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ABSTRACT Recently, unmanned aerial vehicles (UAVs) have gained attention due to increased use-cases
in healthcare, monitoring, surveillance, and logistics operations. UAVs mainly communicate with mobile
base stations, ground stations (GS), or networked peer UAVs, known as UAV swarms. UAVs communicate
with GS, or UAV swarms, over wireless channels to support mission-critical operations. Communication
latency, bandwidth, and precision are of prime importance in such operations. With the rise of data-driven
applications, fifth-generation (5G) networks would face bottlenecks to communicate at near-real-time, at low
latency and improved coverage. Thus, researchers have shifted towards network designs that incorporate
beyond 5G (B5G) networks for UAV designs. However, UAVs are resource-constrained, with limited power
and battery, and thus centralized cloud-centric models are not suitable. Moreover, as exchanged data is
through open channels, privacy and security issues exist. Federated learning (FL) allows data to be trained on
local nodes, preserving privacy and improving network communication. However, sharing of local updates is
required through a trusted consensus mechanism. Thus, blockchain (BC)-based FL schemes for UAVs allow
trusted exchange of FL updates among UAV swarms and GS. To date, limited research has been carried
out on the integration of BC and FL in UAV management. The proposed survey addresses the gap and
presents a solution taxonomy of BC-based FL in UAVs for B5G networks due to the open problem. This
paper presents a reference architecture and compares its potential benefits over traditional BC-based UAV
networks. Open issues and challenges are discussed, with possible future directions. Finally, a logistics case
study of BC-based FL-oriented UAVs in 6G networks is presented. The survey aims to aid researchers in
developing potential UAV solutions with the key integrating principles over a diverse set of application
verticals.

INDEX TERMS Beyond 5G networks, 6G, blockchain, federated learning, unmanned aerial vehicles.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), or popularly drones, are
aircraft without any human pilot on board and aremainly con-
trolled and managed remotely or via embedded autonomous
computer programs. UAVs came into existence in the early
1920s and were designed for military operations. Today,
UAVs are preferred in different verticals like agriculture,
healthcare, Internet-of-Things (IoT), military surveillance,
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and ubiquitous network coverage with the rise in technology.
UAVs have minimized human interventions and augmented
the interface between humans and logistic support in chal-
lenging environmental conditions. UAVs typically consist
of three distinguished components: software, hardware, and
underlying communication channel. UAV software compo-
nent consists of firmware, middleware, and operating sys-
tem that control UAV movements and perform dynamic
decision modeling. The hardware components consist of
sensors, flight controller unit (FCU), light detection and rang-
ing (LiDAR), and radar components. The communication
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channel interfaces the UAVwith the ground station and group
of UAVs, commonly termed as UAV swarms. UAVs are
categorized under five different types depending on applica-
tion requirements- unmanned ground vehicles, unmanned air
operations, unmanned surface vehicles, unmanned underwa-
ter vehicles, and unmanned spacecraft. A recent report from
Markets and Markets predicted that global UAV market is
expected to reach USD 58.4 billion by 2026, at a compound
annual growth rate (CAGR) of 16.4% [1].

Recently, UAVs have been heavily employed for surveil-
lance and boundary demarcations, maps, remote sensing,
search and rescue operations, disaster control, and infotain-
ment. Specific use-case UAVs are increasingly deployed in
the market to support different applications. In most applica-
tions, UAVs collaborate as swarm units, controlled through
a swarm controller at the ground station. UAVs communicate
and share data with each peer UAVs to perform time-sensitive
and computationally expensive tasks, which requires intel-
ligence in the communication channel. The shared data
between UAVs must be trained using machine learning or
deep learning models, depending on the application type
and the generated data. In a traditional UAV system, local
data from each UAV is sent to the centralized server and
then results are sent back to each UAV for training and
testing purposes. However, the centralized sharing of UAV
data raises privacy and security concerns. A malicious adver-
sary can launch an informed attack on the central server to
damage the communication actively, leading to catastrophic
effects.

To address the privacy of user data captured by UAVs,
a decentralized notion of learning is required, where the
captured data can be trained locally. Recently, federated
learning (FL) has been designed as a decentralized learning
mechanism. The central model is shared with local nodes, and
local nodes train the model with their associated data. The
updated parameters are sent then sent back to the FL server.
Due to its inherent benefits, FL is increasingly employed in
many generic applications like google keyboard suggestions,
healthcare purposes, and cellular communications [2], [3].
Once data is locally trained, it is aggregated and the FL server
is responsible for computing the updated model gradient
based on the sum result. The process is iterated until the
end application reaches a desired level of accuracy, and the
end devices (mobile nodes) also become more accurate [4].
Collected data from end-devices continuously updates the
local model instead of frequently communicating data to the
server, which provides advantages like balanced workload
at user end-devices, provision of computing resources, sig-
nificant time reduction and enhanced accuracy compared to
centralized server topology. Integration of FL in a swarm
of UAVs is a feasible option to solve the security and
privacy issues. FIGURE 1a shows the global FL market
trend which shows an increased adaptability for a variety of
applications [5].

However, FL preserves privacy as it shares the model
parameters instead of training data. Still, an adversary might

access unauthorized information by polluting the global
model through its local data. Once the fake parameters are
shared, iteratively, it might pollute the training of the global
model. Thus, with small-scaled adversarial learning models,
an adversary can eventually form a physical or logical attack
like distributed Denial-of-Service (DDOS), replay, imper-
sonation, message injection, spoofing, malware infection,
eavesdropping link, and line-of-interference attacks [6]. The
adversarial poisoning attack on the data and model and the
inherent assumption on the nodes to form a membership for
collaborative learning are inherent limitations in FL attack
categories. To secure these attacks, a notion of reliability is
required to be introduced in the FL learning process that
mitigates the constructive failure of global models or the
privacy leakage of UAVs.

UAVs orchestrate edge services in a mobile edge comput-
ing (MEC) network and serve as an access point for important
industry verticals [7], [8]. Under such circumstances, the
reliability and availability of the MEC server are of prime
concern. In FL, model aggregation results under the MEC
server attacks result in a single point failure that greatly
affects the operations and swarmmaintenance. Moreover, the
scalability of modern edge computing systems is limited to
managing the aggregation of updated offloaded frommillions
of IoT-enabled UAV devices. FIGURE 1c shows security and
privacy concerns in UAV communications. Blockchain (BC)
is a potential solution to curb the limitations mentioned
above and induce trust in FL communication. BC assures
traceability, decentralization, scalability, immutability, non-
reusability, enhanced security and privacy in FL-assisted
UAV communication. In BC, data (or transactions) are stored
as blocks linked to an immutable chain. The ledger state is
communicated to all nodes in the BC network. BC eliminates
the requirement of third-party security management and thus
introduces trust management in UAV open channels.

The holistic integration of BC-leveraged FL-assisted UAVs
ensures the utmost level of data privacy, trusted exchange,
and traceable access, under continuous local updates, due to
topology change with diverse UAVmobility, models, and net-
work constraints [9]. FL implementation via BC is simplified
as the requirement of a central server is eliminated, and thus
single-point failures are eliminated in the system. BC allows
traceability among the network entities and chronologically
monitors the channel behavior, transparent to all peer UAVs.
With BC-assisted FL, easy traceability of model parame-
ter/update origin is determined through the stored logs as
ledger entries. Every client updates its local model in the
form of transactions aggregated as unconfirmed transactions
in the mempool address. The miners verify the transactions
and form blocks, append the block header, and add the FL
model data on the chain. Now each authorized user can view
the verified updates, and once the global model aggregates
the result, it stores the updated gradient on the BC. Thus, each
download by a local node is trusted, and the user computes the
new version of the global model with defined epochs. In the
case of an adversary, the poisoned training updates are not
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FIGURE 1. FL global market forecast, 5G/B5G emergence and UAV security and privacy issues.

verified through consensus, and thus poisoning attacks are
eliminated with the help of BC.

Apart from security, another important aspect is the UAV
latency. Generally, UAVs require adaptive communication at
low latency to address real-time surveillance, spatial iden-
tifications, tackling war zones and critical communication
to and from ground control stations (GCS). With mas-
sive connections and device-to-device communication, con-
siderable bandwidth is required. Currently, UAVs operate
over 4G-long term evolution (4G-LTE), or LTE-advanced
(LTE-A) links to communicate with the GCS. For data-
driven applications, the GCS-UAV communication based on
4G suffers from feed buffering and glitches, which results
in higher processing and transmission delays under peak
traffic conditions. Additional potential issues include incon-
sistent bandwidth, line-of-sight (LOS) interference, limited
UAV mobility, handover management, interference between
a drone user equipment and terrestrial user equipment, and
intermittent disconnections, limiting UAV communication’s
real-time communication network with GCS. Moreover, the
geographical terrains with limited coverage from terrestrial
GCS may not provide the required connectivity services to
the cellular-connected UAVs.

To address the issue, researchers have shifted attention
towards the fifth generation and beyond fifth-generation
(5G/B5G) wireless networks, which envision higher cov-
erage and connectivity and diverse B5G-enabled service
sets. In 5G communication, to ensure real-time connec-
tivity with GCS, tactile internet (TI) allows the capture
of haptic UAV feedback at extreme low-latency (<1ms).
Machine type communication (mMTC) can support indus-
trial IoT links with parallel data uploads and download
setups. mMTC supports connectivity through a massive num-
ber of devices. Finally, for bandwidth and throughput sup-
port, enhanced mobile broadband (eMBB) service is present
(≈10 Gbps), that allows bulk data transfers, at ultra-high reli-
ability (99.99999%) [10], [11]. Moreover, 5G offers flexible

in-network services, virtualization of resources, better and
swift adaptation to the difficult terrains to support UAV
requirements. 5G antennas are built over massive multiple-in-
multiple-out (m-MIMO) channels that allow parallel carrier
aggregation, which reduces the noise outage probability of
non-5G channels. However, with the rise of services like
augmented reality, virtual reality, massive-IoT, space-air-
underground communication, in the near future, 5G net-
works would be non-adaptive in terms of communication
requirements. Researchers have shifted towards expanding
5G services and the B5G phase, with a shift towards sixth-
generation (6G) communication networks.

6G is envisioned to support terahertz channels, AI-enabled
radio communication, and intelligent wave-coding. 6G is
expected to support optical wireless communication, where
the desired information can be transferred over low sending
and receiver antennas. This is specifically useful for under-
water and space communications [12]. Moreover, the overall
backhaul network is expected to support photonic com-
munication, to support high bandwidth requirements [13].
Thus, with 6G, UAV communication would be near real-
time, even in ultra-dense connection setups. It would allow
flexible support to UAV swarms for accurate flight control
and route information, even in intermittent connection setups.
6G enabled UAVs exploits MEC to realize optimization of
the energy resource by offloading tasks at the edge of the
flight control system’s network. FIGURE 1b shows the emer-
gence of 5G and beyond the market for UAVs to assist a
variety of applications like defense, aircraft, and civilian
applications [14].

A. POTENTIAL BENEFITS OF B5G-ASSISTED UAVs
The major advantages of the B5G-assisted UAV system are
as follows.
• 5G/B5G communication networks are supported
through a higher mobile spectrum which provides wide
accessibility beyond visual line of sight (BVLoS).
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TABLE 1. Abbreviations and their meanings.

