENTS
For the sake of brevity, we drop the time step notation n
in this subsection. From (17), it may be noted that the ith

BSMmeasurement (yS )i of yS is a random sum of significant
coefficients, i.e.,

(yS )i =
∑N

j=1
8i,j(sS )j =

∑
j∈{S8i

⋂
Ss}

(sS )j (18)

where S8i is the support set of ith row of 8BSM and the set
{S8i ∩ Ss} contains the indices which are common to both
the support sets S8i and Ss. Since each (sS )j ∼ N (µsj , σ

2
sj ),

every BSMmeasurement (yS )i is a random sum of Gaussians
and is approximated as,

(yS )i ∼ N (`sµs, `sσ 2
s ) (19)

where `s = k(1−λ) is the average number of significant coef-
ficients contributing to (yS )i, µs =

1
k

∑
j∈Ss

µsj is the mean
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value of the significant coefficients, and σ 2
s =

1
k

∑
j∈Ss

σ 2
sj is

the average variance of the significant coefficients.
Similarly the ith BSM-based measurement noise compo-

nent (yε)i of yε, which is a random sum of i.i.d insignificant
coefficients, is approximated by,

(yε)i ∼ N (0, `εσ 2
ε ) (20)

where `ε = (N − k)(1 − λ) is the average number of
insignificant coefficients contributing to (yε)i.
By combining (19) and (20) with that of the measurement

noise, each component yi of the BSM measurement vector
yBSM is given as

yi ∼ N
(
`sµs, `sσ

2
s + `εσ

2
ε + σ

2
ϑ

)
. (21)

Here, the statistics µs and σ 2
s are unknown a priori. Using

the thresholding factor Es to separate the significant and
insignificant coefficients, an estimate of σ 2

ε based on the
concentration of measure is,

MBSM (N − k)(1− λ)σ 2
ε

≈ (1− Es)||8BSM s||22.

⇒ σ 2
ε ≈

(1− Es)(
∑MBSM

i=1 y2i −MBSM σ̂
2
ϑ )

MBSM (N − k)(1− λ)

≈
(1− Es)(

∑MBSM
i=1 y2i −MBSM σ̂

2
ϑ )

MBSMN (1− λ)
(∵ N � k).

It can be noted that an estimate σ̂ 2
ϑ of the noise is available

either during calibration by acquiring measurements in the
absence of any signal or using Particle Swarm Optimisation
(PSO) [34] method. The PSO method computes eigenval-
ues of measurements’ covariance matrix and uses Minimum
Description Length (MDL) criterion to separate eigenvalues
corresponding to noise components to calculate the noise
variance.

C. MODELING TIME-VARYING SPARSITY ORDER
The sparsity order k(n) varies over time due to the continuous
birth of new significant coefficients and the death of existing
significant coefficients. Thus, the sparsity order variation can
be modeled as a birth-death process as given below.

k (n) = k (n− 1)+ w (n) : VAR{w(n)} = Qw (22)

where w(n) is an integer-valued random process with
w(n) > 0 indicating the birth, w(n) < 0 indicating the death,
and w(n) = 0 indicating the survival. This birth-death model
is similar to the model given for time-varying sparse CSI for
OFDM channels in [35].

As each row of sparse BSM has very few ones compared
to the number of zeros, there exists a finite probability of
obtaining measurements that have contributions only from
insignificant coefficients and measurement noise. This finite
probability is exploited here to estimate the sparsity order of
the underlying compressible signal, which is the topic of the
next section.

IV. BSM-BASED SPARSITY ORDER ESTIMATION (BSOE)
The sparse BSM 8BSM has MBSM rows such that a fixed
number of N (1 − λ) ones are available in each row. Thus,
the probability of any randomly chosen element φij = 1 in
any row of8BSM is 1− λ. The number of rowsMBSM is also
time-varying, and it varies with the sparsity order k(n).

A. CASE 1: TRUE SPARSE SIGNALS UNDER
NOISELESS SETTINGS
For true sparse signals, the insignificant coefficients are
zeros. In other words, sε(n) = 0 and s(n) = sS (n). Under the
absence of measurement noise, the measurement yi(n) using
BSM is a random sum of the significant coefficients of s(n).
There exists a finite probability that yi(n) = (8BSM )is(n) = 0
i.e., the zeros of both the ith BSM row (8BSM )i and the
sparse representation s(n) mutually multiply with the nonzero
entries of other vector to result in zero-valued measurements.
The probability p0(n) for obtaining such zero-valued mea-
surements can be used to estimate the sparsity order k(n) for
true sparse signals.

The following definition derives the sparsity order estima-
tor K̂BSOE for true sparse signals acquired under noiseless
conditions.
Definition 1 (The BSOE Technique (True Sparse Sig-

nals)): Consider a sparse random BSM 8BSM =
[
φi,j
]
:

φi,j ∼ B (0, λ) , which obtains the measurements y(n) =
{yi(n)}

MBSM (n)
i=1 . Then the sparsity order estimator K̂BSOE (n)

using BSOE technique for any true k(n) – sparse signal is
given as K̂BSOE (n) = blog(p̂0(n))/log(λ)e, where p̂0(n) =∑MBSM (n)

i=1 (yi(n) = 0) /MBSM (n) is the estimated probability
of obtaining a zero-valued measurement.
Derivation: Let S8i be the support of an i

th row of a sparse
BSM 8BSM and Ss(n) be the support of sparse representation
s(n). If the number of elements in the support Ss(n) is k(n),
then the probability p`(n) that both the support sets S8i and
Ss(n) to have ` common elements is Binomial distributed, and
is given as,

p`(n) =
(
k(n)
`

)
(1− λ)`(λ)(k(n)−`) (23)

where 0 ≤ ` ≤ k(n). As p`(n) is a function of k(n), λ, and
`, an estimate of k(n) can be obtained using the same. When
the support sets S8i and Ss(n) do not have a common element
i.e., ` = 0, (23) reduces to,

p0(n) = λk(n) (24)

which gives the probability of having nonoverlapping sets
S8i and Ss(n) and therefore resulting in a zero-valued mea-
surement. The sparsity order k(n) derived using (24) is,

k(n) =
log(p0(n))
log(λ)

. (25)

Thus, a simple sparsity order estimator K̂BSOE (n) is obtained
by estimating the probability p0(n). The probability p0(n)
is Maximum Likelihood (ML) estimated as the proportion
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of zero-valued measurements yi(n) in a total of MBSM (n)
measurements, i.e.,

p̂0(n) =

∑MBSM (n)
i=1 (yi(n) = 0)

MBSM (n)
. (26)

Substituting p̂0(n) in (25) and rounding to the nearest inte-
ger, the sparsity order estimator K̂BSOE (n) is,

K̂BSOE (n) = b
log(p̂0(n))
log(λ)

e = b

log
(∑MBSM (n)

i=1 (yi(n)=0)
MBSM (n)

)
log(λ)

e.

(27)

B. CASE 2: COMPRESSIBLE SIGNALS UNDER
NOISE SETTINGS
The procedure for obtaining the sparsity order estimator for
compressible signals is similar to the above procedure for true
sparse signals with certain changes in the computation of the
probability p0(n).
For compressible signals in the presence of additive noise,

both sε(n) and ϑ(n) are nonzeros. Thus the nonoverlap-
ping sets S8i and Ss(n) result in measurements without the
contributions from the significant coefficients i.e., yi(n) =
(yε)i(n) + ϑi(n) 6= 0 and here p0(n) is the probability
of obtaining such a measurement devoid of contributions
from the significant coefficients, which is the same as given
in (24), i.e.,

p0 (n) = Pr [yi(n) = (yε)i(n)+ ϑi(n)]︸ ︷︷ ︸
meaurement devoid of significant coefficients

= λk(n). (28)

Observe that here p0(n) corresponds to obtaining measure-
ments lying in a bounded interval centered around the ori-
gin. When an ith measurement yi is devoid of significant
coefficients i.e., when all the 1’s in the ith row span only
insignificant components, the variance of yi is equal to
the variance of N (1 − λ) insignificant components i.e.,
N (1 − λ)σ 2

ε added with measurement noise variance σ 2
ϑ .

