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ABSTRACT This literature review extends and contributes to research on the development of data-driven
optimal control. Previous reviews have documented the development of model-based and data-driven control
in isolation and have not critically reviewed reinforcement learning approaches for adaptive data-driven
optimal control frameworks. The presented review discusses the development of model-based to model-free
adaptive controllers, highlighting the use of data in control frameworks. In data-driven control frameworks,
reinforcement learning methods may be used to derive the optimal policy for dynamical systems. Attractive
characteristics of these methods include not requiring a mathematical model of complex systems, their
inherent adaptive control capabilities, being an unsupervised learning technique and their decision-making
abilities, which are both an advantage and motivation behind this approach. This review considers previous
reviews on these topics, including recent work on data-driven control methods. In addition, this review shows
the use of data to derive system dynamics, determine the control policy using feedback information, and tune
fixed controllers. Furthermore, the review summarises various data-driven methods and their corresponding
characteristics. Finally, the review provides a taxonomy, a timeline and a concise narrative of the development
of model-based to model-free data-driven adaptive control and underlines the limitations of these techniques
due to the lack of theoretical analysis. Areas of further work include theoretical analysis on stability and
robustness for data-driven control systems, explainability of black-box policy learning techniques and an
evaluation of the impact of the extension of system simulators to include digital twins.

INDEX TERMS Data-driven control, adaptive control, model-free, model-based, model predictive control,
optimal control, learning-based control, systematic review.

I. INTRODUCTION
Control systems regulate the behaviour of various industrial
systems by providing a control response to the system’s
current state. These regularisations referred to as the control
policy within control frameworks, state the prohibitions and
permissions of the system and govern the actions taken by the
controller. Simply, the control policy maps states to actions.
Note that the system is also referred to as the plant, and is
interchangeably used with the term system throughout this
paper.

The field of control theory is vast, with fast-evolving liter-
ature and process controller designs. Traditionally, the design
of controllers employed by various industrial systems has
been model-based. Hence, the control policy is dependent on
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the mathematical model representing the physical system’s
dynamics to determine the actuation to be applied to the
system, given its current state.

Before developing and studying model-free adaptive con-
trol frameworks, model-based frameworks were extended to
complex and nonlinear systems by making assumptions to
simplify the task of encapsulating and modelling both the
system’s physical dynamics and the experienced external
disturbances. However, these approximations and simplifica-
tions are not practical and restrict the performance of these
systems. Due to the challenges which come with precisely
modelling complex systems, model-dependent control sys-
tems are neither widely applicable nor feasible [1]. Further-
more, fixed controllers, used in primitive control systems,
employ a predefined control policy that is applied to the
system irrespective of any changes experienced. It is high-
lighted that control frameworks with fixed controllers and
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model-dependent control systems are not efficient in achiev-
ing the goal of adaptive control, which requires handling
uncertainties or disturbances and predicting scenarios beyond
the classified objects in the operational environment whilst
prioritising safety [2], [3]. More recently, Data-Driven Con-
trol (DDC) frameworks have been developed to address
some of these feats and have become prominent, given both
the explosion of available data in various industries and
the accessibility to the computational power of modern-day
computers.

While the limitations and drawbacks of fixed controllers
and model-based control frameworks led to the development
of DDC frameworks, there is no mutual exclusivity in utilised
methods. DDC methods may be model-independent or used
to enhance model-dependent control systems. For example,
some DDC frameworks which directly use only the input-
output (I/O) information of a system to determine a control
policy using learning-based or iterative techniques are inde-
pendent of the considered system’s mathematical model. This
model-independence is both an advantage, and a motivation
behind model-free control frameworks [4]. The many uses
and objectives for using data for control systems include:
developing a controller for a model-free framework, system
identification, construction of stochastic or uncertainty mod-
els, and tuning of fixed controllers [1]. It is important to
highlight that model-free control is a particular application of
DDC methods, as a data-driven technique is used to extract
the need for a mathematical model representation of a system
by either deriving the policy directly from the I/O data of
the system, or for identifying the system. Whilst the con-
struction of stochastic disturbance model and tuning of fixed
controllers use data-driven techniques in conjunction with
model-based control frameworks.