Due to the wide spectrum range, the 5G/B5G network
improves the UAV bandwidth requirements for high
data transfer from IoT sensors. Further, the physical
radio is artificial intelligence (AI)-enabled, allowing
channel estimation, equalization, coding, error correc-
tions, and signal constructions based on observed data.
Machine learning (ML) and deep learning (DL), based
architectures are designed to be trained over-collected
network data, forming an intelligent cohesion to sup-
port various applications like IoT, vehicular networks,
Industry healthcare and others. With AI-driven radio,
secure and reliable connectivity is enabled that pro-
vides cost-effective UAV operations for a variety of use
cases [15]–[17]

• 5G/B5G allows greater control and management
through software-defined networking (SDN) and
network function virtualization (NFV) that greatly
improves UAV performance in heterogeneous, dynamic,
and complex networks. It decouples the data and con-
trol plane operations of UAVs and GCS, which sim-
plifies the UAV flying control route management and
the ground operations over heterogeneous links. SDN
provides UAV software implementation, while NFV
provides mathematical functions to serve path trajectory,
UAV dynamic decision and monitoring, and scalable
deployment.

With responsive communication, trusted operations is
equally important. Moreover, a large amount of data is col-
lected at local UAV nodes, and thus FL is a viable choice
to induce privacy in model learning. The amalgamation of

BC, FL, and B5G in UAV networks drive a responsive,
secured, and decentralized learning paradigm, satisfying end-
user quality-of-service (QoS) requirements. Recently, many
proposed surveys have discussed UAVs, their coalition with
BC, and communication networks. In the near future, AI will
predominate UAVs and communication networks. Moreover,
FL has shifted researchers to exploit low-powered learning
models with local data that allows user customization. Thus,
in the future, it is envisioned that a holistic integration of
BC, FL, and B5G/6G communication networks would play
a pivotal role in driving UAV operations. To date, limited
research has been carried out in a similar direction. Thus,
the proposed survey addresses the gap and presents a solution
taxonomy of BC-based FL in UAVs for B5G networks. The
paper presents a reference architecture and compare its poten-
tial benefits over traditional BC-basedUAVnetworks. Table 1
shows the list of abbreviations and the associated meaning
used throughout the article.

B. AMALGAMATION OF BC, FL, AND B5G IN UAVs
The motivation behind the survey is presented as follows.
• UAVs are already engaged in providing real-time appli-
cations such as healthcare, military, IoT, healthcare, etc.
In these applications, the privacy of user data is of
utmost concern. Thus, the inclusion of FL plays the
primemotive, where the model is trained locally without
sharing the data from local nodes. FL thus ensures the
security and privacy aspects of shared data among UAV
networks or swarms.

• BC technology, on the other hand, guarantees trust
between nodes through cryptography mechanisms
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TABLE 2. Potential benefits of FL integration in industry UAV projects.

and consensus protocols in distributed, open, and
autonomous environments. Thus, BC assists FL-driven
UAVs to share the learning results in transactional
ledgers so that model gradients, weights, and other
parameters are not affected. Moreover, the global server
can store the global model meta-information on BC,
which subsequently can be downloaded by local nodes.

• Since UAV networks generates massive data in real-
time scenarios. Therefore, there is a requirement for
near-real-time communication at extremely low latency.
Thus, B5G networks (or 6G) can orchestrate massive
UAV communication’s latency and bandwidth require-
ments. Moreover, it supports dense UAV connectivity,
mobility, and stringent end-latency requirements. With
B5G NFV, the networking functions are managed as
black-boxes, which simplifies control of UAV trajectory
and in-flight swarm operations. 6G network architecture
is envisioned to support deep sea-air-ground communi-
cation and massive information-centric IoT networks,
with customized links to cater to specific requirements.

Table 2 presents real-world industry deployments of UAV for
variety of applications. The table also highlights the potential
benefits of FL integration in UAV projects. With FL, UAV
applications are expected to provide optimal performance,
enhanced security, robust performance against link failures.
Local UAV data is not required to be shared, with high
connectivity among nodes at low latency.

C. KEY TAKEWAYS
The key takeaways of the survey are highlighted as follows.

• The paper presents a reference architecture that fuses
BC, FL, and B5G in UAV communications to support a
diverse set of application endpoints like edge services,
traffic prediction, vehicle parking occupancy, health-
care, remote sensing, surveillance, package delivery, vir-
tual reality applications, and industry 4.0 production and
manufacturing. BC-assisted FL-UAVs assure data pri-
vacy and adaptive service provisioning, with continuous
monitoring of mobility models. B5G networks ensure

upper bounds on latency constraints and enhance QoS
in UAV-UAV and UAV-GCS communications.

• A solution taxonomy of BC-assisted FL-enabled UAV
networks for B5G networks is proposed based on pro-
posed research questions addressed through the survey.
The taxonomy connects the security, communication,
and analytics at end-point UAV application perspective
through assisted use-cases as examples.

• Open challenges and potential research directions of the
integration are discussed, and a case-studyMil-Drone is
presented that integrates BC-assisted FL-UAV analytics
for Internet-of-Military-Things (IoMT) application in
the backdrop of B5G communication.

D. ORGANIZATION AND READING MAP
FIGURE 2 presents the organization and survey reading
map. Section II presents an overview of various key tech-
nologies and their integration with UAV scenarios. Then,
a systematic overview of existing UAV surveys is in terms
of security, communication, and AI perspective is presented.
Section III presents the review methodology adopted for
the survey. Based on the research questions of the study,
section IV presents an existing BC-driven UAV network and
the potential limitations. Next, a proposed architecture of
BC and FL-assisted UAVs for B5G communication networks
is presented that supports secure information sharing and
local learning. The architecture would assure privacy in UAV
application scenarios. Section V discusses the proposed solu-
tion taxonomy of FL, BC and B5G in UAV applications.
Section VI presents the open issues and challenges, with
potential research directions for BC-assisted FL for UAV
applications in B5G networks. Section VII presents a pro-
posed case study MiL-Drone to secure UAV-access scheme
for IoMT operations. Finally, section IX concludes the article.

II. BACKGROUND AND STATE-OF-THE-ART
In this section, the details of the evaluation timeline, basics
of FL training, B5G networks, BC-assisted UAV communica-
tion, and benefits of FL-UAV communication are presented.
The details are as follows.
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FIGURE 2. Survey and reading map.

A. BACKGROUND
This section presents the background of various technologies
adopted for the research. The section is divided into four sub-
sections. The first subsection discusses the timeline of impor-
tant events related to the early stages of UAV technology and
subsequent adoption of wireless network generation, from
first-generation (1G) towards B5G/6G deployments. The sec-
ond and third subsection discusses the basics of FL, features
of B5G/6G and its potential vision to support a variety of
UAV applications. The fourth and fifth subsection discusses
the applicability of BC and FL respectively to support UAV

communications in terms of privacy and security aspects.
Finally, the sixth subsection explores the integration of UAV
applications. The section, therefore, addresses RQ 1 and RQ
2 put ahead in the reviewmethodology. The research question
RQ 1 is addressed through introduction and applicability of
FL to provide security aspects for various UAV user-centric
applications and research question RQ 2 is addressed through
detailed discussion of the integration of BC in FL-enabled
UAV in beyond 5G networks.

1) EVALUATION TIMELINE
FIGURE 3 presents the timeline of important events related
to the early stages of UAV to subsequent interface with FL
and BC. The timeline also depicts the shift from 5G wireless
networks towards 6G deployments by 2030.

Historically, UAV applications started as early as 1917 dur-
ing World War I as pilot-less vehicles called Aerial Target.
In 1918, America flew the first air torpedo called as Ketter-
ing Bug. Since then, a flock of drones has been developed
for various military applications like war, surveillance and
reconnaissance [23]. In 2006, the federal aviation adminis-
tration (FAA) deployed the fleet of commercial UAVs in the
air for search, rescue, and disaster relief operations. In early
2000, 3G networks were proposed to support a line transfer
rate of 144 Kbps. The later version of the 3G release, often
depicted as 3.5G, and 3.75 G, shifted from Kbps to Mbps
to support broadband access in smartphones. Standards like
internet access, video calling, andmobile TVwere developed.
At the same time, cryptocurrencies gained attention, and in
2008, Satoshi Nakamoto proposed Bitcoin cryptocurrency as
a decentralized ledger often denoted as Blockchain 1.0 speci-
fication. Later, in Blockchain 2.0, smart contracts (SCs) were
designed to automate payment flows among ledgers between
transacting peers through defined rules and specifications
of contract setups. SCs were unalterable and are Turing
complete.

In 2016, Google coined the term FL as a DL frame-
work for integration that allowed effective model designs
over local data, assured enhanced security, and provided
impetus over centralized counterparts, like cloud analytics.
Blockchain 3.0 emerged with the design of various decentral-
ized applications and the adoption of BC to different sectors
like healthcare, finance, Internet-of-Drones, andmany others.
At this time, the shift towards Industry 4.0 enabled sensor-
driven communication, and thus big-data applications gained
attention. With massive data generation and ingestion, secu-
rity and privacy requirements became paramount. In 2019,
FL use-cases were designed for UAV communication, and
with the release of 5G new-radio (NR) standards, the vision
of massive IoT became a reality. 5G drove a range of ver-
ticals ranging from smart health, vehicular networks, and
industry. WithMEC support, edge-based communication ser-
vices are designed, with SDN/NFV to support the network-
ing management. 5G also witnessed the rise of responsive
internet, with haptic enabled feedback through tactile inter-
net (TI). Recently, non-orthogonal multiple access (NOMA)
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schemes for 5G networks were proposed, owing to their
ability to serve many users simultaneously and frequency
division. Two primary techniques in 5G-NOMA were
discussed, power-domain (PD-NOMA) and code-domain
(CD-NOMA). NOMA exploited the superposition coding at
the sender transmitter, with successive interference cancella-
tion at the receiver-transmitter to support multiplexing in the
power domain.

In the future, edge-AI adaption to UAV communication is
expected [24]. Also, with rising developments in augmented
reality (AR), and virtual reality (VR) applications, interesting
use-cases are infused that combines BC and B5G networks
for AR/VR [25]. By 2030, 6G networks are expected to
support massive information-centric IoT (IC-mIoT) applica-
tions, with high UAV mobility of 1000 kmph. Also, industry
4.0 would shift towards massive personalization and hyper
customization, which would pave the way towards Industry
5.0. Industry 5.0 is expected to support B5G network commu-
nication, massive data transfer, cohesive robots, digital twins,
and FL for local data analytics.

2) FEDERATED LEARNING
The concept of FL was introduced by Google [26], [27] as
a decentralized approach against traditional ML/DL-based
cloud models. FL has distributed ML that assists model train-
ing onmassively distributed decentralized data. In FL, mobile
and wireless nodes train the local DL/ML models collabo-
ratively. The local parameter updates, i.e., weights, neurons,
and gradients, are aggregated and communicated to a global
cloud-assisted server in a secured and encrypted manner. The
aggregation step assures the privacy of the original data at
the source and improves latency bottlenecks at the central
server. Thus, FL is an optimal choice for resource-constrained
networks as huge data requirements and bulky DL models
are not required. Rather, tiny models at edge nodes design
their models on local data. This assures that sensitive data
attributes are preserved and fine-tuning of model parameters
is customized according to local requirements. The end-to-
end FL process is interpreted via the stochastic gradient
descent (SGD) algorithm, whose expression is presented as
follows.

Wi+1 = Wi − α
∂F(z)
∂W

(1)

where α is the learning rate, or step size of gradient descent
at iteration i and ∂F(z)/∂W is the partial derivative of loss
function F(z) with respect to weightW .

In addition to the above, FL improves the network overhead
by avoiding data transmission to a central authority, thereby
minimizing energy and bandwidth consumption. FL also
enables wireless devices to collaboratively and parallelly
learn the shared prediction model while restoring device
privacy. The above aspect makes FL an enabling technology
for the next UAVs-based wireless networks to train learning
models compared to centralized cloud-centric approaches.