Hence the ith measurement has a Gaussian pdf whose vari-
ance is N (1−λ)σ 2

ε +σ
2
ϑ . The 99% area of this pdf is covered

by ±3
√
N (1− λ)σ 2

ε + σ
2
ϑ . Hence the bounding threshold τ

is set as τ = 3
√
N (1− λ)σ 2

ε + σ
2
ϑ .

Thus the probability p0(n) is,

p0 (n) = Pr [|yi(n) = (yε)i(n)+ ϑi(n)| ≤ τ ],

which is estimated as the proportion of measurements out
of MBSM (n) measurements with a magnitude less than the
threshold τ . However, there exists a possibility that two or
more of the significant coefficients may also be present in
the sum yi(n), yet satisfying above condition, i.e., |yi(n) =
(ys)i(n) + (yε)i(n) + ϑi(n)| ≤ τ and are akin to having
false alarms in detection problems. Such conditions result
in biased estimates of p0(n) with an upward bias. Therefore
the necessary correction is to subtract the probability q(n)

of having two or more significant coefficients whose sum is
insignificant. Therefore,

Pr [|yi(n)| ≤ τ ] = Pr[|(yε)i(n)+ ϑi(n)| ≤ τ ]︸ ︷︷ ︸
p0(n):insignificant+noise

+ Pr[|(ys)i(n) + (yε)i(n) + ϑi(n)| ≤ τ ]︸ ︷︷ ︸
q(n):significant+insignificant+noise

,

where the estimate of Pr [|yi(n)| ≤ τ ] is
∑MBSM (n)

i=1 (|yi(n)|≤τ)
MBSM (n) .

Thus,

p̂0(n) =

∑MBSM (n)
i=1 (|yi(n)| ≤ τ)

MBSM (n)
− q̂(n). (29)

By extending Definition 1, the BSOE for the compressible
signals is given by the following definition.
Definition 2 The BSOE Technique (Compressible Signals):

The sparsity order estimator K̂BSOE (n) for the compressible
signals is,

K̂BSOE (n) = b
log

(∑MBSM (n)
i=1 (|yi(n)|≤τ)

MBSM (n) − q̂(n)
)

log(λ)
e. (30)

The BSOE technique for compressible signals estimates
q(n) on the fly by estimating the statistics of significant
coefficients from the statistics of measurements. As each
yi(n) is a random sum consisting of any ` < k significant
coefficients, the probability q`,k (n) for the presence of `
significant coefficients in the sum is considered to determine
q(n). Subsequently, the probability q`,y(n) that such a sum is
bounded by the threshold τ is evaluated. Finally, combining
the above probabilities and repeating the same for all values
of ` from 2 through N (1 − λ), gives the desired probability
q(n), i.e.,

q`,k (n) =
(
k(n)
`

)
(1− λ)`(λ)(k(n)−`) (31)

q`,y(n) =
∫ τ

−τ

pY` (y`(n))dy`(n) (32)

q(n) =
∑N (1−λ)

`=2
q`,k (n)q`,y(n) (33)

where pY` (y`(n)) is the probability density function (pdf) of a
measurement given as,

pY` (y`(n)) ∼ N (`µs, `σ 2
s + (N (1− λ)− `)σ 2

ε + σ
2
ϑ ).

(34)

The probability q`,y(n) depends on µs and σ 2
s which are

functions of k(n). Thus, both q`,k (n) and q`,y(n) are functions
of k(n) whose estimation is the objective of the paper i.e.,
to estimate k(n), an estimate of q(n) is required, but q(n)
depends on k(n). To address this yet another chicken and egg
problem, q`,k (n) can be precomputed for all the values of `
and k from 0 to kmax , where kmax is the maximum possible
sparsity order for a compressible signal, which is known
beforehand. In the case of q`,y(n), the integrals of the type
given in (32) can be evaluated using the McLaurin expansion
for the desired level of accuracy.
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Considering the pdf given in (34), the problem of esti-
mating q(n) turns out to be an optimization problem such
that, given the measurement vector y(n) what would be the
optimum pair of {k(n), µs(n), σ 2

s (n)} which yields the prob-
ability p0(n). Hence, a method for the joint estimation of the
optimum pair from the obtained measurements is discussed
as follows.

C. JOINT ESTIMATION OF STATISTICS OF SIGNIFICANT
COEFFICIENTS AND SPARSITY ORDER
The estimates of µs(n) and σ 2

s (n) for the significant coeffi-
cients in (21) are as follows.

µ̂s (n) =
µ̂y (n)

k̂ (n) (1− λ)
,

σ̂ 2
s (n) =

σ̂ 2
y (n)−

(
(N − k̂(n))(1− λ)σ̂ 2

ε + σ̂
2
ϑ

)
k̂(n)(1− λ)

,

where k̂(n) is the estimated sparsity order obtained from the
BSOE estimator and

µ̂y(n) =

∑MBSM (n)
i=1 yi(n)

MBSM (n)
,

σ̂ 2
y (n) =

∑MBSM (n)
i=1 (yi(n)− µ̂y(n))2

MBSM (n)− 1
are the sample mean and variance of the measurements,
respectively.

A recursive feedback technique is proposed for the joint
estimation of the sparsity order and statistics of significant
coefficients from the obtained measurements. To start with,
if one considers q̂(n) = 0 in (30), then k̂(n) < k(n) resulting
in µ̂s(n) > µs(n) as well as σ̂ 2

s (n) > σ 2
s (n). Subsequently,

q̂(n) < q(n) and substituting it in (30) decreases the estimate
of p0(n), leading to an increase in the estimate k̂(n) and
reduction in the estimate of statistics in the next iteration
and this process continues until the false alarm probability
estimate q̂(n) converges. Thus, in every iteration, estimate
k̂(n) is updated approaching the true value.

D. PROPERTIES OF THE ESTIMATOR K̂BSOE
In this section, the properties of the estimator K̂BSOE (n) which
provides the sparsity order estimate k̂(n) is analyzed. The
probability of obtaining m0(n) measurements devoid of sig-
nificant coefficients from MBSM (n) measurements vector is
binomially distributed, i.e.,

Pr[m0(n)] =
(
MBSM (n)
m0(n)

)
(p0(n))m0(n)

× (1− p0(n))MBSM (n)−m0(n) (35)

where p0(n) = λk(n) is the probability of obtaining ameasure-
ment devoid of significant coefficients. Now ML estimation
of p0(n) of above binomial distribution is,

p̂0(n) = m0(n)/MBSM (n). (36)

Using (36), E{̂p0(n)} = E{m0(n)}/MBSM (n). As E{m0(n)} =
MBSM (n)p0(n), E{̂p0(n)} = p0(n). Thus, the ML estimate

p̂0(n) is unbiased. Now applying functional invariance prop-
erty, the transformation to blog(̂p0(n))/ log(λ)e = k̂(n) is
also an ML estimate. As MBSM (n) approaches infinity, the
estimate k̂(n) = k(n) and the estimator K̂BSOE (n) is asymp-
totically consistent.

The variance of K̂BSOE (n) is,

VAR{K̂BSOE (n)} = VAR
{
log(̂p0(n))
log(λ)

}
. (37)

Here, rounding to the nearest integer function present for
K̂BSOE (n) is not considered to simplify the analysis. Using
Taylor series approximation1

VAR{log(̂p0(n))} ≈
σ 2
p̂0
(n)

µ2
p̂0
(n)

(38)

VAR{K̂BSOE (n)} ≈
1

(log(λ))2
σ 2
p̂0
(n)

µ2
p̂0
(n)
. (39)

The mean µp̂0(n) and variance σ 2
p̂0(n)

of p̂0(n) are computed
using (35) and are given by,

µp̂0(n) = λ
k(n), σ 2

p̂0(n) =
λk(n)(1− λk(n))

MBSM (n)
(40)

Substituting µp̂0(n) and σ 2
p̂0(n)

in (37), the variance of
K̂BSOE (n) is,

VAR{K̂BSOE(n)} ≈
1− λk(n)

MBSM (n)λk(n)(log(λ))2
. (41)

Remark: It is observed from (41), that the variance of
K̂BSOE (n) increases with the sparsity order k . A small pertur-
bation in the value of p̂0(n) would result in a large variation
in the value of K̂BSOE (n) as observed from the derivative of
the function K̂BSOE (n) over the variable p̂0(n) i.e.,

∂K̂BSOE (n)
∂ p̂0(n)

=
1

p̂0(n) log λ
.