Furthermore, another reason for the development of DDC
frameworks is to construct an adaptive optimal control policy
that finds a control strategy for a dynamical system over some
time such that the objective function is optimised and the
control policy evolves to adapt to changes. Reinforcement
Learning (RL) is an example of an iterative unsupervised
learning-based method with the inherent characteristics of
adaptability, which is contrasting and advantageous com-
pared to past fixed-controllers. These capabilities highlight
the evolution and advancements of the process of con-
troller designs. However, drawbacks include that the stability
analysis of these methods is primitive and a formidable chal-
lenge [5], [6], and that during the exploration phase of deter-
mining the control policy, the RL agent may apply actions
that do not satisfy the action constraints which may leave
the safety of these techniques questioned. These learning-
based techniques require modern-day compute power to
provide realistic and computationally efficient responses to
online feedback signals. Another promising research avenue
is the synergy of model-based frameworks and data-driven
learning-based techniques, which is further discussed by [7]
and in this review. An overview of the use of data in control
systems is given in Fig. 1.

This literature review summarises the use of data in con-
trol systems. The primary objective is to provide a concise
narrative of the development timeline and taxonomy from
traditional model-based control systems to model-free data-
driven optimal adaptive control frameworks. This study hopes
to provide a single review of DDC techniques which can be
used by both intelligent control and RL communities.

The main challenge highlighted in previous autonomous
control reviews to date is to develop a control framework that
is robust to disturbances, such that the system converges to the
desired target within a minimum time and for stability to be
maintained. These are pertinent to address in the safety of the
operation of these systems [3]. This literature review points
to literature on related work to analyse control techniques and
emerging directions in this field.

The literature review is structured as follows. Section II
gives a brief technical introduction of the classification and
terminology of control frameworks. Section III details the
methodology and the procedure used to conduct this lit-
erature survey. Section IV describes the timeline and tax-
onomy of control systems from their primitive stages to
current novel data-driven control techniques. A description
and the development of model-based and model-free con-
trol frameworks are respectively discussed in Section V and
Section VII, while controller tuning techniques are discussed
in Section VI. Section VIII discusses emerging trends in
this area of research, while Section IX draws some final
conclusions.

II. TERMINOLOGY AND CLASSIFICATION OF CONTROL
SYSTEMS
This section considers key concepts and terminology of con-
trol theory and highlights essential features on which control
systems are classified. These characteristics include the num-
ber of inputs and outputs of a system, the type of I/O data, the
techniques used by the controller, and the configuration of the
information used by the controller.

A. CONTINUOUS-TIME AND DISCRETE-TIME CONTROL
SYSTEMS
Based on whether the signal used in a control system is
continuous or discrete determines whether the control system
is a continuous-time or discrete-time system. A continuous-
time control system has all the system’s variables defined as
a function of time. Conversely, if the system variables are
defined at distinct discrete-time steps, then the system is a
discrete-time control system [8].

B. SISO AND MIMO CONTROL SYSTEMS
Single Input and Single Output (SISO) control systems have
one input and have one output signal. Whereas systems that
have more than one input and more than one output are
called Multiple Input and Multiple Output (MIMO) control
systems [9].
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FIGURE 1. Overview of the use of data in control frameworks.

C. OPEN-LOOP AND CLOSED-LOOP SYSTEMS
Based on the feedback path, a control system is classified
as either an open-loop or closed-loop control system [9].
If the output or feedback from the system is not used in
determining the next control action, the system is classified
as an open-loop control system. However, if the output or
feedback from the system is fed-back to the actuator to be
used in determining the actuation to be applied, then the
system is said to be a closed-loop control system.

In contrast to closed-loop controllers, open-loop con-
trollers are considered easier to construct, however, they are
unreliable given that they do not have a feedback mechanism
and are thus unable to remove the impact of disturbances
using the feedback information. Furthermore, while closed-
loop controller feedback mechanisms are advantageous for
providing better accuracy and reducing the impact of noise,
these control systems’ construction is relatively complex.

A high level overview of a feedback control and an open-
loop system are given respectively in Fig. 2a and Fig. 2b.
Where the controller is designed using learning control tech-
niques, without any details on the considered plant, and
merely based on the sensors’ readings, the actuator or con-
troller should determine the actuation to be applied to the
plant.

FIGURE 2. A high level overview of closed-loop and open-loop control
systems.

D. LINEAR AND NONLINEAR CONTROL SYSTEMS
A linear control system obeys the superposition theo-
rem [10], the system is governed by linear differential equa-
tions, and the output or the response varies linearly with
respect to the input or the actuation. In contrast, nonlinear
systems do not necessarily satisfy the superposition principle,
the system is governed by equations of nonlinear nature, and

the outputs do not vary in a linear relationship with respect to
the input [11], [12].

E. MODEL-BASED AND MODEL-FREE CONTROL
FRAMEWORKS
Model-based control systems use the physical dynamics of
the system’s structure, given in the form of a mathemati-
cal representation, in determining the actuation signal to be
applied to the system. In contrast, model-free control systems
use linearisation techniques and learning-based techniques to
develop a controller based on historical data or the output of
the plant at each iteration and not on any assumptions on the
system model [13].