There are different types of FL-enabled architecture for
UAV, viz. collaborative FL, multi-hop FL, fog learning and
scheduling-based FL.

3) BEYOND 5G NETWORKS
Emerging applications such as telemedicine, mixed and
extended reality (MR/XR), real-time haptic communication,
vehicle-to-anything (V2X) mobility, platooning, cooperative
control, and UAV surveillance are readily deployed in smart
cities. To assure QoS to diverse requirements of these links
requires massive data uplink rate, massive dense connection
setups, extremely high data rates, extreme precision, and
ultra-high reliability to support mission-critical cyberspace
applications. Current 5G networks are limited in cover-
age/mobility and uplink performance during Non-Line-of-
Sight (NLoS) conditions and thus fail to provide real-time
quality of experience (QoE) to end-users.

Beyond fifth-generation (B5G) networks, with a shift
towards 6G, is the successor to 5G cellular communica-
tion systems. 6G network promises a shift to a higher
frequency range (millimeter or terahertz) and provides sub-
stantially higher capacity at low latency. 6G networks are
human-centric and integrate users, processes, mobile devices
and networks, service management for several applications.
6G technology enables edge intelligence through ML, DL,
and FL models. 6G supports 1 Tbps user data rate, round-
trip latency of <0.1 ms, and introduces new services like
extremely reliable low latency communications (eRLLC),
with a reliability rate of 99.9999999%, mobile broadband
reliable low-latency communication (MBRLLC), massive
ultra-reliable low-latency communication (mURLLC) and
human-centric services (HCSs) [7], [28].

6G communication supports dense connectivity,
AI-enabled massive coverage, high device-to-connectivity
ratio [29], at low power networking nodes. 6G networks
are expected to support massive traffic through decentral-
ized solutions and advanced networking mechanisms [30].
6G networks can provide 4-6 times reduction in high den-
sity transmission applications like video surveillance [114].
6G-based SDN/NFV functionality automates the optimiza-
tion process by operating services in the virtualized con-
tainer. 6G finds a variety of UAV-enabled applications such
as surveillance, military, agriculture and farming systems,
medical services, surveying, and many others.

4) BLOCKCHAIN-BASED UAV COMMUNICATION
Blockchain (BC), or decentralized ledger, stores records
timestamped, chronological, and immutable. BC is a key
enabler for secured and trusted UAV communication in
B5G networks. BC provides various advantages to the
UAV networks such as adaptability, scalability, immutability,
transparency, fast and efficiency, and delivery services with
privacy and security [31], [32]. B5G-enabledUAV-UAV com-
munication via GCS satellites is secured against potential
adversarial attacks, as shared ledgers are non-alterable. The
digital distributed ledger (DDL) characteristics assure the
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FIGURE 3. A holistic timeline of key technical drivers.

truthfulness of stored information and provide secure one-
to-one and broadcast facilities in the UAV network. The
other BC characteristics, such as chronology, consensus and
auditability, enable control, coordination, integrity, trust in
UAV swarm formation, as well as the exchange of crypto-
graphically cached secured data from air to ground sensor
networks [33]. By creating a common communication chan-
nel, BC enables UAVs to request other UAVs in emergency
cases, extreme cases of low battery, system faults, and other
sensor malfunctions. BC also enables storage of complex
computations UAV synchronization, where ledger informa-
tion can be downloaded by UAV in an offline manner to opti-
mize processing time and optimize the power management
functionalities [34].

5) ROLE OF FL IN SECURING UAVs
UAVs have limited resources and power to communicate and
share data. Traditional DL-based approaches require high
storage power to exchange UAV data to centralized servers,
which are not feasible for low-powered environments. At cen-
tralized servers, UAV communication requires high con-
sumption of network bandwidth energy. Thus UAVs have a
shorter network lifetime. Additionally, data sent to central
cloud servers are susceptible to leakage attacks, imperson-
ation, and identity exchange of UAVs. Thus the users’ sen-
sitive data is at high risk once they are trained on central
servers.

FL enables distributed ML mechanism for UAV swarms
without sending any raw data to the centralized servers,

or GCS, where the global models are designed to train on
collective data. Inclusion of FL-UAV learning thus assures
privacy and supports operations such as air quality
index (AQI) monitoring, target recognition, joint power allo-
cation, and others efficiently and responsively. FL-UAVs
follow the training process in three steps: initialization,
models training, and global model aggregation. Due to its
privacy-preserving nature, low communication overheads,
and low latency. Applications of FL in UAV networks include
altitude and mobility information optimization for air-to-
ground communication, determination of energy consump-
tion during UAV path prediction, intelligent deployment as
base stations, assignment of resource blocks to UAVs as per
user requirements, minimization of power requirements in
cooperative flying ad-hoc networks, customization of edge
enabled massive UAV-IoT networks, and intelligent caching
at edge networks [35].

6) INTEGRATION OF BC-BASED FL IN UAVs
Once data from local models are trained, the parameter
updates, weights, and model information is communicated
back to central servers. In such cases, continuous iterations
are required to update and minimize the losses at the global
model. However, the global models are based on a centralized
approach. They rely on central cloud servers for continuous
updates from aggregators to finalize the parameters for the
global model. The scheme has an inherent limitation, as the
centralized global model is susceptible to single-point failure,
unreliable links, eavesdropping, and leakage of sensitive data.
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In terms of resources, central models require high power
to accumulate all the updates, and thus power management
is a critical concern at the global server. There are high
possibilities of failures of heterogeneous radio links between
UAV-UAV and UAV-GCS communication on the networking
front. The gradient updates might reveal information about
the training data of any particular participant, and thus a
malicious attacker might identify the model weights from
the uploaded gradients. This is possible due to the closed-
loop exchanges (locally trained model update followed by a
globally aggregated model update), and the communication
delay is significantly large to complete the entire global FL
training. This poses a critical limitation in real-time com-
munication during emergencies and essential operations of
warfare. In UAV scenarios, various algorithms such as secure
multiparty communication, differential privacy, and homo-
morphic encryption have been applied; however, they are
limited in providing concrete convergence to the FL model
due to scattered geographical locations of UAV and become
prone to malicious attacks [36]. Also, with the increase in
the number of UAVs, collaborative learning for authentication
across multiple domains becomes stringent.

To address the limitations, BC-based FL-UAV communi-
cation works without any central global server and stores data
in the form of a list of linked blocks using the cryptographic
hash of the previous block. BC enabled FL leverages secure
model exchange in the presence of malicious UAVs. Partici-
pating miners share and validate all their local updates based
on the consensus and miner updates. Via SCs, peer UAVs are
identified and only authorized UAVs can participate in the FL
communication process. Only authenticated UAVs identified
through ledgers communicate and accept gradient updates for
further aggregation based on authorized UAVs. Every peer
UAV that participates in the FL process trains an initial model
using its local dataset and provides the local updates to its
associated committee node for validation. Once the commit-
tee nodes reach a consensus, the global model is stored in the
current distributed ledger of the BC and synchronized with
the ledger. During the latest round of training conduction, the
participating UAVs obtain the latest global update from their
associated committee nodes. The process is iterated until the
final convergence is attained.

B. STATE-OF-THE-ART
This subsection presents the discussion on the existing sur-
veys that have discussed the key principles of integra-
tion of 5G/B5G networks and BC as a potential benefit
to FL-enabled communication to address latency, privacy,
security, and trust issues in the wireless UAV ecosystem.
Table 3 presents the comparison of existing state-of-the-
art surveys with the proposed solution. Qu et al. [43]
proposes DFL-UN, a novel decentralized architecture that
enables FL within UAV networks without involving central
entity. They have conducted a simulation study and validated
the end-to-end performance through parameters like cross-
entropy loss and overall training latency, which significantly

improve the proposed architecture. Finally, they discussed the
potential issues and research directions of the proposed
scheme DFL-UN. Dong et al. [44] proposes a systematic
study on the discussion of privacy and security in the field
of BC-based FL methodologies. The authors have discussed
the integration of BCwith FL in various human-centric appli-
cations about IoT and smart environments. The experimen-
tal results address the gaps and new challenges to evaluate
lightweight BC methodologies. The research bifurcates BC
and FL-enabled applications into horizontal and vertical FL
mechanisms. Authors in [45] propose blockchain-based fed-
erated learning (BFL) design for autonomous vehicular net-
working. Themethod implements a private and efficient setup
for on-vehicle local updates exchange decentralized fashion
through a mathematical model for end-to-end delay analysis
at the system level through a joint consideration of communi-
cation latency and consensus delay. Authors in [46] present a
systematic survey for BC application in FL for distributedML
paradigms. They discussBCFL and its integration for existing
FL-enabled applications and its feasibility in various industry
verticals, including Internet-of-Vehicles (IoV), 5G/6G com-
munication, computing mechanisms, and provides a survey
of BC for training nodes in various incentive mechanism.
Authors in [35] discussed FL in UAV communication net-
works to improve communication overhead, data privacy,
and data security aspects in UAV-based wireless networks.
The authors have mentioned various use cases of FL like
5G and beyond, IoT, edge computing, and discussed open
issues and future research direction of FL. Authors in [47]
propose a collaborative ML approach for UAV-based service
providers such as Drone-as-a-Service (DaaS) that assists in
several UAV-oriented applications. They propose a multi-
dimensional contract-matching-based incentive mechanism
and derive an optimal UAV placement in specified sub-
region considering aspects like sensing, computation, and
transmission modeling in the IoV paradigm. Pham et al. [42]
proposes an efficient algorithm UAV-SFL for wireless power
transfer for sustainable FL-enabled UAV networks based o
transmission time, bandwidth allocation, power, and UAV
placement. The model successfully implements green rev-
olution for transmission power reduction by approximately
78% compared to existing benchmarks. Mehta et al. [38]
presents a survey on the architecture, requirements, and use
cases for BC-envisioned security solutions and 6G-enabled
wireless connectivity in UAV communication. The authors
also present a solution taxonomy for various UAV-enabled
applications in 6Gwireless communication infrastructure and
finally present a use case involving blockchain and 6G for
Industry 4.0 application. Li et al. [15] presents comprehensive
survey on UAV communication toward 5G/B5G networks.
The authors restrict various 5G techniques on UAV networks
based on different physical domains and finally discuss open
issues and possible future trends in UAV communication
based on the latest development.

On similar lines, authors in [48] discuss UAV placement in
5G and beyond networks. They have presented three use cases
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TABLE 3. Comparative analysis of the proposed survey with existing state-of-the-art surveys.

and corresponding state-of-the-art UAVs in wireless commu-
nication. Research also focuses on UAV 3D placement and
resource allocation problems in the 5G/B5G wireless net-
work and its state-of-art work. Authors in [49] propose UAV-
assisted FLwhere owners utilize UAV for intermediate model
aggregation and relay the parameters to the data owners.
They also propose a contract-based incentive approach for
UAV authentication and improve the overall communication
efficiency. Zhang et al. [50] studies key techniques of UAV-
to-Everything (U2X) and propose a network that enables
UAVs to jointly optimize the communication modes with
full dimension as per sensing requirement. The authors also
discussed the reinforcement learning model for performance
estimation of the proposed framework and finally discussed a
potential solution to the open problems of U2X communica-
tion. Authors in [51] provide state-of-the-art applications of
FL in B5G/6G wireless technologies based on performance
metrics, highlight the FL operational challenges, and provide
solutions to important networking areas such as cellular, IoV,
UAV, re-configurable intelligent surfaces, and IoT, etc.