Hence, for any fixed λ, the estimator K̂BSOE (n) needs to
be stabilized against its inherent sensitivity to the random-
ness in the estimate p̂0(n). The robustness of the estimator
can be improved by either increasing the number of BSM
measurements MBSM (n) or utilizing an appropriate model
for the time-varying sparsity order k(n). Here we use the
discrete Markov model for characterizing k(n) and a Kalman
filter which is an optimal Linear Minimum Mean Squared
Estimator (LMMSE) to refine K̂BSOE (n).

V. KALMAN FILTERING OF SPARSITY ORDER ESTIMATE
OBTAINED FROM BSOE TECHNIQUE
The Kalman filtering of BSOE (KBSOE) uses the discrete
Markov model characterization of the time-varying sparsity
order k(n) given in (22) as the state model. The observation

1For some continuous and differentiable function g(̂p0(n)), Taylor
series approximation to the variance of g(̂p0(n)) is, VAR{g(̂p0(n))} ≈(

∂g
∂ p̂0(n)

(µp̂0 (n))
)2

where µp̂0(n) and σ
2
p̂0(n)

are the mean and variance of
p̂0 (n), respectively.
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for the Kalman filter is the estimate of the probability p0(n).
Owing to the inherent statistical variations in computing the
probability p0(n), its estimate p̂0(n) can be written as

p̂0(n) = p0(n)+ v(n) = λk(n) + v(n) (42)

where v(n) denotes zero-mean random statistical fluctuation.
Observe that the nonlinear relation in (42) forbids one from
applying the Kalman filter to obtain an estimate of k(n).
To overcome this problem, we apply the logarithm and arrive
at a modified form of the observation model as given below
with state-dependent noise v(n).

log (̂p0 (n)) = log
(
λk(n) + v (n)

)
(43)

= k (n) log (λ)+ log
(
v (n)
λk(n)

+ 1
)

(44)

= k (n) log (λ)+ v (n). (45)

Let us now consider the modified noise

v(n) = log
(
v(n)
λk(n)

+ 1
)
,

which has zero mean, and variance σ 2
v ≈

1−λk(n)

MBSM (n)λk(n)
. Then

the linear Kalman filter using (22) and (43) is as follows.

k̂ (n | n− 1) = k̂ (n− 1 | n− 1) (46)

P (n | n− 1) = P (n− 1 | n− 1)+ Qw (47)

K (n) =
P (n | n− 1) log (λ)

P(n|n− 1(log(λ))2 + σ 2
v

(48)

r (n) = log (̂p0 (n))− log (λ) k̂ (n | n− 1) (49)

k̂ (n | n) = k̂ (n | n− 1)+ K (n) r (n) (50)

P (n | n) = (1− log (λ)K (n))P (n | n− 1) (51)

k̂ (n | n) = K̂KBSOE (n) = b̂k(n|n)e (52)

where P(n|n − 1) and P(n|n) are the priori and posteriori
estimation error covariances, respectively,K (n) is theKalman
gain, r(n) is the residual, k̂(n|n− 1) and k̂(n|n) are the priori
and posteriori estimates of k(n), respectively, and the Kalman
filtered BSOE estimate is K̂KBSOE (n).

The procedure for estimating the sparsity order using
the BSOE followed by Kalman filtering is summarized
in Algorithm 1.

VI. OPTIMUM VALUE OF λ FOR MINIMIZING THE
VARIANCE OF SPARSITY ORDER ESTIMATOR
The parameter λ defines the sparsity order of BSM. It is
crucial as it determines the SOE performance as well as
the recovery performance. It is observed from (41) that
VAR{K̂BSOE (n)} is a function of λ and the optimum value of
λ for minimizing VAR{K̂BSOE (n)} is computed by solving the
following:

∂VAR{K̂BSOE (n)}
∂λ

=
λk(n) −

k(n)
2 (log(λ))− 1

MBSM
2 λk(n)+1(log λ))3

= 0,

which implies

λk(n) −
k(n)
2

(log(λ))− 1 = 0. (53)

From (53), it can be observed that the optimum value of
λ differs for different values of k(n). Table 1 provides the
optimum value of λ andminimum variance value of K̂BSOE (n)
for different values of k(n).
It is observed that λ must increase as k(n) increases, i.e.,

the BSM must be made very sparse to achieve a minimum
variance of K̂BSOE (n). However, as λ increases, the recov-
ery performance degrades as the number of measurements
spanning the significant coefficients decreases. From (17),
each measurement yi(n) is the sum of (i) random sums of
significant and insignificant coefficients and (ii) noise. As λ
approaches 1, the number of ones in each row reduces to
zero resulting in more measurements to have contributions
from insignificant coefficients and noise alone with high

probability, satisfying |yi(n)| ≤ 3
√
N (1− λ)σ 2

ε + σ
2
ϑ which

is a condition required for better SOE. However, at the same
time, such measurements are not helpful for recovery as
they do not have any contributions from significant coef-
ficients. The remaining measurements having contributions
from significant coefficients are only helpful for recovery.
There is a tradeoff between the number of BSM-based noisy
measurements used to estimate the sparsity order k(n) and
the number of remaining BSM-based measurements used for
recovery, which is determined by the value of λ. Hence, the
value of λ must be chosen such that the errors in both SOE
and recovery are minimized.

Using the fact that λ ≈ 1, (53) can be simplified as

λ ≈ exp(−1.6/k). (54)

As the sparsity order k(n) for the current time step is not
known, the value of λ is computed using the previous estimate
k̂(n − 1) i.e., λ ≈ exp(−1.6/̂k(n − 1)). The computed value
of λ is used to construct the BSM.

A. CONSTRUCTION OF BSM
The BSM is constructed such that it spans all the significant
coefficients distributed across N positions to estimate the
statistics µs and σ 2

s . As each row of BSM has N (1−λ) ones,
the BSMmatrix is designed by stacking bN (1−λ)c numbers
of b 1

1−λc × b
1

1−λc Identity matrices horizontally. If bN (1 −
λ)cb 1

1−λc 6= N , then remaining N − bN (1 − λ)cb 1
1−λc

numbers of 1-sparse binary column vectors are added in the
end to have b 1

1−λc × N−dimensional BSM.
As the structure of the BSM changes according to k(n),

it must be transmitted to the recovery process at every time
step along with the obtained measurements for recovery.
However, the deterministic construction of the BSM avoids
transmitting such overhead, as the recovery process performs
instantaneous sparsity level estimation from the measure-
ments obtained during acquisition.
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Algorithm 1 Estimation of Sparsity Order for Compressible Signals

Input:Measurements y(n) : {y1(n), y2(n), .., yMBSM (n)}, user defined threshold Es, measurement noise variance estimate σ̂ 2
ϑ .

1. The variance of insignificant coefficients: σ̂ 2
ε = (1− Es)

∑MBSM
i=1

y2i (n)−MBSM σ̂
2
ϑ

MBSMN (1−λ) , Threshold τ = 3
√
N (1− λ)σ 2

ε + σ
2
ϑ .

2. Estimate sample mean and variance of the measurements are,

µ̂y(n) =

∑MBSM (n)
i=1 yi(n)

MBSM (n)
; σ̂ 2

y (n) =

∑MBSM (n)
i=1 (yi(n)− µ̂y(n))2

MBSM (n)− 1
.

3. Estimate the probability p0(n) by calculating the number of measurements such that |yi(n)| ≤ τ i.e.,

p̂0(n) =

∑MBSM
i=1 (|yi(n)| ≤ τ)

MBSM (n)
.

4. An initial sparsity level estimate using BSM is, K̂BSOE (n) = k̂(n) = blog(p̂0(n))/ log(λ)e.
5. Iterative computation:

5.1 Estimate the statistics of significant coefficients:

µ̂s(n) =
µ̂y(n)

k̂(n)(1− λ)
; σ̂ 2

s (n) =
σ̂ 2
y (n)−

(
(N − k̂(n))(1− λ)σ̂ 2

ε + σ̂
2
ϑ

)
k̂(n)(1− λ)

.

5.2 Estimate the probability q(n):

q̂(n) =
∑N (1−λ)

`=2
q`,k (n)q`,y(n),

where

q`,k (n) =
(
k(n)
`

)
(1− λ)`(λ)(k(n)−`); q`,y(n) =

∫ τ

−τ

pY (yi(n))yi(n).