F. ONLINE AND OFFLINE DATA
Offline measured data is a historical data set, whilst online
measured data is the information obtained from real-time
channels. Online measured data allow for real-time updates,
whilst the usage of offline measured data requires regular
updates to account for new trends that can be seen in recently
obtained measurements.

G. FIXED CONTROL AND ADAPTIVE CONTROL
A fixed control system has a predefined control architecture
that is used in determining actuations to apply to the plant
irrespective of any changes in the environment. However,
in contrast, an adaptive control system adjusts the control
methodwith respect to the control system’s parameters. There
are two particular adaptive control categories: direct and
indirect. The direct adaptive methods directly respond to the
output of the plant, thereby iteratively updating the control
policy or the mapping of the I/O data. Indirect adaptive
control methods estimate the parameters of the plant and use
the estimated model to adjust the controller by fine-tuning the
controller’s parameters [14], [15].

H. ON-POLICY AND OFF-POLICY METHODS FOR
REINFORCEMENT LEARNING
RL algorithms may be considered as on-policy or off-policy
methods. On-policy methods uniformly update and improve
the implemented policy that is used to determine the con-
troller’s actuations to be applied to the system.

State-Action-Reward-Action (SARSA) is an example of an
on-policy method where the behavioural and target policy are
the same. Which means that the agent learns directly from
its experiences. When the behavioural and target policy are
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the same, the agent both selects the actuation and uses the
selected actuation.

Off-policy methods have more freedom in exploring the
environment than on-policy methods. Off-policy methods
update the policy by merely estimating future rewards and
actions given by the generated data and are independent
of the agent’s actions [16], [17]. In contrast to on-policy
methods, in off-policy methods, the agent does not select its
own actuations but instead learns from exploration. Hence
the target policy and the behavioural policy are different.
Q-learning is an example of an off-policy method.

III. METHODOLOGY
The structure of this systematic literature review is primarily
based on the guidelines provided by [18]. The review studies
the use of data in control systems with a particular focus
on the development of data-driven methods for model-free
adaptive control. The literature review gives an overview of
the uses of data in control system frameworks, the timeline
and taxonomy of the development of controller designs from
model-dependent designs to model-independent designs,
reviews common adaptive control techniques and underlines
their strengths and weaknesses, discusses the limitations of
the literature, and indicates recent advances and emerging
directions.

To keep the narrative of the development on control tech-
niques from primitive stages to current control frameworks
concise, this study only includes common data-driven control
techniques and omits hybrid techniques used. The reviewed
methods are critically discussed to highlight both their appli-
cations and limitations. As summarised in the introduction
in Fig. 1, the three categories of data in control systems
are model design, controller tuning and policy derivation.
These are common in similar literature surveys [19], [20].
Other classifications include adaptive or fixed controllers, but
these topics have been discussed alongside model-based, and
model-free controllers as this literature review focuses on
adaptive controllers. Other characteristics on which control
systems are classified include switching mechanisms and
whether the control framework is a distributed system. The
use of historical data in improving model design includes
system identification and modelling of the stochasticity expe-
rienced by a plant. Methods considered for controller param-
eter tuning using data include Iterative Feedback Tuning
(IFT), Virtual Reference Feedback Tuning (VRFT), Correla-
tion Based Tuning (CBT) and non-Correlation Based Tuning
(nCBT). Literature on the use of data in feature selection used
in feedback control is pointed to. The primary focus of this
survey is the use of data in policy derivation. The model-
based techniques consider Model Predictive Control (MPC)
and its data-driven extension Data-driven Model Predictive
Control (DDMPC); Model-free Adaptive Control (MFAC)
techniques include Iterative Learning Control (ILC), Lazy
Learning (LL), Dynamic Linearisation Techniques (DLT)
and prominent RL based methods such as Deep Q-network
(DQN), Deterministic Policy Gradient (DPG), Deep DPG

(DDPG), Trust Region Policy Optimisation (TRPO), and
Proximal Policy Optimisation (PPO). This review points to
other intelligent control techniques such as Bayesian prob-
ability, fuzzy logic and evolutionary computation used in
control frameworks in Section IV, however, it focuses on
iterative learning-based methods which may or may not be
neural network (NN) based for model-free policy deriva-
tion techniques. Furthermore, the narrative is centred around
discrete-time control systems, given their predominance as
they are easier to integrate, have a lower computational cost
than continuous-time control computations, and have a more
comprehensive range of developed algorithms available to
solve problems of this nature [21].