C. SURVEY GAP
Existing surveys to date have underlined key technologies,
protocols, and implementations related to 5G/B5G & feder-
ated learning in massive UAV communication developed for

healthcare, military and other industry verticals. However,
a holistic integration of B5G and BC in FL-enabled UAV
wireless networks is not unitedly visioned. Thus, a protocol
reference architecture is required to inscribe the end-to-end
solution from communication and security-based architecture
layers. The proposed survey fills the open research gap by
integrating B5G and BC in FL-based UAV ecosystems to
serve massive UAVs for healthcare, industry 4.0, render real-
time analytics, responsive communication, and connection
bandwidth through a secure and private network in open
channels. The survey accords key principles, reference lay-
ered architecture, and a possible discussion of an integrated
solution supported & validated through a case study.

III. REVIEW METHODOLOGY
This section discusses the systematic review methodology
and the same is formulated as per the review regulations
proposed by Kitchenham et al. [52], Keele et al. [53]. The
review is bifurcated into five logical steps as explained below.

A. REVIEW PLAN
The review paper explores and outlines the survey system-
atically. The key contents of the literature are (i) identifica-
tion of the research questions, (ii) identification of probable
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TABLE 4. Research questions to support the proposed study.

FIGURE 4. Search strings.

FIGURE 5. Inclusion and exclusion criteria.

source of data, publications and studies (iii) search criteria on
collected data, (iv) applicability of inclusion and exclusion
criteria, and (v) quality assessment.

B. RESEARCH QUESTIONS
Table 4 identifies and sets down a few research questions
along with their objectives to support the survey carried out.
The research questions mainly provides (i) an overview of
BC and FL applications in UAV networks (ii) highlights the
potential benefits of B5G/6G communication in UAVs to
ensure seamless interaction and quality of experience.

C. DATA SOURCES
Digital data sources like IEEEXplore, Springer, Wiley, ACM,
Science Direct, Elsevier, SPIE Digital Library etc. are identi-
fied. They provide vast and diversified literature that helps
to carry out a proposed survey. The work explained by
Kitchenham et al. [52], Keele et al. [53] also strongly recom-
mends utilization of various electronic sources such as arti-
cles, technical reports, blogs, books, patent contributions to
implement the exhaustive survey in the field of interest.

D. SEARCH CRITERIA
Various papers were searched related to BC, FL technologies
and its use case in UAV applications and considered for
integration in UAV for B5G/6G networks. FIGURE 4 defines
the keywords and search strings utilized for a search of rele-
vant topics and papers. The search is progressed through the
inclusion of online articles as well as references cited in the
collected papers.

E. INCLUSION AND EXCLUSION
The process is initiated by filtering the papers according to the
topic’s relevance. Initially, the academic repositories for the
papers concerning the search strings that combined FL and
UAVs were examined. Afterwards, the papers with keywords
FL in B5G networks, FL and UAVs in B5G networks were
searched. Finally, the papers with keywords BC with FL net-
works BCwith UAV-FL in B5Gwere searched. OR keywords
were also utilized to enhance the academic database. The
papers centering keywords like edge intelligence in FL, BC,
and FL in UAV, UAV for B5G/6G, and B5G service names
like uRLLC inUAV, eMBB inB5G, and others were gathered.
Then, papers that were not of potential interest for the survey
article were excluded. FIGURE 5 depicts the inclusion and
exclusion criteria for proposed survey.

F. QUALITY EVALUATION
The evaluation was carried out on the reference literature
quality as per standard guidelines issued by Database of
Abstracts of Reviews of Effects (DARE) and Center for
Reviews and Dissemination (CRD) [52]. The reference lit-
erature surfaces the required quality assessments.

IV. EXISTING AND PROPOSED REFERENCE
ARCHITECTURE OF B5G-ASSISTED UAVs
This section initially presents the existing architecture that
presents a centralized cloud-based model learning for UAVs
underlying B5G networks. The potential limitations of cloud-
based central learning are highlighted and shift towards FL
learning is justified. The paper also presents a holistic UAV
coverage over different smart city use-cases like smart hos-
pitals, buildings, shopping centers, emergency control, and
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many others in both the architectures. Finally, the role of
B5G/6G communication to support end-to-end network man-
agement issues in these applications are discussed. Thus, the
section addresses RQ 3 and RQ 4, presenting the potential
benefits of B5G and BC integration through an architectural
overview in the UAV ecosystem.

A. EXISTING ARCHITECTURE: CENTRALIZED
MEC-ASSISTED UAV IN B5G NETWORKS
A UAV swarm network is deployed to provide various ser-
vices such as smart sensor-based networks, autonomous vehi-
cles, emergency services, healthcare. These applications are
served by peer UAV or IoT-assisted UAV architecture. UAV
swarms communicate to GCS and exchange a large amount
of data. To allow for real-time communication and support,
the B5G network is utilized between UAV and GCS to allow
flexibility, high precision, accurate LOS, flexible in-network
services, and virtualization of resources. In some techniques,
the UAV swarm controller communicates with peer UAVs
in its range and is supported through edge-offloading to
satisfy massive user requests. Due to computation ability
and battery capacity limitation, UAV swarms cannot perform
resource-intensive tasks and have limited memory to carry
out operations. Thus, a cloud-based centralized GCS server
is required to store the humongous data. GCS server allows
computationally intensive tasks but is limited with high-end
user latency of processing data. To avoid this limitation,
MEC platforms are designed that computationally offloads
tasks are closer to the UAV node, so latency constraints are
achieved. Moreover, MEC nodes support content caching and
control, and requests are forwarded to cloud servers only if
the data is not present at MEC servers. MEC servers support
the UAV task offloading process, where large task sets are
broken into smaller segments for processing at MEC. The
results are scheduled and sent back to UAVs.

MEC servers employ edge-intelligence models to moni-
tor data and task requests and offload similar content from
cloud servers, to maximize the servicing of UAV requests.
MEC addresses the backhaul latency issues, as it minimizes
the transmission latency [54]. FIGURE 6 shows the central-
ized MEC-enabled architecture for existing UAV applica-
tion scenario. A local controller collects information about
the states of existing entities (smart users, UAV, server)
and offloads various activities such as task computation,
energy management, path planning, UAV coordinates, cur-
rent ephemeris, resource management, and other related
data to the MEC-enabled cloud server. The accumulated
data at the MEC server is analyzed, processed, and trained
through various AI techniques such as deep reinforcement
learning (DRL), supervised/unsupervised ML, artificial neu-
ral network (ANN), genetic algorithm, and reinforcement
learning-ant colony optimization (RL-ACO) for efficient
decision making, and results are offloaded back to users upon
fulfillment of the task’s execution. Thus, edge-AI-enabled
MEC allows joint optimization and constraint satisfaction

regarding delays, energy consumption, and traffic prediction
of UAV swarms.

B. THE PROPOSED REFERENCE ARCHITECTURE:
BC-BASED FL-ASSISTED UAVs IN 6G NETWORKS
In this subsection, a BC-based proposed reference architec-
ture supported via an FL-assisted UAV ecosystem at the back-
drop of 6G communications is presented. The proposed archi-
tecture caters for the requirements of diverse applications like
smart vehicles, emergency disaster management and security,
massive IoT and industrial IoT, healthcare, building, automa-
tion and many more. FIGURE 7 presents the schematics of
the proposed architecture design.

In the proposed architecture, there are two types of UAVs
viz. normal and malicious. The malicious UAVs exhibit
byzantine behavior where they propose false updates to peer
UAVs to sabotage the entire swarm operation. It is consid-
ered that the global server is MEC-assisted to address the
computational constraints of UAVs. The global server powers
6G-driven FeMBB links to address the bandwidth require-
ments of massive data. It also features a powerful centralized
server structure for exchange and offload processing and
collected trained data from remote UAV nodes. The ML/DL
algorithms for analytics at the global server are applied, and
trained model parameters are communicated to local UAV
nodes. However, this communication raises a security con-
cern where a malicious UAV can launch an informed attack,
and data leakage and impersonation attacks are possible.
Further, central MEC-global servers can be flooded with
many bogus synchronized (SYN) requests by bot servers,
which results in DDoS attacks. This is critical as healthcare
and military operation data is highly confidential, and thus
sharing and storage of data on central servers involve high
risk.

Thus, in the proposed scheme, an FL-based solution is
deployed, where all local participants jointly build a global
mathematical model iteratively without revealing the under-
lying data or encryption algorithms. However, FL-based
learning has inherent limitations, such as a lack of reward
mechanism for participating entities in the FL network,
data/model poisoning attacks, and trust among heterogeneous
nodes. Thus, BC-based ledger management augments and
builds a secured and trusted FL learning paradigm and pro-
tects the global model’s integrity against single-point failures.

In the proposed architecture, a massive framework is envi-
sioned, where a large amount of data is exchanged between
users through a swarm of UAVs controlled by GCS and
mobilized through an array of a 6G-based network of land,
airspace and massive wireless TI networks. 6G employs edge
intelligence and ML/DL algorithms over the UAV traffic
and forms the radio communication parameters. To lever-
age the supportive performance of a cellular-connected UAV
network in a 6G environment, it is critical to provide
low latency, trusted content-caching and supportive soft-
warization. As earlier stated, ML/DL algorithms require
high resources and are not effective for UAV networks.
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FIGURE 6. Existing MEC-enabled centralized cloud architecture of UAV underlying B5G networks.

In the proposed scheme, an MEC-assisted FL-UAVs, SDN-
controlled for networkmanagement is envisioned that orches-
trates computing resources through the SDN control plane.
This improves the link quality, UAV swarm topology for-
mation, and joint task allocation to MEC servers. Through
assisted edge-AI, multiple users send the task requests to
MEC servers. The servers employ task classification models,
and FL-networks form task prediction and send the learning
parameters back to local UAV nodes.

To exploit the same, MEC selects a set of worker UAV M
and delivers the global model to selected UAV m. FL process
enables iterative training of global model wg with local data
Dm∈M and sends the model updateswm to the aggregator. The
process is repeated until the trained model/learning result is
delivered to the user in a specific UAV-enabled application.
Equation (2) and equation (3) shows the relation between
local and global model optimized through a loss function F .
FL reduces the computation complexity and transmis-
sion overhead in 6G networks and enhances privacy and
security.

w∗m = argminF(wm), m ∈ M (2)

wg =
1∑

m∈M |Dm|

M∑
m=1

|Dm|wm (3)

To assure trust in FL-model learning and MEC operations
during the model aggregation phase, BC-ledger is proposed
to store the global parameters and local updates from partic-
ipants. A possible real-world use-case scenario is presented
to highlight the requirement of BC-assisted FL-learning.
Consider a compromised local participant (malicious UAV)
that sends forged or incorrect learning parameters to nearby
UAVs in the swarm network. Trust in the FL ecosystem is
considered two-way; the local participants trust the global
MEC server model for training. The global model trusts the
local UAV participants to update its global model based on
local inputs collaboratively. However, in real-world scenar-
ios, any party might be malicious and may send fake model
parameters/training results to each other. Thus, BC-based
FL-aggregation and model update is a viable choice to assure
a trusted and reliable ecosystem. It is considered that local
updates are captured, aggregated, and verified through a
BC-assisted transactional ledger in the proposed system. This
allows immutability and traceability in operation sets and
mitigate the false attack vectors. Similarly, the global model
computes the pre-trained model results and stores them in BC
as the transactional ledger. As miner nodes verify and broad-
cast the on-chain ledger to all UAV nodes, malicious UAV
nodes or malicious FL-server fake updates are easily captured
and eliminated from participating in the data sharing process.
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FIGURE 7. Proposed reference architecture of BC-based FL-assisted UAVs underlying 6G networks.