– The probability q`,k (n) is precomputed for all the possible values of ` and made available in a lookup table.
– The computation of q`,y(n) is done using the McLaurin expansion in real-time.

5.3 Compute p̂0(n) =
∑

i (|yi(n)|≤τ)
MBSM (n) − q̂(n).

5.4 Update the sparsity level estimate, K̂BSOE (n) = k̂(n) = b log(̂p0(n))log(λ) e.
5.5 Go to 5.1 until K̂BSOE (n) converges.
End iteration.

6. Estimate the variance of state noise: σ 2
v =

1−λ̂k(n)

MBSM (n)λ̂k(n)
.

7. Estimate the variance Qw from the sparsity order variations:

Qw = VAR{̂k(n− 1|n− 1)− k̂(n− 2|n− 2)}.

8. Kalman filtering of p̂0(n):

k̂(n|n− 1) = k̂(n− 1|n− 1)
P(n|n− 1) = P(n− 1|n− 1)+ Qw

K (n) =
P(n|n− 1) log(λ)

P(n|n− 1)(log(λ))2 + σ 2
v

r(n) = log(̂p0(n))− log(λ)̂k(n|n− 1)
k̂(n|n) = k̂(n|n− 1)+ K (n)r(n)
P(n|n) = (1− log(λ)K (n))P(n|n− 1)
k̂(n|n) = K̂KBSOE (n) = b̂k(n|n)e.

Output: Kalman filtered estimate of sparsity order: K̂KBSOE (n)

B. EFFECT OF KALMAN FILTERING WITH OPTIMUM
VALUE OF λ
1) CASE 1: TIME-INVARIANT SPARSITY ORDER
The reduced variance of Kalman filtered estimate K̂KBSOE is
verified for different time-invariant sparsity order values k , as
shown in Table 2. Here, at every time step, for a given sparsity

order k , the support Ss of the significant coefficients alone is
varied.

2) CASE 2: TIME-VARYING SPARSITY ORDER
A simulation example to establish the improvement by
Kalman filtering for the time-variant sparsity order k(n) is
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TABLE 1. The optimum value of λ in minimizing the variance of the
sparsity order estimate K̂BSOE(n).

TABLE 2. Illustration of reduction in the variance of the sparsity order
estimate using Kalman filtering.

FIGURE 2. Comparison of sparsity order estimates. The BSOE estimates
have fluctuations around the true value and the Kalman filter reduces
those fluctuations and improves the SOE.

shown in Fig. 2. In the simulation setup, the sparsity order is
varied using a Markov process controlled by the probabilities
Pr[w(n) = 0] = 0.8, Pr[w(n) < 0] = 0.1, and Pr[w(n) >
0] = 0.1. A time-varying compressible signal with k(0) =
100 significant components (above a certain threshold) and
the rest with insignificant components (below the threshold)
obeying power-law decay is generated. The number of sig-
nificant components is allowed to vary, i.e., k(n) : n > 0
is generated using the Markov process and is represented
as the true sparsity order. Fig. 2 shows that Kalman filtered
estimates K̂KBSOE (n) track the true sparsity order and have
reduced error compared to the estimates K̂BSOE (n) obtained
using BSOE.

VII. PRACTICAL IMPLEMENTATION ASPECTS
The practical real-time composite CS acquisition hardware
for the proposed SOE method is shown in Fig. 3. There are
M identical and independent modulator circuits working in
parallel.

The hardware components of a modulator circuit are
(i) a multiplexer to select between the sensing basis gi(t)
(continuous-time version of rows of GSMmultiplied by9−1)
and the sensing basis bi(t) (continuous-time version of rows

of BSM multiplied by 9−1) and (ii) a multiplier and an
Integrate and Dump (I&D) circuit to multiply and integrate
the compressible signal with the sensing basis for T seconds
to output a measurement.

The select signal βi(t) of the multiplexer takes the value
0 for i ≤ MBSM to select the basis bi(t) and 1 for MBSM <

i ≤ M to select basis gi(t). From the obtained measurements,
the proposed KBSOEmethod estimates the sparsity order and
determines βi(t) and M for the next T seconds.

The proposed architecture is similar to the practical RMPI
hardware [36], with a difference of multiplexer and select
signal for multiplexing the sensing bases bi(t) and gi(t). The
real-time determination of the total number of measurements
based on the estimated sparsity order is explained as follows.

A. DETERMINING THE NUMBER OF MEASUREMENTS
FOR THE COMPOSITE SENSING SYSTEM
As we discussed in Section II, the problem of simultaneous
estimation of (i) the sparsity order k(n) from themeasurement
vector and (ii) the size of the measurement vector, i.e., the
number of measurementsM (n) using the sparsity order result
in a Chicken-Egg problem. Hence, we estimate the number
of measurements based on the previously estimated sparsity
order k̂(n − 1) and we obtain the measurement vector y(n).
After obtaining the measurement vector, the sparsity order
k(n) is estimated to determine the number of measurements
M (n + 1) for the next time step. As the composite sensing
system is built using BSM and GSM, the number of mea-
surements required for each is computed as follows.

1) NUMBER OF BSM-BASED MEASUREMENTS
The BSM is designed by stacking bN (1 − λ)c numbers of
b

1
1−λc×b

1
1−λc Identity matrices horizontally. Thus there are

b
1

1−λc rows. Hence the number of BSM-based measurements
is,

MBSM (n) =
⌊

1
1− λ

⌋
(55)

=

⌊
1

1− (1− exp(−1.6/k(n− 1))

⌋
(56)

= b0.63k (n− 1)c . (57)

2) NUMBER OF GSM-BASED MEASUREMENTS
The number of GSM-basedmeasurementsMGSM (n) are com-
puted using (2), and is given as

MGSM (n) = d2k(n− 1) log
(

N
k(n− 1)

)
e. (58)

Each component φi,j of GSM 8GSM is i.i.d. Gaussian such
that φi,j ∼ N (0, 1/MGSM ).
Combing (57) and (58), the total number of measurements

acquired by the composite CS acquisition system is

M (n) = MBSM (n)+MGSM (n) (59)

=

⌈
2.63k (n− 1) log

(
N

k (n− 1)

)⌉
. (60)
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FIGURE 3. The block diagram of CS acquisition hardware. This is similar
to RMPI hardware with a difference of multiplexer switching between
GSM and BSM equivalent signals.

FIGURE 4. Comparison of the number of measurements for BSM and
GSM for the proposed composite sensing CS system for different sparsity
order values. It is shown that the additional number of BSM
measurements is negligible compared to the total measurements.

B. PROCEDURE FOR DETERMINING THE NUMBER
OF MEASUREMENTS
While starting acquisition at n = 0, the previous estimate
k̂(−1) is not available. Hence, it is assumed that k̂(−1) =
kmax. Thus the number of measurements obtained initially is,

M (0) =
⌈
2.63kmax log

(
N
kmax

)⌉
.

Once M (0) measurements are obtained, the proposed SOE
method provides the estimate k̂(0) which in turn determines
M (1), and this process continues. Thus both the number of

FIGURE 5. Proposed BSM aided CS recovery system. The system
comprises of the major blocks: the input measurements, the Composite
sensing circuit, SOE block, the BAOMP based recovery block, and the
recovered signal.

measurementsM (n) and the sparsity order k(n) are estimated
sequentially, i.e., k̂(n − 1) determines M (n) and M (n) mea-
surements provide the estimate k̂(n).

C. IMPACT OF COMPOSITE SENSING ON THE
HARDWARE COMPLEXITY
As each measurement is obtained using an independent hard-
ware component, the hardware complexity is directly propor-
tional to the number of measurements. The sparsity-aware CS
system obtains M (n) = MGSM (n) measurements, whereas
the proposed sparsity-unaware CS system obtains M (n) =
MBSM (n) + MGSM (n) measurements. Thus, MBSM (n) mea-
surements are excessive for the proposed system. However,
considering (57) and (58), MBSM (n) < 0.1MGSM (n), i.e.,
the impact of the additional BSM measurements is minimal,
as shown in Fig. 4. In addition, we show in subsequent
sections thatMBSM (n) measurements are useful for CS recov-
ery, as they provide an initial estimate of the support of the
underlying compressible signal. The initial estimate reduces
the number of iterations required for the greedy CS recovery
algorithm to achieve a faster recovery. Thus, the impact of the
additional BSM measurements is compensated significantly
during recovery.