The user/device that receives the block containing the verified
updates iteratively computes the updated learning rate for
the global model, and eventually, the desired accuracy is
achieved. SC transactions enable end-to-end implementation
of cross-domain authentication as well as updation of model
aggregation. To maintain the integrity and confidentiality
of captured data, permissioned BC is preferred for secured
and trusted UAV communication, owing to its customized
consensus that fits the application requirements. Moreover,
to address the scalability issue of BC-storage overheads, the
data can be stored in off-chain ledgers like interplanetary file
systems (IPFS). The content meta hash is stored only in the
on-chain BC storage. This maximizes the overall throughput
and latency of the ecosystem.

To enhance the effective utilization of computing
resources, UAV incorporates optimal caching to store local
models from different users/devices and develop own learn-
ing through collaboration in a UAV swarm and provide
recommendations. The underlying 6G network significantly
increases UAV-to-UAV network transmission speed BC
transaction processing speed and ensures decentralization.
It enables edge content caching, as whenever the content
is present, the 6G-eRLLC service enables transmission of
model parameters for user/device and UAVs. Moreover, the

former handles UAVs’ dynamic behavior and high mobility
through adaptive learning of handover decisions using deep
reinforcement learning (DRL) models.

V. SOLUTION TAXONOMY
Conventional machine learning approaches rely on the central
entity where received data for training and testing, query
processing is not always feasible to be shared over open
wireless communication channels. Due to the security and
privacy concerns and large communication overheads, the
data exchange to the central server is not an optimal choice.
FL is a decentralized ML approach that allows us to keep
the data from where it is generated and maintain the privacy
of the data by only sharing the gradient update to the global
central node that aggregate such updates from all local node.
It utilizes the processing power of devices where data is
generated and allows them to train the model based on data
that preserves privacy. 6G will enable better live content pop-
ularity prediction, extremely high capacity, and high-speed
communication, with data rates up to 1 Tbps. The spectrum
band capacity of 6G is ≈100 times the capacity of 5G, and
it helps the local nodes download the model update quickly
and propagate the local gradients to the global model at near-
real-time. It can provide communication with<1 ms latency.
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In the application of FL, where data is sent and captured
through moving entities such as UAVs, a strong commu-
nication network is needed that provides a larger coverage
area andmassive connectivity with high precision positioning
and high sensing capability. This technology provides better
communication, making UAVs more reliable and secure in
any allied field, with increased geographical areas. Some
application requires a group of UAVs to communicate with
other UAVs and create an intelligent swarm that makes use of
AI and ML techniques to take decisions to any obstacles and
uncertain situation, immediately sense the data and sends it
back to the GCS nodes for quick response and respond to the
situation based on the global learning available at each local
nodes.Moreover, to assure the privacy and location parameter
of each UAV, the BC network is preferred. BC allows them to
communicate securely over the network and enables them to
assist in an emergency. Through BC, fake parameter updates
are easily prevented by providing each entity in the system
with a digital wallet and SC allowing only registered entities
to send a local update in the blockchain. FIGURE 8 describe
the amalgamation of BC-based FL forUAVs inB5Gnetworks
for different application scenarios such as healthcare, defense
system, data dissemination, agriculture and Industry. In such
applications, UAVs collect data, convert them to sampling
signals, and forward them to ground stations for further pro-
cessing. The data received from UAVs are used to train the
local model and updates are propagated to the central node
for aggregation via BC to ensure only genuine local updates
are considered to develop global updates. The details of the
solution taxonomy are presented as follows.

A. HEALTHCARE
With the rapid development of hardware and software, med-
ical devices, Internet-of-Medical-Things, sensor devices and
body area networks have become more frequent in clini-
cal health response monitoring systems. The data is sent
via responsive communication networks like 5G/B5G to
remote nodes in such setups. Local ML models are designed
to detect, analyze, and predict patient health conditions.
However, patient health data contains sensitive attributes, and
thus the public release of health datasets is often anonymized
with privacy-preservation techniques like k-anonymity,
I -diversity, differential privacy, and other models. Thus, the
released public datasets are often generic, and designed ML
models are not fully exploited to their potential. FL is an
optimal choice to address the trade-off between privacy and
data availability, as data is trained at local mobile nodes.
To form trusted FL, BC is integrated with such environ-
ments where the collected data from different stakeholders
are stored on ledgers. To assure security, proper encryption
techniques are coupled with BC to provide confidentiality of
health records [55].
• Disease Analysis:Authors in [56] highlighted the poten-
tial of clinical data and its processing at clustered FL on
edge devices which can leverage the potential of remote
healthcare centers, how FL can use for better analysis of

Ultrasound and X-ray reports. Architectures that use BC
in their framework, such as ethereum, to provide security
to the clinical data [57]. To impose extra security on
patients’ health records, FL is used to send only the
updated gradients of local ML model which prevents
model updates from privacy attacks; differential privacy
mechanism is utilized [58].

• Vaccine Distribution: In edge intelligent emergence
technology, UAVs are used as relay stations that cap-
ture the environment information, and FL strengthens
UAV to perform decentralised learning by updating the
local model and send the update to the global model,
and BC is incorporated in the framework to provide
trusted ecosystem [59]. UAVs are used to transport the
vaccines in remote areas and based on the population
of the area, a k number of vaccines are transported
from the main center to the nodal center where each
person is registered in the BC. After giving vaccines,
the ledgers are updated to prevent fraudulent entries in
the vaccine distribution [60]. To add an extra layer of
security in BC, nodes aggregate local updates via Intel
software guard extension (SGX) in trusted execution
environments (TEE), and the hash value is stored in the
blockchain [61].

• Medical aid Supply: UAVs use the intelligent network
and interact with swarm and GCS to deliver medi-
cal aid to remote places. The scheme takes advan-
tage of FL for quick response to uncertain situations
and obstacles. UAV allows supplies to difficult ter-
rains and zones, where human intervention is not possi-
ble [62]. Gupta et al. [63] proposed a BC-based medical
aid delivery ecosystem using UAVs in healthcare 4.0,
providing end-to-end security by capturing communica-
tions of UAVs with GCS and updating the transactional
state on global BC ledgers. UAV delivers the blood
and organs in a critical situation by maintaining the
required temperature to the destination way faster than
other communication [64]–[66]. To utilize UAVs in dif-
ferent environmental conditions and avoid congestion,
a path planning architecture is required for effective
emergency response from UAVs. UAV path planning
algorithm can be improvedwith a genetic algorithm, par-
ticle swarm optimization, and ant colony optimization
techniques [67].

B. AGRICULTURE
Traditionally, red-green-blue (RGB) and near-infrared mea-
surement (NIR) sensors were used in agricultural sites which
lack hyperspectral range and precision. The inspection was
earlier performed via satellite and manned air-crafts to sense
areal data through digital imaging. Such coupled technology
is expensive and restricted only to certain geographical
areas due to complex logistics or environmental condi-
tions. The hyperspectral technology allows us to use small
and lightweight sensors in UAVs that support hundreds of
bands [68]. UAVs can be used in a variety of applications
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FIGURE 8. The proposed solution taxonomy.

related to crop management by capturing high-resolution
images and sending the data to ML models for further analy-
sis, such as detection of crop health crop insects so that timely
action can be taken to increase the overall productivity.
• Navigation System: To provide improved navigation
and remote sensing, UAVs are installed with hyper-
spectral sensors that have the capabilities to capture
minute details in high resolution. With the inclusion of
Kalman filters (KF), the spectral algorithms are further
modified to predict future UAV positions with higher
accuracy. Thus, the base GCS employs KF algorithms
to form effective GCS-UAV navigation links that allow
real-time monitoring and control instructions to man-
age mission-critical applications [69]. Through effective
computer vision training algorithms like masked region-
based CNN (Mask R-CNN), Faster R-CNN, and you
look only once (YOLO v3), UAV-based object tracking
and detection algorithms are improved [70].

• Precision System: The actual proliferation of UAVs in
smart farming is not yet fully utilized, the technology
is selected and deployed to capture and sense the data
and further processing of those images. Authors in [71]
discussed the general method of data acquisition and
image processing for precision agriculture. Conclusion:
There are so many precision agriculture applications
that calculate the vegetation index that helps optimize
the crop’s effectiveness. Researchers have identified the
open challenges and future directions for precision agri-
culture with the use of computer vision, ML, and AI
algorithms [72]–[74].
– Crop Health: UAVs are used to monitor crop’s

health regularly by assessing the condition such as
the color texture of the images received from the
sensors in different lighting conditions and timings
throughout the day.With the help ofML techniques,
health of different crop types is detected with dif-
ferent parametric conditions. FL enables the global
model to be downloaded and used at local nodes in
such cases. The author in [75] discussed the benefits

of UAVs in agriculture and their limitations, mainly
how they assist farmers to maximize their profit by
detecting the health of the crop on time.

– Disease Identification: With the help of better
image processing units and sensors available in
UAVs, high-resolution images are sent for detec-
tion and categorization of disease and classification
according to its severity, colour and texture. Authors
in [76] divided the dataset into bare ground and
radish fields and employed DL algorithms to detect
yellow rust disease from the captured hyperspec-
tral images received from UAVs. Similarly, authors
in [77] applied DL models to detect and classify
Fusarium wilt of radish field through captured UAV
images.

C. INDUSTRY
With the advent of Industry 4.0 and the shift towards
Industry 5.0, industrial processes and pipelines are auto-
mated. The processes are data-driven and employ sensors,
people, processes, and manufacturing units to integrate the
components, operations, and control systems cohesively.
Thus, the shift towards cyber-physical driven industrial pro-
cess has interesting UAV-driven use-cases. One particular use
case of industrial deployment in the oil and gas industry
requires effective UAV surveillance of gas pipelines to detect
gas leakage, and real-time inspection, with effective alarm
systems to notify in case of leakages. A large amount of data
is generated due to continuous UAV monitoring, and the data
is highly sensitive and shared over public channels. Thus,
UAVs employ proper authentication and security processes to
carry out operations like oil spills, leakage-related accidents,
and pressure maintenance. The data is shared over wireless
channels over long-distance IoT networks through network-
ing protocol stacks. Another industry use case involves logis-
tic operations, where goods are shipped, and ML algorithms
are used to assure the validity of shipped articles. In the
food industry, food items must maintain a fresh state from
the production cycle until they reach the markets. It involves

VOLUME 10, 2022 33169



D. Saraswat et al.: BC-Based FL in UAVs B5G Networks: Solution Taxonomy and Future Directions

a lot of intermediate points in the supply chain, and every
point is monitored to assure freshness of the product [78].
Supply-chain-based UAVs employ a greedy algorithm that
offloads the computing task of sensor nodes within smart
factories. UAVs collect the data and handover it to edge nodes
which are responsible for distributing the task to other peer
nodes for faster processing [79]. Some industrial use-cases
are mentioned as follows.

• Supply Chain and Automation: In industry 4.0 evo-
lution, the latest technologies are employed to make
automated operations. Products are tagged with smart
radio frequency identification (RFID) barcodes, and the
supply goods are then mounted on delivery UAVs that
deliver the goods to the recipient. UAVs are required
to maintain inventory control, and the local data can
be analyzed through FL algorithms. Finally, the cap-
tured data are maintained as transaction ledgers and
added to BC. It preserves the item traceability, especially
when the goods come from third-party vendors, and
ensure origin traceability. Tight upper-bounds on round
trip latency are maintained to manage resilient control
for in-flight UAV modules. B5G network services like
muRLLC are a viable fit to assure the same. To support
UAV operations, inventory transactions are managed on
edge servers that deploy FL models to detect swarm
movement irregularity and store the information on BC
ledgers [80], [81].