VIII. THE PROPOSED CS RECOVERY SYSTEM
We propose a BSM aided CS recovery system as shown in
Fig. 5. The composite sensingmatrices used during CS recov-
ery are the same as those used during CS acquisition. Our
proposed recovery system uses BSM-based measurements
along with GSM-based measurements. It differs from the
conventional CS recovery system that uses GSM-based mea-
surements alone. BSM-based measurements are used for the
SOE as the first step in CS recovery. The SOE techniques used
during recovery are the same as those used during acquisition.
The estimated sparsity order k̂(n) is the input for the proposed
BSM- Aided OMP (BAOMP) recovery algorithm.We choose
OMP for recovery because it is simple to implement and
has robust recovery performance [6]. In OMP, the probable
support indices are identified one by one in each iteration.
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Algorithm 2 Estimation of the Support Using BSM
Input: Threshold τ , BSM-based measurement vector yBSM , and iteration number i = 1.

1. An initial estimate of the support is an empty set, i.e., ŜBSM = ø.
2. Iteration begins.

do while (i ≤ MBSM )
if (|yBSM (i)| > τ )ŜBSM = ŜBSM ∪ {i, i+MBSM , i+ 2MBSM , . . . , i+ ((N/MBSM )− 1)MBSM }.
i = i+ 1.
end

3. Iteration ends.
Output: The estimated support ŜBSM using BSM.

Algorithm 3 Estimation of the Support Using the BAOMP Method and Recovery of the Compressible Signal

Input: GSM 8GSM , Measurement vector yGSM , BSM estimated support ŜBSM , Sparsity order estimate k̂ , and i = 1.
1. Initial residual: r = yGSM .
2. An initial estimate of the support of the compressible signal: Ŝ = ø.
3. z = 8T

GSMr {8T
GSM is the transpose of 8GSM}.

4. The GSM-based initial estimate of the support: ŜGSM = support of L largest components (in terms of magnitude) in the
vector z.
{We choose L = b̂k/4c so that the error in the initial estimate of the support is less.}

5. Find the common support among BSM and GSM-based measurements: Ŝ = ŜBSM ∩ ŜGSM .
6. Update the residual r = yGSM − (8GSM )|Ŝ (8GSM )

†
|Ŝ yGSM ,

{(8GSM )|Ŝ is the submatrix formed by selecting the columns indexed by the support Ŝ and (8GSM )
†
|Ŝ is the pseudo-inverse

of (8GSM )|Ŝ}.
7. Find the size of the common support: |Ŝ|.
8. Iteration begins.

do while (i ≤ (̂k − |Ŝ|))
z = 8T

GSMr.
Select the index of the largest component (in terms of magnitude) in the vector z.
Update the support estimate Ŝ by adding the selected index to it.
r = yGSM − (8GSM )|Ŝ (8GSM )

†
|Ŝ yGSM .

i = i+ 1.
end

9. Iteration ends.
10. The recovered signal x̂ = (8GSM )

†
|Ŝ yGSM .

Output: The recovered compressible signal x̂

As there are k support indices for the k – sparse compressible
signal, there are k iterations. As the BSM-based measure-
ments provide a few initial estimates of the support indices,
the OMP algorithmmust estimate only the remaining support
indices.

A. THE PROPOSED BAOMP METHOD
Some BSM measurements have magnitudes greater than the

threshold τ = 3
√
N (1− λ)σ 2

ε + σ
2
ϑ (|(yi)BSM | ≤ τ is used

for identifying the measurements having no contributions
from the significant coefficients as discussed in Section IV),
i.e., |(yi)BSM | > τ indicates that each of such measure-
ments has at least one significant component’s contribu-
tion. The corresponding rows of such measurements provide
information about the probable support indices based on the
locations of ones in those rows. For example, suppose the

dimension of BSM is 10 × 250, we construct the BSM
by horizontally stacking 25 identity matrices of dimension
10 × 10. If the first BSM measurement has a magnitude
greater than the threshold τ , then the compressible signal
may have significant components probably located either at
1st location or 11th location or 21st location or so on up to
241st location. Thus, if |(yi)BSM | > τ , then i, i +MBSM , i +
2MBSM , . . . , i + ((N/MBSM ) − 1)MBSM are the support
indices of the BSM-based support estimate ŜBSM as shown
in Algorithm 2.

As the GSM obeys the RIP, the proxy z = 8T
GSMyGSM

for the compressible signal, x provides the GSM-based sup-
port estimate ŜGSM by choosing indices of 1 ≤ L ≤ k̂
largest coefficients in z. Now the common indices between
ŜBSM and ŜGSM are selected as the support indices of the
updated support estimate Ŝ. Then k̂ − |Ŝ| iterations are
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FIGURE 6. Performance measures PFS, NRE, and IG of BAOMP algorithm
for different L values. For a given k = 100, the PFS and NRE are 0 for
L ≤ bk/4c with IG = 0.25 at L = bk/4c showing that BAOMP is 25% faster
compared to OMP algorithm for the similar PFS and NRE performances.

FIGURE 7. SOEE performance comparison for different SNR values. The
proposed KBSOE method has better SOEE performance compared to
other existing methods even under poor SNR values.

performed using the conventional OMP algorithm as shown
in Algorithm 3 for the proposed BAOMP method. The value
L = b̂k/4c is chosen experimentally such that the number of
iterations is reduced without compromising on the quality of
the recovered signal x̂ for all sparsity order values.
Figure 6 shows the performance of the BAOMP method

for various L values during CS recovery of an N = 2500
– dimensional compressible signal whose sparsity order is
k = 100. The performance is measured using Normalised
Recovery Error (NRE), Probability of False Support (PFS),
and Iteration Gain (IG), as given below.

NRE =
‖ x̂− x ‖22
‖ x ‖22

,

PFS =
|ŜBSM ∩ ŜGSM ∩ SC |

|S|
,

IG =
|ŜBSM ∩ ŜGSM |

k̂
,

where S is the original support of the compressible sig-
nal, SC is the set containing indices not belonging to S
(i.e., SC contains the indices of insignificant coefficients),
and |ŜBSM ∩ŜGSM | represents the number of common indices
between the BSM-based and GSM-based support estimates.
Here, NRE measures the quality of the recovered signal, PFS
measures the quantity of false support selection and IG mea-
sures how fast BAMOP is compared to OMP. From Fig. 6,
it is observed that for L = b̂k/4c = 25, the performance

measures are obtained as, PFS=0, NRE ≈ 0, and IG ≈ 0.25,
i.e., the BAOMP algorithm is 25% faster compared to the
OMP algorithm.

IX. PERFORMANCE COMPARISON OF PROPOSED
KBSOE AND BAOMP METHODS WITH OTHER
EXISTING METHODS
The proposed KBSOE method is used for SOE during CS
acquisition and recovery. The proposed BAOMP method is
used for CS recovery. In this section, performance measures
such as SOE Error (SOEE), NRE, computational complexity,
and CR of the proposed methods are compared with exist-
ing methods using synthetic signals and real-world vibration
signals.

The SOEE is given as,

SOEE =
|̂k − k|
k

.

The Signal to Noise Ratio (SNR) setting for evaluating the
SOEE and NRE performances is calculated at the acquisition
side, and is given as,

SNR = 10 log10

(
‖ 8x ‖22
‖ ϑ ‖22

)
. (61)

For all the simulations shown here, a Windows 7 operating
system-based PC with a processor running at a 3 GHz clock
speed and 4 GB RAM was used.

A. SOEE PERFORMANCE COMPARISON USING A
SYNTHETIC SIGNAL
A simulation is performed to compare the SOEE performance
of the KBSOE method with those of other SOE methods,
such as Lopes [16], 2-GMM [17], trace [23], SPAMP [21],
TS-ACSS [20], and RTCE [8] based methods.