D. DEFENCE
UAVs capture high-resolution images that can be used in
defense and military setups. Recent incidents from Israel
and Iraq where UAVs are used to intercept the encrypted
video feeds allowed space for a systematic cyber attack, such
as navigation spoofing and link interception. This allows a
large group of UAVs equipped with military-grade electronic
defense and counter operations standards. Recently, small
interceptions in military data are also considered a serious
concern, owing to the high sensitivity of military operations.
Thus the traditional defense systems are not mature enough
to detect and analyze such threats. Unconventional flight
patterns at low altitude with terrain masking effect make it
invisible and lead to high false alarm generation rates. Thus,
a short defense radar system base UAVs is set up. It senses
and warns the perimeter surveillance radar system that makes
a strong defense system against low and slow unidentified
threats [82].

• Surveillance: UAV-based positioning system is devel-
oped which provides positioning service from its cur-
rent location and with advanced IoT-based aerial UAV
that has on-board image-based demarcation of land
technique that sense the illegal trace-passing of an
unidentified object and immediately initiates the alarm
systems, by sending the signal to local ML model. The
communication is carried over a secure communication
channel, and UAVs are equipped with path planning and

module capable of recalculating paths when an obstacle
comes [83].

E. DATA DISSEMINATION
UAVs are used to improve the quality and efficiency of data
dissemination in different applications. UAVs collect aerial
data with the help of sensors and store the information in the
local buffer. The data is immediately sent to the GCS or other
peer UAVs from the local buffer for fast transmission. The
data is further used to train the local model and the updates
are sent to the global model entity for further aggregation.
• Adhoc Network: UAVs help the ground vehicle to send
data from one entity node to another by increasing the
network connectivity. Authors in [84] represented the
new architecture model to send data in vehicular Adhoc
network and explored different cyber and false attacks
on data dissemination. The authors compared the dif-
ferent false attacks patterns on data dissemination and
performed the security analysis to identify the security
goals. To provide secure data dissemination in UAV sce-
narios, architecture is defined using BC, which identifies
the forger node using game theory and used proof-of-
stake (PoS) consensus protocol for block validation [85].
Jacob et al. [86] proposed a method that enhances the
transmission efficiency and coverage capacity of the
UAV swarm and also analyses the interference generated
due to inter-drone communication.

• Internet of Everything: UAV-based data dissemination
frameworks are designed for internet of everything (I2X)
ecosystems. Almasoud and Kamal [87] proposed an
algorithm to maximize the minimum bit received from
the IoT devices and increase cooperation between IoT
and UAVs in sensing the spectrum, with these UAVs
making the decision when it comes under the range
of spectrum availability. For efficient and flexible data
dissemination among especially distributed IoT devices,
a joint optimization on the resource assignment strat-
egy is designed [88]. To disseminate the data over
low powered devices to a long-distance, a closed-loop
transmission diversity approach is used to enhance the
transmission [89]. To maximize the minimum amount of
data received from base stations, scheduling, bandwidth
allocation, and mobility of UAV is required along with
constraints such as power and mobility [90].

VI. OPEN ISSUES AND FUTURE DIRECTIONS
This section discusses the open issues, challenges and future
perspectives in integrating the key drivers, namely BC, FL,
and B5G networks in UAV communication. This section
addresses the RQ 5 question as it culminates the chal-
lenges of BC and FL in security and update handling in
B5G-envisioned UAV ecosystems. Table 5 highlights the key
research directions, possible limitations, and proposed future
directions of integrating BC in FL-UAVs. The challenges are
presented in two aspects: the security and communication
front.
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BC suffers from bandwidth limitations, throughput, attack
vectors, and scalability. The problems are severe while exe-
cuting SCs in public BC ledger domains. The former faces
limitations like lack of formal contract verification, stor-
age constraints, unsustainable consensus mechanisms, and
contract-based attacks. Thus, it is paramount to design an
effective BC network that seamlessly integrates the local
FL model training. Such integration would ease the high
overhead dependency on transaction ledgers, with the amount
of data generated by the UAV swarms during handshake
and control operations. Moreover, the availability aspect of
the B5G communication network plays an important role in
catering latency parameter update rates in critical scenarios
such as healthcare. B5G networks are in the experimen-
tal phase and require an effective implementation to assure
industry-ready solutions, with unified protocol and imple-
mentation rules. FIGURE 9 depicts the overall picture of
challenges and prospects of the holistic integration of the key
technical drivers.

A. SECURITY
Although BC provides trust, traceability and decentralization
for training edge devices, it still has its security flaws, such
as 51% attack, which is a critical problem of proof-of-work
(PoW) consensus algorithm. In PoW, miners try to validate a
block full of transactions. Thus a miner with high computa-
tional resource, power, and storage can control the network by
contributing more than 50% of the mining power in the net-
work with its added resources. In such a case, the miner group
would easily create a side chain that would be legitimate,
and thus miners would add transactions to the sidechain [91].
Apart from 51% attack, BC is susceptible to the double-
spending attack, where a user spends an amount twice for
the same set of transactions. SCs are flawed with reentrancy
flaws, code injection, out-of-bound logic exception, and gas-
based attacks in close association with BC. Thus, permis-
sioned BC, where SCs are executed as chaincodes in docker
containers, assures privacy and integrity of data operations.
A validation protocol is required to be developed for BC and
SCs, that assures the transactions are secured against pos-
sible attack vectors. The issues of BC-based attacks should
be handled before the FL learning models are designed.
Possible research directions to the same are presented as
follows.

• A hybrid consensus design that combines PoW and
Proof-of-Stack(PoS) together. Firstly, PoW identifies
the elected miner node that presents the solution to the
difficult problem and presents a hash smaller than the
target hash. In the second phase, the PoW winner miner
selects another miner that proposes the block’s com-
bined hash, which is lower than the bet (or assured
stake) of the network. As the value is lower than the
stake value, there is a high probability that the elected
PoS miner would add the block. The elected PoS miner
should have a high reputation of adding valid trans-
actions in the BC, and thus it would assure a fair

mining ecosystem. However, the hybrid consensus
scheme would fail if the PoW winner colludes with a
dishonest PoS miner. Thus future research work could
be directed towards the design of a fair mining and
incentive ecosystem [92], [93].

• The encoder and decoder-based DL models detect the
anomalies in the UAV ecosystem, which is achieved
by identifying the characteristics of BC with specific
timestamps which describe the state of the network, and
then identify the incorrect changes in the chain with the
help of neural network model [94].

• Another method to mitigate 51% attack on blockchain
by using weighted history information. This approach
is often termed Proof-of-History (PoH), and it presents
only specific timestamps of the mining process, which
are the important and essential steps. The approach is
followed in the Solana Chain ecosystem which com-
putes the frequency of the miner to add a block through
the PoH history. Based on the history, miner nodes are
assigned weights. More weighted miner has a higher
chance of election in the next round [95].

B. FAKE PARAMETER UPDATE
Fake parameter updates from the local model can imperson-
ate a genuine local model client which broadcasts incorrect
parameters by training the model on malicious or inaccurate
data, which may affect the accuracy of the global model
aggregation. The adversary node broadcasts the fake param-
eters, and miners are not able to recognize the fault during
mining which indirectly affects the learning rate of the local
model that has downloaded the updated global model from
the on-chain repository [96]. The solution to this problem is
to integrate BC into the system. Every local learning model is
first published in the BC via a registered digital wallet through
SC execution. SC allows only registered entities to execute
the contract. Finally, the global model is updated by aggre-
gating all the local updates, and the updated global model is
published again in the chain with version and timestamps.

C. COMMUNICATION DELAY
Communication delay of FL training is heavily dependent on
up-link and down-link rates, which highly affect the global
model updates and its redistribution among all the local mod-
els. Every local client model has its unique training data,
different network conditions, and different initial parameters
for the model training. If the number of FL participants grows
exponentially, the sending and receiving of model updates
will create a bottleneck on the network. Its variable end
bandwidth supports each local FL participant, and thus it
induces variable delays in communicating updates back to the
globalmodel. This results in inconsistentmodel updates at the
server, as aggregation is not synchronized. One possible solu-
tion is to apply model compression to minimize the network
delays and streamline a consistent delay at the aggregator
while conforming the updates to the global server [97].
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FIGURE 9. Open issues and challenges of BC-assisted FL solutions in B5G-enabled UAVs.

D. CONVERGENCE OF FL
Due to the heterogeneity of different edge or IoT devices,
the convergence of FL algorithms is not assured. As the edge
behaviors depend on local conditions, the edge models apply
different mechanisms to interpret and process the data. Edge
systems are characterized by CPU usage, hardware, and I/O
usability, and thus networking stacks are not mature enough
to handle the discrepancy. Furthermore, the base networks
operate over heterogeneous constraints of UAV battery and
power management, and therefore FL model training con-
vergence is not smooth. To cite an example, IoT devices are
restricted with limited computing capability, and weak and
intermittent disconnections at local nodes would require high
time to train the data and propagate the training results back
to the aggregator nodes [98].

E. PRIORITIZATION OF LOCAL UPDATE
The local model updates can be prioritized based on the
frequency of the update sent to the server, which allows
the global system to consider the most recent update first
to increase the block validation. Furthermore, this consen-
sus allows the reputed IoT or edge device to propagate
the changes quickly for faster aggregation. In this way, the
client or IoT device are allowed with frequent updates to be
given more priority for block verification, which sets up a
biased system of updates on the global model, as the local
node with higher update frequency affects the global model
schematics [99].

F. MONETARY BENEFIT
Encouraging edge devices to participate in themining process
is a key challenge. FL nodes would require all the available
resources and share their fair share of computing power to the

mining pool to increase the mining throughput. The FL nodes
would require an incentive mechanism that inspires them to
participate in resource-sharing. Thus, proper incentive mech-
anisms for resource sharing FL nodes are an open issue that
would benefit the miner nodes to carry out computational
intensive tasks. Thus, FL-as-a-Service (FLaaS) is a future
research problem [100], [101]. However, the incentive distri-
bution has to be fair for all participating FL nodes. Therefore,
the fair incentive FL mechanisms in the open mining system
is a critical problem of study.

G. PLAGIARIZED MODEL UPDATE
To maximize the economic benefits, the FL nodes allocate
a major portion of CPU resources to the mining pool, and
fewer resources are utilized for sending local updates is a
recently proposed solution. The model update is often copied
to next-hop local nodes or IoT edge gateways in such cases.
However, in such a scenario, the neighboring node should be
trusted to carry out the operations fairly so that incorrect and
plagiarized updates are not sent to the global server. To asset,
the fair ecosystem and verify the edge node forwards the
correct update to the global model is a challenging and open
problem of study [102].

H. VARIABLE LATENCY CONSTRAINTS
FL trains its data at the local level and uses it for applications
such as live healthcare analytics or an autonomous vehicle,
where the application predict the results at little or no delay,
i.e., FL can reduce latency by optimizing the model that elim-
inates the requirements of edge, or MEC-offloading models
for accurate diagnosis and prediction. However, with variable
networking delays, the latency at different nodes is different,
and thus the final FL convergence is difficult to achieve.
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Moreover, with the inclusion of BC-based update validations,
the miners require more time to verify the transactions and
add them into blocks. As local models would update at a vari-
able rate, a unified choice of consensus protocol is difficult to
apply for the entire problem [103].

I. SAFETY AND INTEGRITY OF UAVs TRAFFIC
MANAGEMENT
As the number of UAVs increases in a swarm network,
effective failure management and alert system is required
to be designed in case of emergency and contingent situa-
tions. A timely response mechanism should be designed to
prevent UAV-based calamities during in-flight swarm opera-
tions. Effective UAV path planning algorithms are required
to be set up for an incident response. The design of alert
and management systems for UAV swarm networks for
managed path planning and alert control is an open study
problem.