In the simulation, an N = 2500 – dimensional synthetic
compressible signal is generated and the sparsity order k is
maintained constant at k = 250. At every time step, the
number of BSM measurements taken is b 1

1−λc ≈ 157 for
an optimal value of λ = 0.9936. For the Lopes method,
2k Cauchy sensing matrix-based measurements are obtained
at each time step to compute the `1 norm for the SOE. For
the trace-based method, 2k GSM-based measurements are
obtained. The total number of time steps considered is k/2.
Thus, the total number of measurements obtained by the
KBSOE method is 78k compared to the k2 measurements
obtained by other methods. Throughout the simulation, the
support set remains the same, whereas the amplitudes of sig-
nificant coefficients vary according to a normal distribution.
The estimated sparsity order in every step is averaged for
the Lopes, 2-GMM, TS-ACSS, SPAMP, RTCE, and proposed
KBSOE methods. For the trace-based method, only a single
estimate is available after k2 measurements. For the SPAMP
method, the weak-matching parameter is chosen as 0.5, and
the estimation factor is kept at 0.2 for better results. For the
RTCEmethod, the correct-rate parameter is optimally chosen
according to the SNR.
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FIGURE 8. NRE performance comparison for different sparsity order
values for the fixed SNR=10dB. The composite sensing (BSM+GSM) with
BSM aided proposed BAOMP recovery method outperforms the NRE
performance of similar BSM sensing methods even under higher sparsity
order values.

The performance is evaluated in terms of SOEE for dif-
ferent SNR values, as shown in Fig. 7. The simulation results
show that theKBSOEmethod has a better SOEE performance
than the other methods. It is observed that the performance of
the Lopes method is inferior and substantially invariant to the
SNR, owing to the use of a random Cauchy sensing matrix
for which the variance is infinite. The 2-GMM SOE method
requires knowledge of the energy of the significant coeffi-
cients to construct a sparse Gaussian matrix, which is seldom
known a priori. It also has an Expectation-Maximization
(EM) algorithm that adds to the complexity. The trace-based
method requires at least k2 measurements, which are very
expensive compared to other existingmethods. The TS-ACSS
performs a two-step SOE, where the first step performs a
coarse SOE whose performance deteriorates with larger spar-
sity order values, and the second step refines the coarse SOE
with the help of signal recovery, which is a time-consuming
process. In addition, the first step is accurate, with only addi-
tional measurements. Compared with other existing methods,
the proposed KBSOE method has the advantage of requiring
three times fewer measurements with better performance.

B. NRE PERFORMANCE COMPARISON USING
SYNTHETIC SIGNALS
The NRE performance of the proposed method (Com-
posite sensing-KBSOE) is compared with (i) other simi-
lar BSM methods for different sparsity order values, and
(ii) 2-GMM [17], DBBD-Kronecker [14], [15],
AS-SaMP [10], OAMP [13], MCoSaMP [11], SAStOMP
[12], and traditional GSM methods for different SNR values.

1) PERFORMANCE COMPARISON WITH OTHER BSM
METHODS FOR DIFFERENT SPARSITY ORDER VALUES
A set of synthetic compressible signals of dimension
N = 5000 with various sparsity order values k = 50 to
k = 400 is generated. The generated signals are acquired
and recovered using: (i) the proposed composite sensing-
KBSOE-BAOMP method, (ii) random sparse BSM sensing
followed by the BAOMP method, and (iii) DBBD matrix
sensing [14] followed by the modified Kronecker-based CS
recovery [15]. For a given sparsity order k of the compressible

FIGURE 9. NRE performance comparison for different SNR values. The
proposed method has comparable performance with the benchmark
method i.e., GSM followed by basis pursuit, and has better NRE
performance with other algorithms.

signal, the proposed composite sensing matrix is designed
using (57) and (58). The random sparse BSM is designed
with the same λ value of the proposed deterministic BSM.
However, the ones in each row are randomly distributed.
Both the random sparse BSM and DBBD methods obtain
fixed M = 1800 measurements for k < 300 and fixed
M = 2500 measurements for 300 ≤ k ≤ 400, which
is greater than the number of measurements obtained by
composite sensing for a given k . The NRE performance for
the 10 dB SNR settings is shown in Fig. 8.

The simulation results show that the proposed composite
sensing matrix outperforms both the random sparse BSM
and DBBD sensing matrices, with fewer measurements for
all given sparsity order values. The probability of missing
a significant component during acquisition is higher for the
random sparse BSM, resulting in poor NRE performance.
Similarly, the high probability of incorrect support selection
during recovery results in an inferior NRE performance for
the DBBD matrix-based method. The better performance of
the composite sensing matrix is due to the use of GSM,
which has better RIP. When k < 300, the lower variance of
KBSOE results in minimal and invariant NRE. For random
sparse BSM and DBBD methods, the NRE remains invariant
to k as the number of measurements M = 1800 is ade-
quate for k < 300. When k ≥ 300, the NRE performance
starts degrading as the variance of KBSOE increases for the
composite sensing matrix. However, even if k ≥ 300, the
NRE performance of KBSOE is better than other BSM-based
methods. For k ≥ 300, the sensing matrix becomes too sparse
for random sparse BSM and DBBD methods resulting in
degraded NRE performance, and they require more measure-
ments (M > 2500) for the improved NRE performance.

2) PERFORMANCE COMPARISON: FOR DIFFERENT
SNR VALUES
A time-varying synthetic compressible signal with a dimen-
sion N = 2500 is simulated for different SNR settings.
Throughout the simulation, the sparsity order k is kept con-
stant at k = 250 with varying support and amplitude. After
acquisition and recovery using different CS methods, the
NRE performance is compared.
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FIGURE 10. CS recovery runtime performance comparison for different
sparsity order values. It is observed that the proposed BAOMP method is
at least 1.5 times faster than the existing methods for a given sparsity
order.

The simulation results show the (i) improved per-
formance of the proposed KBSOE-based SOE followed
by the BAOMP-based recovery method compared to the
2-GMM-based SOE method followed by OMP-based recov-
ery, sparsity adaptivematching pursuit algorithms: AS-SaMP,
OAMP, MCoSaMP, and SAStOMP-based recovery, and
DBBD-Kronecker-based CS recovery, and (ii) comparable
performance with GSM followed by Basis Pursuit, especially
for low SNR conditions, as shown in Fig. 9. The high prob-
ability of support estimation errors in the DBBD-Kronecker
method results in poor NRE performance. The inaccuracy in
estimating the statistics of the signal for the 2-GMM method
affects NRE performance. The sparsity adaptive matching
pursuit methods are fed with the optimal parameters for a
given sparsity order k = 250. Thus, their NRE performance is
similar to the proposed method. However, tuning the parame-
ters in real-time is a challenging task for time-varying sparsity
order. Although Basis Pursuit has better NRE performance,
its higher computational complexity and recovery time are
unsuitable for real-time recovery.

C. PERFORMANCE COMPARISON USING RECOVERY
RUNNING TIME
A set of synthetic compressible signals of dimension
N = 2500 with various sparsity order values k = 50 to
k = 400 is generated, and the SNR is kept at 10 dB. The
generated signals are acquired and recovered using (i) pro-
posed composite sensing followed by the KBSOE-BAOMP
method, (ii) GSM sensing followed by the sparsity-aware
OMP method, and (iii) GSM sensing followed by the spar-
sity adaptive matching pursuit algorithms: AS-SaMP, OAMP,
MCoSaMP, and SAStOMP. The running time for recovering
the compressible signal is shown in Fig. 10, which shows
that KBSOE-BAOMP is faster and outperforms all existing
methods for all sparsity order values.

D. PERFORMANCE COMPARISON USING REAL-WORLD
VIBRATION SIGNALS
CS has recently been investigated for vibration signals
recently in [37]–[41], and it has been shown that vibration

FIGURE 11. Vibration signal measured outside of an aircraft during its
climb and its Time-Frequency spectrogram. The Time-Frequency
spectrogram shows that only a few significant coefficients are having
distinguishable magnitude.

FIGURE 12. Time-varying sparsity order on different basis functions for
every analysis segment of 2500 samples (1 second) of vibration signal
acquired during the aircraft’s climb. It is analyzed that DCT resulted in
lower sparsity order values than those of DFT and DWT.

signals can be acquired efficiently using the CS method.
Hence, the proposed KBSOE method is applied to real-world
vibration signals available from Mide Technologies [42]
for the performance evaluation. Here, the vibration signals
acquired during the climb of an aircraft and the transit of a
semi-trailer truck are analyzed.