J. CUSTOMISED MODEL FOR SPECIFIC SCENARIOS
Multiple UAVs communicate with each other and share
information about their surroundings to visualize the target
location better. Effective AI training models are designed
to monitor the traffic and weather conditions for different
locations and sensing environments to exploit the same. The
design of AImodels for monitoring traffic andweather condi-
tions and UAV swarm scheduling would require different AI
models for different collected data. Moreover, as geograph-
ical landscapes are different, a single unified model design
to cater to all requirements is impossible. Thus, scenario-
specific AI models are designed, and it requires an effective
switching of AI models over the collected data. Managing
AI-schedulers in real-time to support swarm operations
requires a huge amount of bandwidth and computing power.
As UAVs are resource-constrained, they have to offload the
tasks to the nearby edge, or cloud servers, which induces vari-
able communication delays.Moreover, as tasks are delegated,
it induces the risk of data confidentiality, and thus modern
B5G networks that envisions space-air-ground communica-
tion require an effective network manager. Researchers have
proposed the NFV function to manage the scheduling of AI
models. However, an all-effective model is still far from real-
ity that can cater to the requirements of the right blend of load
balancing, routing, and traffic association of the collected
model data.

K. OBSTACLE DETECTION
It is very hard for UAVs to detect an object or other UAV and
avoid them instantly. Thus, object detection algorithms are
designed to allow UAVs to detect near objects or blockages
that can prevent crashes or UAV collisions. At the same
time, it is required to broadcast the obstacle signal to all
peer UAVs in the network. Thus, modern UAV swarm net-
works are required to have automatic object avoidance and
detection algorithms that are in-built and hard-coded in the

UAV memory, rather than building detection algorithms on
the local sensor units.

L. ATTACKS ON UAVs
In UAV swarms, a group of autonomous UAVs moves from
source to destination and exchange route information and
other details with their peer nodes. There is always a pos-
sibility of exploiting vulnerabilities in communication and
traffic management systems and chances of a cyber attack
by an intruder, which makes UAVs malfunction and change
their routes or even crash in populated areas. Other possible
threats include denial-of-service (DoS) attacks, where the
UAV nodes are flooded with many SYN requests that poten-
tially block the resources and exhaust the UAV bandwidth.
In addition, it might cause UAV congestion collisions and
drain the UAV energy. Another possible attack is the setting
up of jammers, which would disrupt the communication sig-
nals between UAVs and GCS. Spoofing is another common
attack where an attacker intercepts sensitive information by
eavesdropping on the communication link through address
resolution protocol packets. Following are the possible solu-
tions against such attacks:

• Ensure a high level of security to stop denial of ser-
vice by installing firewall and intrusion detection sys-
tem between UAVs and GCS. Segment the network
and encrypt the sensitive information during the com-
munication. Integrating the identification method with
encryption of transmitted data prevents MAC address
and service set identifier of UAVs and ground station.

• Using continuous monitoring to analyze the real traffic
pattern and a strong sense of typical network activity,
and real-time monitoring assures the mitigation of DoS
attacks before the full control by the adversary. Also, the
UAV networks are required to monitor soft signals like
slow performance, unusual packet drops, poor connec-
tivity, or increased traffic along a particular path.

• Security team that analyses such activities are required
to be ready with the disaster management system and
access the risks to restore the network. The security
analysts are required to be assigned definite roles and
responsibilities, with a checklist for necessary tools
and the know-how to continue essential mission-critical
operations.

M. HIGH PRIVACY AND INTELLIGENCE
In 6G, AI interacts with private data and refine them to
improve the network functionality to deliver better services.
To achieve this, a balance between intelligence and privacy
in a humanoid network is needed by anonymizing sensi-
tive information through third-party decentralized agents.
The balance in AI comes at the increased cost of network
complexity and the high production cost of gadgets. Thus,
to handle the tradeoff, proper innovations in device structure
are required to provide better security and anonymized data
at lower prices that maintain the balance between intelligence
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TABLE 5. Future perspectives and key research directions in UAV based FL and BC ecosystem.

and privacy of the data [35], [105]. Differential privacy is
another mathematically proven technique part of 6G that
prevents the data from linkage-attacks through added noise
from neighboring nodes. It allows generating signals that are
non-traceable to a particular UAV or edge nodes [106].

N. SECURITY, SPECTRAL AND ENERGY EFFICIENCY
Complex computation is required to design solutions to pro-
vide security with spectral efficiency in 6G, and possible
solutions apply encryption algorithm, or design physical layer
security, or intelligent AI models that identify the network
state and design input parameters [107]. In a similar direction,
current research is focused on establishing a relationship
between spectral and energy efficiency. One possible solution
is energy harvesting, where radio and solar energy is har-
vested from the local ambiance. Further, spectral efficiency
can be improved by proper resource management such as
dynamic link adaptation protocol, which comprises modu-
lation, adaptive coding and power control to enhance the
quality of the radio channel, bit rate and robustness of trans-
mission, dynamic channel allocation and diversity scheme,
which improve the reliability of the signal by using more than

two communication channel with different characteristics this
helps to combat fading, and co-channel interference [108].

O. TERA-HERTZ SIGNALS
6G works on terahertz frequency signals and requires anten-
nas to generate continuous terahertz frequency. Currently, it is
complex to generate frequency signals with a 300-micrometer
wavelength. Thus, complex circuits design is required to
increase the production cost of antennas. Another problem
with the terahertz signal is it attenuates to 0 after traveling to
a certain distance in the air, which incurs energy loss due to
molecular spreading and absorption due to conversion of the
tera-hertz signal to the internal kinetic energy of themolecule.
The loss increases when the environment contains moisture,
so amplifying the signal at every 1meter distance is very hard.
Much innovation is required to bring down high propagation
delay in terahertz frequency. Other parameters such as low
noise and high sensitivity should be considered while design-
ing transceivers. Complementarymetal-oxide-semiconductor
and graphene material can be used to design transceivers
and further to enhance the performance in terms of trans-
mission power. Silicon germanium, gallium arsenide/nitride,
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and indium phosphide-based material are required to be
used in the design of the signal detector and generator
units [29], [109].

P. TRANSMITTER AND ANTENNAS
To meet the 6G requirements in the FL ecosystem, a highly
efficient transmitter and receiver system is required because
of the high integration of radio frequency. As explained
above, it involves the integration of high silicon nodes.
Furthermore, the material used to construct antennas highly
affects the transmission speed of radio frequency. Thus,
to achieve higher data rates, an efficient radio frequency is
needed, which depends on the intrinsic and extrinsic com-
position property of the material used. So researchers need
to focus on fabricating the material design to meet the 6G
vision. In the case of satellite connectivity, UAVs would
require power and antenna capability to send the data over
large distances, and thus it adds up to the communication
overheads. Moreover, the communication costs increase, and
therefore research has shifted towards the design of powerful
aggregator nodes that collect the data from UAVs or IoT from
considerable distances and forward the same to the satellite
for operations [110].

Q. CAPACITY AND ENERGY
6G-enabled UAVs need significant processing units to pro-
cess data, and thus to model the huge data influx, high
energy and resource consumption is required. In such cases,
advanced modulation techniques are employed to maintain
peak to average power ratio. Moreover, enhancement in spec-
tral bandwidth is maintained through encoding techniques
that improve the number of signals levels per data bit. Another
technique employs the reuse of spectral frequencies in case of
high node density [111].

R. DENSITY GLOBAL COVERAGE
6G uses a lower earth orbit satellite with low path loss
and fewer transmission delays. 6G enabled satellites rotates
at high speed around the earth, and it induces an unusual
Doppler effect which causes signal detection and synchro-
nization issues. To offer a seamless and better quality of
communication among devices, 6G ecosystems need high-
density nodes per area, resulting from higher communication
costs. As 6G consist of both terrestrial and non-terrestrial
nodes, which are economically on the higher side and require
more maintenance.

VII. MiL-Drone: A PROPOSED CASE-STUDY OF
BC-ASSISTED FL-UAV FOR IoMT ENVIRONMENTS
UNDERLYING B5G NETWORKS
This section addresses RQ 6 by proposing a BC-leveraged
and FL-assisted UAV-enabled military surveillance and
regional demarcation application in the Internet-of-Military-
Things (IoMT) ecosystem underlying B5G networks. The
proposed case-study reference architecture provides a rich
QoS and enhanced security and trusted data exchange due

to the amalgamation of FL and BC technologies. UAVs
are widely employed in surveillance. military demarca-
tions, search and rescue operations, and emergency disaster
response networks. In military surveillance, UAV monitors
the boundaries on a 24 × 7 bases to prevent illegal activities
like trespassing by neighboring country militants smuggling
and trafficking of illegal goods across national and interna-
tional demarcated boundaries. UAV enables categorization
of country or region boundary based on land, stream and
coastlines. UAV military operations are limited by various
factors such as diversified geographical terrain, the accu-
racy of sensors onboard UAV, spatial data mapping accuracy,
high resolution, consistent bandwidth, diffraction, LoS inter-
ference, limited mobility, and intermittent disconnections.
Strong communication infrastructure is required to address
the above issues in continuous UAV region surveillance and
accurate spatial demarcations.

B5G-based tactile internet (B5G-TI) allows near-
responsive decision making, high data transmission effi-
ciency, extremely low latency (<0.1ms), accurate LoS,
extremely high reliability (99.99999%), virtualization of
resources, flexible network services, and integration of edge
computing with AI algorithms. B5G networks support a
higher spatial resolution which is useful for accurate geo-
metrical analysis and precise mapping of regional bound-
aries in surveillance operations and enables the significant
increase in data upload to the edge cloud via a wireless
network and increased implementation of AI-based DL algo-
rithms. B5G-driven edge computing environment promises
uRLLC, mMTC, which leverages enhanced cloud-assisted
MEC offloading and improves the processing capability of
nodes. It enables collaborative data storage, computational
analysis, and network transmission procedures to improve
network transmission efficiency. Thus, integration of B5G
and AI will form a new network ecosystem that will sup-
port m-IoT networks at a close synergy with UAV-based
applications.

However, the incorporation of AI in UAVs poses seri-
ous computational and privacy challenges. Data collabora-
tion is an important event utilized in autonomous devices to
serve various applications. Applications rely on ML algo-
rithms to train data from data centers, which often refuses
to provide these sensitive data, thus hindering the ML pro-
cess. During UAV-UAV and UAV-GCS communication, the
exchanged data contains sensitive military information about
UAV trajectory (ephemeris), path planning, updates, etc.,
which malicious intruders might attack to inject false propa-
gation updates to malicious UAV. This compromises the com-
munication link, incorrect paths, battery draining, accidents,
and other incidents. Moreover, the cloud-based decision pro-
cess at GCS could reveal identification about a particular
UAV. The FL-based decentralized approach is utilized where
actual data is not shared, and all data owners share only the
local updates with a central server. The approach maintains
confidentiality, enables UAVs to collaboratively train a global
model based on captured data and saves network bandwidth.
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FIGURE 10. Mil-Drone: A BC and FL based UAV enabled scheme for region surveillance and region demarcation for IoMT operations.

However, with an increase in data content sharing, the com-
plexity of effective ML modeling is limited, which makes
the central server prone to failure. The overall authentication
of UAVs becomes difficult as geographical locations are
scattered, which makes former prone to malicious attacks.
BC technology allows authenticated UAVs to provide updates
for further aggregation. Using consensus mechanisms like
PoW, PoS, and IOTA enables UAVs to mine the authenti-
cated transactions into a block which ensures transparency.
BC ledgers suppress various attacks such as malicious UAV
interference, UAV impersonation, DDoS, blackhole routing
attacks in UAV network infrastructure. BC infrastructure
controls the UAV swarm operation with improved energy-
efficiency, enhanced security and low latency in the B5G
network [112].

Owing to high data rate, low latency and very high-
security requirements, it is necessary to ensure end-to-end
application requirements of end-user (military diplomats)
by enabling trust at ground level (GCS, MEC node) and
sky (UAV swarm). A case study is presented to amortize
the overall requirements where an integration of BC and
decentralized FL framework in B5G-TI scenario is needed
for authentication and continuous model aggregation in IoBT
ecosystems. The regional demarcation and surveillance appli-
cation is discussed between two countries assisted through
UAV swarms and analyze the opportunities of B5G in edge
computing applications like data sharing content caching to
improve efficiency, quality of service (QoS) and security.

FIGURE 10 shows the three-tier architecture which is
explained in subsequent sections.

A. SURVEILLANCE & DEMARCATION LAYER
IoMT encloses sensor-driven warfare that provides real-time
connectivity with battleships, UAVs, battle-tanks, soldiers
(equipped with health-assisted sensors to recognize various
characteristics) into a connected and ubiquitous network.
This layer provides IoMT operation between two countries
in land, air and water through a swarm of UAVs. There are
two countries A and B named as CA and CB. A swarm of
UAV UA and UB are responsible for military surveillance
and regional demarcation operation. Each country consists
of military personnel emp serving the defense forces. The
swarm UA & UB captures and stores the surveillance and
boundary data dS and dRD consisting of surveillance area
latitude and longitude information, ultra/super high definition
(UHD/SHD) video meta-information, video content, video
timestamp, demarcation meta-data (land, air, or underwater),
demarcation boundary latitude and longitude information,
and demarcation length (in km2). Using BC-based IPFS tech-
nology, emp access the above data using private keys stored in
the IPFS ledger.

B5G-TI enables real-time responsive communication for
video data to prevent unidentified intruders from entering
the surveillance and demarcated regions. B5G-TI network
supports real-time communication between UAV swarms to
assist in IoMT operations. It also assures extremely-low
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latency communication between UAV swarm, GCS, and
TI-controller through assisted edge-offloading-based mobil-
ity models that handle many requests in UAV swarm.
B5G services like FeMBB, eRLLC support high data rates,
extremely low latency and ultra-high resolution/4K video
transmission. B5G/6G also incorporates intelligent estima-
tion via ML/DRL-based solutions to handle cache/edge
offloading phenomenon to reduce overall network traffic
and congestion, improve QoS, decision-making, and resource
management (battery power, frequency band, interference),
and aggregation. The captured data from the UAV is trained
using the AI-based DRL technique to generate a local model
from global updates received from the BC layer. The UAV
swarm broadcasts the updated local model to the subsequent
layer for further processing.

B. BC-ASSISTED FL LAYER
This layer incorporates a network of edge/fog servers that
receives the secured local models from the BC plane and per-
forms computing and update aggregation. They are controlled
using NFV controlled network entities coupled with intel-
ligent decision learning resource allocation. A distributed
AI-enabled edge architecture is considered to provide var-
ious functionalities like very large data storage, close to
user processing, optimization, UAV data (update) manage-
ment, and supports FeMBB (high data upload/download)
with extremely low response time.

The FL sublayer consists of a group of MEC servers (with
the higher computational capability) that performs specified
learning tasks at the network edge. They provide the resources
for mining (e.g., PoW) at the BC network to the connected
UAVs to verify the newly created block and integrate it
through a consensus mechanism. MEC server initializes the
FL process based on aggregation of local model updates
LuA and LuB and sends the initial global updates GuAB to
UAV swarm via BC network based on weighted average
process [113]. Each UAV in UA and UB trains its model
utilizing the captured metadata as well as a global model
through SGD algorithm and calculates a new local update.
The computed local model is transmitted to the MEC server
via BC by creating a transaction. MEC server forms a Merkle
Tree structure of received transactions and creates a new
block identified by a hash value, timestamp and nonce. Once
mining is completed, the verified block is added to the BC
network, which can be accessed byUA andUB utilizing a pri-
vate key. MEC server node finally updates the current global
model through aggregation process retrieved from BC net-
work. The training process is repeated until the convergence
of the global loss function converges, or predefined accuracy
is achieved. A consortium BC setup is preferred where CA
and CB set up the demarcation rules through an assertive
hyperledger contract. To instantiate the contract, a chaincode
transaction is set up betweenCA andCB. A fabric channel and
docker composer is instantiated, where an ordering service
OS is set up to execute the contract. Once the contract is
executed, the results are verified, endorsed, and forwarded

to the fabric service, and the contract state is finalized as
COMMIT.

Once the contract is executed, the resulting FL model is
stored in off-chain IPFS, which is accessed through two sets
of keys, namely, the private key of the user, and the IPFS
content key. In IPFS, a resource identification tag (RIT) is
issued that forms a hashmap to the actual resource address.
It is similar to indexed record storage, where the RIT points
to the stored model record. The RIT is then hashed, and the
hash is stored as a transaction in the mempool address. From
themempool, theminers collect the unconfirmed transactions
and pack them to the on-chain global BC ledger. Any user
who wants to access the latest updated global model must
search the global BC ledger for the hashed RIT address.
A linear search from the genesis block is required to search
the hash address. It also assures that only authorized users
with the hash RIT address can view the content of the global
chain, and successively access the IPFS ledger. The hashed
RIT value points externally to the stored IPFS record. How-
ever, to access the record, the user’s private key and the IPFS
content key are required. Thus, it eliminates unauthorized
access to IPFS ledgers and eliminates security attacks like
fake certificate generation, DDoS, and man-in-the-middle
attacks.

VIII. LESSONS LEARNED AND FUTURE PERSPECTIVES
In this section, we highlight the lessons learned from the
survey, and the potential future directions.

A. LESSONS LEARNED
The key lessons learned from the survey are highlighted as
follows.

1) The authors discussed the market prospective of UAV-
assisted applications, and addressed the opportunities
and potential project investments to highlight the com-
petitiveness of novel solutions that incorporate UAVs
as the key enabler.

2) The authors addressed the security and privacy view-
point of UAV applications, which was earlier not
addressed by existing surveys, and presented an end-
to-end ecosystem, with the discussion of the underlying
networking principles, service sets, and the architecture
to support massive data ingestion. We addressed trust
as a key principle for UAV applications, and proposed
BC as a viable solution. The shared data between UAV
nodes might be highly sensitive, and hence learning
models should support local integration. Thus, FL is
introduced for UAV networks, where the local nodes
collaboratively optimize the global model, with learn-
ing captured from local data.

3) The authors presented a reference architecture to sup-
port the claim, and discussed the interplay of BC
and FL to synergize diverse UAV-assisted verticals in
healthcare, IoT, manufacturing, and content distribu-
tion. The communication requirements and services for
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5G and emerging 6G networks to support the cause
are presented with the architecture. We dived deeper
to review the base implementations and standards, and
proposed the requirement of BC networks, consen-
sus, and FL-learning model optimization to effectively
improve the learning rate of UAV networks.

4) The authors reviewed the recent literature and pre-
sented a solution taxonomy of BC-assisted FL-UAVs to
address issues of performance, reliability, and security.
Next, the discussion on open issues and challenges
are presented, and future perspectives are discussed.
To support the argument, the authors presented a case-
study at the backdrop of UAV surveillance operation to
support military ecosystem.

B. RESEARCH CHALLENGES AND FUTURE PERSPECTIVES
The UAV market has a huge potential with the confluence of
emerging technologies in security, communication networks,
and AI. In the future, as the technical landscape progresses,
interesting UAV-based use-cases that incorporate BC and
FL would be proposed. One possible direction is the design
of low-powered consensus protocols that would be reliable
and cost-effective to scale UAV operations. Advancements
in silicon chips and processors would enable UAVs to be
compact, highly flexible, and would support large memory
to store information. In decentralized networks, it would be
highly effective as UAVs can then execute short and medium
task sets at their local memory, rather than assigning the task
execution to nearby edge servers. Thus, other possible direc-
tions would be the optimization of UAV-assisted offloading
scenarios with edge nodes, which execute compute-intensive
AI models for traffic monitoring, and predict the UAV path
setups, and flying control. In such cases, the overheads could
be significantly reduced if bulk operations are supported at
the UAV node itself. This would greatly reduce the commu-
nication burden.

With advancements of FL training models, a possible
research direction is towards the design of an effective local
learning scheme, which would send only minimum parame-
ters to the global model, and thus the communication pack-
ets would be fewer in the network. Moreover, 6G-assisted
UAVs are software controlled, thus, FL model updates can be
directed to a controller node that would send the aggregated
updates to the global server, and thus fewer communica-
tion messages would be present in the network. The only
challenge is towards the design of uniform protocols and
standards for the controller node. BC-based FL-assisted UAV
is another key direction that would eliminate the updation
of fake parameters to the global model and would induce a
trusted FL ecosystem. In such cases, the future direction is
towards the design of reputation-based consensus algorithms
that would incentivize only those miner nodes, which have
posted verified updates in the network. Another direction
is towards the design of lightweight blockchain for UAVs,
where local BC ledgers can be maintained in-UAV memory
itself, which addresses the scalability overhead of the global

on-chain structure. These implementations can be looked
forward with high interest, as they would prove to be effec-
tive and viable solutions for complex UAV communication
scenarios.

Concerning the networking front, future networks are
6G-enabled, which provide high capacity to support space-
air-ground networks. A key research direction is towards the
design of effective physical radiomodels and 6G codedwave-
forms to support the requirements of the heterogeneous links.
Mostly, UAVs would communicate with different applica-
tions, and thus at the same time, would use different links
for communication. In such cases, the link-level architecture
would be complex, and channel access models are not uni-
form. Thus, the design of effective channel access schemes
to support joint UAV links and improve the bandwidth and
latency concern is a future research direction. Also, 6G stan-
dards are not uniform, thus, the design of the protocols and
standards are mostly proprietary. It would be interesting to
look towards solutions that would bring a uniform set of
protocol designs in such use-cases. A large scale deployment
and implementation would require massive dense connection
networks, and a joint optimization solution is a requirement
in the near future.

IX. CONCLUSION AND FUTURE SCOPE
This survey discussed BC-assisted FL for UAV networks
underlying B5G communications. The technical advance-
ments details about architectures, protocols, and concepts
are presented to make the readers understand the impor-
tance of FL, which assists a local learning UAV setup that
assures user data privacy. Coupled with BC, it assures a
trusted FL ecosystem. The key visions and fundamentals of
B5G or emerging 6G networks and its capacity to support
massive UAV networks are presented. The integration can
drive different verticals of smart cities viz Industry 4.0/5.0,
Healthcare, Vehicular Networks, IoT networks, and many
others. Specifically, the survey covered the state-of-the-art
discussions, solution taxonomy of BC-assisted FL-enabled
UAVs, a proposed reference architecture, open issues and
challenges, and a unique case study. Finally, it is concluded
that the integration of FL and BC would serve as a secured
and trusted solution for UAV networks.

As part of the future scope, the authors would like to inves-
tigate the requirements of consensus protocols that would
support the FL-based algorithms for UAVs. As UAVs are
resource-constrained, effective and low-powered FL mod-
els are required for global and local training purposes.
Lightweight consensus schemes would ensure synergy with
FL learning. Moreover, 6G communication channels are
required to be energy-efficient to support the vision of a
holistic integration for UAV-enabled applications.
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