A snapshot of the smoothly varying vibration signal
acquired using an accelerometer mounted on the surface
of an aircraft during its climb is shown in Fig. 11(a). The
signal is sampled at 2500 samples per second (sps), and its
Time-Frequency spectrogram is shown in Fig. 11(b). The
spectrogram reveals that the vibration signal is compressible
in the frequency domain and the number of significant fre-
quency components varies with time. The time-varying spar-
sity order is shown in Fig. 12 for the vibration signal when
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FIGURE 13. Vibration signal measured from a semi-trailer truck during
transit and its spectrum. The DFT spectrum shows that very few frequency
components have significant magnitudes revealing that the vibration
signal is compressible.

TABLE 3. CS acquisition and recovery methods used for NRE comparison.

it is represented using different orthonormal transforms. It is
observed that Discrete Cosine Transform (DCT) represents
the vibration signal with a lesser sparsity order than Dis-
crete Fourier Transform (DFT), and the Daubechies db4 and
Coiflet coif 4 wavelets-based Discrete Wavelet Transform
(DWT). Hence DCT is considered here as the sparse repre-
sentation matrix 9 when analyzing the vibration signal.

Similarly, the entire vibration signal acquired from a semi-
trailer truck during transit is shown in Fig. 13 along with its
frequency spectrum. It is observed that this vibration signal
is also compressible.

These vibration signals are analyzed using the methods
listed in Table 3. The 2-GMM method is provided with
the knowledge of the energy of significant coefficients for
constructing the sparse GSM. The estimated sparsity order
is the input for the CS recovery of vibration signals for the
proposed BAOMP method and the OMP algorithm for the
2-GMM method. In the traditional CS method, the OMP
algorithm is provided with the original sparsity order value.

FIGURE 14. NRE performance comparison on compressing vibration
signal measured outside an aircraft during its climb. The NRE
performance of the proposed method is comparable with the traditional
random GSM-based CS method and superior to other existing methods.

FIGURE 15. NRE performance comparison on compressing vibration
signal measured on a semi-trailer truck. The NRE performance of the
proposed method is comparable with the traditional random GSM-based
CS method and superior to other existing methods.

For the SPAMP method, the weak-matching parameter is
chosen as 0.5, and the estimation factor is kept at 0.2 for better
results.

For the vibration signal measured outside the aircraft, each
analysis segment contains 2500 samples. For the vibration
signal measured from a semi-trailer truck, each analysis seg-
ment has 5000 samples. The analysis segment is normalized
to unit energy. For KBSOE, 2-GMM, and SPAMP methods,
the sparsity order is estimated for each analysis segment.
Based on the estimated sparsity order k̂(n), measurements are
obtained for the recovery at the (n + 1)th time step. Using
these measurements, the vibration signal is reconstructed
using the respective recovery methods. Subsequently, the
NRE performance measure is compared with the traditional
random GSM-based CS method, DBBD-Kronecker-based
CSmethod, and DCT-based compression method. For the tra-
ditional CS and DBBD methods, M = 4kmax measurements
are obtained. The NRE results for both vibration signals
for every 20 analysis segments are plotted in Fig. 14 and
Fig. 15. A snapshot of the reconstructed vibration signal
obtained using the KBSOE method followed by the BAOMP
method for the vibration signal acquired outside the aircraft
during its climb is shown in Fig. 16 along with the original
signal. During recovery, the BAOMP method denoises the
insignificant coefficients. Hence, the reconstructed signal is
smooth over time compared with the original signal.
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FIGURE 16. Recovery performance of the KBSOE method followed by the
BAOMP method on reconstructing the vibration signal acquired on the
skin of an aircraft during its climb. The recovered signal is a denoised
version of the original signal and closely matches the amplitude
variations.

Although the proposed KBSOE-based CS method exhibits
a slight degradation in NRE compared to the classical DCT
method, its hardware complexity of acquiring a compressible
signal isO(MN ) (due to theM ×N sensing matrix), which is
less than that of the DCT method’sO(N 2) (due to the N ×N
DCT matrix). Thus, it requires fewer hardware resources,
storage, and power for the acquisition of time-varying com-
pressible signals with a slightly tolerable degradation in the
recovery performance compared to the DCT method. It pro-
vides a good CR, as it obtains a minimal number of mea-
surements based on the estimated sparsity order compared
with other CS methods. The existing SOE methods are not
optimal during acquisition and result in less CR as they either
(i) obtain a fixed number of measurements based on the
conservative assumption of having maximum sparsity order
kmax, or (ii) obtain an additional set of measurements for
the SOE.

E. COMPUTATIONAL COMPLEXITY COMPARISON
The computational complexities of the existing SOE and
recovery methods are compared with the proposed KBSOE
and BAOMP methods. The computational complexity of the
SOE methods is based on the number of measurements and
iterations involved. The KBSOE method estimates the spar-
sity order k directly from MBSM < M measurements. The
computational complexity of the proposed KBSOE depends
on (i) the probability p0 computation, (ii) the iterations
involved in the joint estimation of the statistics of signif-
icant coefficients and sparsity order, and (iii) the Kalman
Filtering (KF) process. The probability p0 is estimated by
identifying the measurements from the MBSM measurements
that are devoid of significant coefficients. This identification
requires a computational complexity of O(MBSM ). The joint
estimation of probability q, statistics of significant coeffi-
cients, and sparsity order using the BSOE requires N (1− λ)
computations per iteration. The simulations show that a max-
imum of ten iterations are required for the convergence of
the joint estimation. Since the number of iterations is fixed
independent ofMBSM measurements, the total computational
complexity depends only on N (1− λ), and it is O(N (1− λ))
for the joint estimation step. The KF used for refining the

BSOE estimate is a scalar one, and the computational com-
plexity is O(1), which is less than the complexity of BSOE.
Thus, the overall computational complexity of the KBSOE is
O(MBSM + N (1− λ)).
Other existing SOE methods use all M measurements

for SOE. Given M measurements, the trace-based method
requires complex matrix operations with a computational
complexity O(M3). The computational complexity of the
EM algorithm in the 2-GMM method is O(kM ). The Lopes
method computes the median of the Cauchy sensed mea-
surements and the mean of the energy of Gaussian sensed
measurements with a computational complexityO(M logM )
to estimate the `1 and `2 norms for the SOE. Since MBSM +

N (1−λ)� M , the proposed KBSOE method is very advan-
tageous for SOE in terms of lower computational complexity
compared to other existing methods.

The computational complexity for the OMP and SPAMP
based CS recovery methods is O(̂kMN ), whereas for the
proposed BAOMPmethod isO(̂k−|Ŝ|MN ). As |̂k− Ŝ| < k̂ ,
the BAOMP method requires fewer computations.

The runtime complexities of the proposed KBSOE and
BAOMP methods are evaluated and compared with that of
other existing SOE methods for real-world aircraft vibration
signal analysis. The average runtime for the SOE and recov-
ery on analyzing each segment of the vibration signal are
listed in Table 4 and Table 5, respectively.

TABLE 4. Runtime comparison among SOE methods.

TABLE 5. Runtime comparison among recovery methods.

The runtime for the proposed KBSOE and BAOMP meth-
ods is significantly less than that of other existing methods.
Considering the acquisition of fewer measurements, reduced
computational and run-time complexity, and better recovery
performance, the proposed methods are the best candidates
for the efficient acquisition, compression, and recovery of
vibration and similar compressible signals.

X. DISCUSSIONS ON RESULTS
The following discussion shows how the proposed methods
enhance CS.
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A. KBSOE DURING CS ACQUISITION
The major problem in CS is estimating the sparsity order
k of the compressible signal to reduce the number of mea-
surements M . However, real-time applications require that
the sparsity order be estimated from the measurements them-
selves. Our proposed method of composite sensing followed
by KBSOE provides a solution to this chicken-egg problem
of sparsity order determining the number of measurements,
and the measurements determining the sparsity order.

We combined sparse BSM and dense GSM for the com-
posite sensing of compressible signals during CS acquisition.
As the sparse BSM has very few ones in each of its columns,
it exhibits a weak RIP and is unsuitable for the perfect recov-
ery of the compressed signal with limited measurements.
However, we exploited its week RIP in Section IV for the
SOE. The challenge in the design of the BSM is to cater
to the requirement of estimating the time-varying sparsity
order of the compressible signal with limited measurements.
Our solution for this challenge resulted in a BSM adjust-
ing its dimensions and entries according to the time-varying
sparsity order. The proposed BSM is deterministic suiting
practical implementation of CS acquisition and recovery
systems.

We derived a BSOE method that does not require any a
priori knowledge of signal and noise statistics. These statis-
tics are estimated from the statistics of the measurements and
BSM entries. We proposed KBSOE, i.e., Kalman Filtering to
reduce the variance of BSOE and improve SOE performance.
Thus, the proposed KBSOE resulted in an optimal number
of CS measurements, which determined the efficient use of
the CS acquisition hardware. A simulation of the SOEE per-
formance (Fig. 7) showed that the proposed KBSOE method
performed better for all SNR conditions even with three times
fewer measurements than other SOE methods.

B. KBSOE-BAOMP DURING CS RECOVERY
The KBSOE method performs the SOE from the CS mea-
surements obtained during CS recovery. The SOE during
recovery is the same as that during acquisition. The better
SOEE performance of KBSOE resulted in better NRE per-
formance compared to other existing SOE and support esti-
mation methods. The better NRE performance owing to the
composite sensing and KBSOE methods was demonstrated
by analyzing synthetic and real-world signals, as shown
in Fig. 8, 9, 14, and 15.

It can be observed from both Fig. 14 and 15 that CS-based
compression methods resulted in a slightly higher NRE com-
pared to the traditional DCT-based compression method. The
reason is as follows. DCT method knows the support and
amplitude of significant coefficients among theN coefficients
and approximates the insignificant coefficients to zeros.
Hence, NRE is the energy of the insignificant coefficients,
which is 0.05. The CS recovery methods do not have a priori
knowledge of the significant coefficients, and they estimate

FIGURE 17. DCT spectrum plot comparing the recovery performances of
DCT and KBSOE-BAOMP methods. The components with magnitudes very
near the threshold may or may not get recovered by the CS methods
resulting that DCT based recovery method performing better than any
CS method.

the support and amplitude from the available M<N mea-
surements. There are some weakest significant DCT coeffi-
cients whose amplitudes are very close to the threshold value,
distinguishing significant and insignificant coefficients. The
CS recovery algorithms detect stronger information-bearing
significant coefficients well above the threshold without any
failure. However, sometimes they may not select the weakest
significant coefficients very near the threshold, as the CS
sensing matrices are not perfect orthonormal matrices for
identifying the support of such coefficients. This effect is
observed in Fig. 17 which shows the DCT spectrum plot of
one of the analysis segments of the vibration signal mea-
sured outside an aircraft. Here, the DCT coefficients before
and after sparse approximations and the estimated DCT
coefficients using the proposed KBSOE-BAOMP-based CS
recovery method are shown. It is observed that the DCT coef-
ficients with indices from 83 to 87 and 100 to 102 have mag-
nitudes slightly below and above the threshold, respectively,
and are not detected during CS recovery, contributing to the
slightly higher NRE compared to DCT-based compression
and recovery. However, among the CS methods, the proposed
KBSOE-BAOMP method performs better than the 2-GMM,
DBBD-Kronecker, SPAMP, and AS-SaMP methods and is
comparable to the traditional GSM-based method.

C. IMPACT OF KBSOE ON CS ACQUISITION
AND RECOVERY
As the sparsity order determines the number of measure-
ments, the SOE must be accurate for efficient CS acqui-
sition and recovery in terms of optimal use of hardware
resources and quality of the recovered signal. Suppose the
error k̂ − k = δk , the error in the number of measurements is,

Mk −Mk+δk =

⌈
2.63k log

(
N
k

)⌉
−

⌈
2.63(k + δk ) log

(
N

k + δk

)⌉
;

≈

⌈
2.63δk

(
log

(
k
N

)
+ 1

)⌉
,
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where Mk is the number of measurements required for the
true k value and Mk+δk is the number of measurements
required for the estimate k̂ = k + δk . Thus, the difference
in the number of measurements is linearly proportional to the
SOE error δk .

• Case 1: If δk > 0, then Mk+δk > Mk resulting in
excessive measurements and the inefficient use of hard-
ware resources. However, the recovery performance is
not affected.

• Case 2: If δk < 0, thenMk+δk < Mk resulting in a fewer
number of measurements than the required degrading
the recovery quality.

Section VI shows that Kalman filtering reduces the variance
of the BSOE which reduces the estimation error δk � k ,
to result in a minimal error in M and a negligible impact on
CS acquisition and recovery.

D. IMPACT OF KBSOE ON THE EXECUTION SPEED OF CS
1) IMPACT ON CS ACQUISITION
During acquisition, the CS results in M � N compressed
samples for a given time interval T . Since the proposed
KBSOE method determines M based on the previously esti-
mated sparsity order k̂(n − 1), the time taken for SOE
should be <T . The time complexity of the KBSOE method
depends on the number of iterations involved in estimat-
ing the probability q, as given in Step 5 of Algorithm 1.
Typically, ten iterations are sufficient for the convergence of
the KBSOEmethod, and the time required for convergence is
significantly less than <T seconds. For example, Section IX
shows that the KBSOE method requires 42 ms compared
to T = 1s while analyzing the real-world vibration signal.
Thus, until the time required for SOE is less than a fixed
interval T , the KBSOE method does not reduce the CS
acquisition rate.

2) IMPACT ON CS RECOVERY
For greedy recovery algorithms, the sparsity order k is an
input. For real-time applications, when k is unknown and is
assumed to be kmax , the iteration involved in greedy algo-
rithms puts the constraint that kmaxρ < T , where ρ is the
time elapsed per iteration. Using the proposed KBSOE and
BAOMP methods, the constraint becomes (̂k − |Ŝ|)ρ < T .
Since (̂k − |Ŝ|)ρ < kmaxρ, the KBSOE method is fast,
and real-time recovery of fast varying compressible signals
is possible. For applications requiring offline recovery and
analysis, CS execution becomes fast by kmax

k̂−|Ŝ| times using the
proposed methods.

E. APPLICABILITY OF THE KBSOE METHOD
The KBSOE method is applied to sparse and compressible
signals. It should be noted that some signals such as noise are
neither sparse nor compressible. Sometimes, compressible
signals become non-sparse due to disturbances. For example,
the vibration signal of a rocket is almost random during the
transonic regime, which is rich in significant components,

making the signal non-sparse. Here, we do not consider such
non-sparse signals or conditions. These signals or conditions
will be understood while performing SOE using the KBSOE
method. When the sparsity order k of the compressible sig-
nal is increased, the number of measurements less than the
threshold τ decreases, i.e., the probability p0 = λk decreases.
If the maximum sparsity order for a signal to be considered
compressible is kmax , then the minimum probability p0min =
λkmax . Thus, the acquired signal is neither sparse nor com-
pressible when the estimated probability p̂0 < p0min . In such
cases, the sensing matrix dimension matches with the signal’s
dimension satisfying Nyquist sampling conditions.

XI. CONCLUSION
In this paper, a composite CS system is presented, where
(i) a deterministic sparse BSM-based SOE method (BSOE)
with Kalman filtering (KBSOE) is proposed for the SOE of
compressible signals and (ii) the BAOMPmethod is proposed
for the recovery. The BSOE estimator is ML optimal, and the
Kalman filter, which refines the BSOE estimates, is LMMSE
optimal. Hence, we present an optimal tracking algorithm
for the time-varying sparsity order. The KBSOE method
provides a better estimate of the time-varying sparsity order
on the fly for the efficient CS acquisition and recovery of
compressible signals, including real-world vibration signals.
The BAOMP method reduces the recovery time by at least
25% compared with other existing methods. The proposed
KBSOE and BAOMP methods show better performance in
terms of various metrics than the other methods published
thus far.

The present work focuses only on the problem of esti-
mating the sparsity order, and uses it for the acquisition and
recovery of time-varying compressible signals. However, the
efficient estimation of a time-varying compressible signal
requires the modeling and estimation of the time-varying
amplitude of the supporting components. Hence, in future
work, we plan to model the amplitude of each of its support-
ing components using an independent autoregressive process
and to employ independent scalar Kalman filters to estimate
and track the amplitude of the supporting components.
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