The literature appraisal and selection process entailed
using the following search words: ‘Data-driven control’,
‘Model-free adaptive control using data-driven techniques’,
‘Data-driven model predictive control’, ‘Intelligent con-
trol’, and ‘Learning-based control’. Publications between
2011-2021 from peer-reviewed journals and conference pro-
ceedings were considered. It must be noted that the Back-
ground, Section IV, includes earlier works dating back to the
late 19th century. Furthermore, textbooks considered were not
restricted to the mentioned time frame.

Searches for literature on the aforementioned keywords
were performed in Google Scholar, Web of Science, IEEE
Xplore, Science Direct, Annual Reviews and Springer Link.
From the returned results after searching the aforementioned
keywords in the various databases, survey papers were first
perused and then other returned articles’ abstracts, intro-
ductions and conclusions were analysed. Articles that gave
insight on topics considered under data in control were read in
their entirety and included in this survey. Finally, only articles
written in the English language were only considered.

A. RECENT LITERATURE SURVEYS AND DEVELOPMENTS
ON DATA USED IN CONTROL SYSTEMS
Seminal literature surveys on data-driven methods for con-
trol methods were seen from the late 20th century. Table 1
highlights the main contributions and topics discussed in the
respective literature surveys conducted between 2011-2021
that are closely related to this review. These survey papers
were seeds in searching for literature included in this review.
The main contributions of this review are also included in
Table 1. This literature review aims to provide a single review
that can be referenced by both the robotics and automatic or
intelligent control communities to discuss the various uses of
data for optimal and adaptive control. Data in control for the
various topics such as controller tuning, and both NN based
and non-NN based frameworks have been reviewed [19].
Furthermore, this review provides an extension and contribu-
tion to developments since 2018 and provides a timeline and
taxonomy of both control frameworks, which are dependent
and independent of the model dynamics.

Data usage in both model-based and model-free frame-
works are respectively discussed in Section V and VII,
an overview of controller tuning using data-driven techniques
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TABLE 1. Overview of the recent literature survey papers on the development of data-driven control.

is given in Section VI, and emerging trends are presented in
Section VIII.

IV. BACKGROUND
From 1760 to 1840, society’s once agrarian-handicraft econ-
omy slowly transitioned to one dominated by mechanised
factory systems and machine tools, hence transforming soci-
eties to be more industrialised and urban. In modern history,
this transition period is known as the Industrial Revolution.
During the late 18th to 19th century, the industrial sector had
not only become fast-growing but had also initiated making
adaptations of the available technology. This initial progress
was shortly followed by analysing the designs of continu-
ously operating process systems to improve and optimise
their performance. Various attempts at maintaining accurate
control of these dynamical systems led to both practical and

theoretical development being done in the field of Control
Theory, as first proposed by [24]. The reader is referred to
the survey paper [25], [26] on the early progression of control
theory.

Control systems or control engineering is a discipline
that practically applies control theory to design systems
with desired behaviours in a given environment. Control
systems can be formally described as a device that gener-
ates autonomous behaviour through computation and actu-
ation [1]. Feedback systems are a particular process that may
form a part of control systems to improve the performance of
control systems by returning the output of the system to be
utilised as a part of the system’s input. Feedback controllers
were widely used in the early years of the 20th century
for voltage, current, and frequency regulation; boiler control
for steam generation; electric motor speed control; ship and
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aircraft steering and auto stabilisation; and temperature, pres-
sure, and flow control in the process industries [25]. As a
result, the controllers’ design were tailored specifically to
these applications. However, most of these controllers were
designed without a thorough understanding of the control
system’s dynamics and the actuating control device. This lack
of understanding was due to poor theoretical backing at the
time, with no common language to discuss these types of
problems. Fortunately, since the control systems applications
were simple regulations, the undeveloped theoretical rigour
was not detrimental. Although, there were more complex
mechanisms involving complicated control laws which were
being developed, such as the automatic ship-steering mech-
anism devised by Elmer Sperry in 1911, which incorporated
Proportional Integral Derivative (PID) control and automatic
gain adjustment to compensate for the disturbances caused
when the sea conditions changed [25].

During World War I (1914-1918), major developments
emerged in stochastic systems, including the fire control work
done by [27]. From 1935 to 1940, advances in the understand-
ing of control system analysis and design were being made by
several independent groups around the globe. However, the
beginning of the transition period leading to the formalisation
of modern control theory took form after the conference
on ‘‘Automatic Control’’ held in July 1951 at Cranfield,
England, and the ‘‘Frequency Response Symposium’’ held in
December 1953 in New York [28].

The wartime experience during World War II (1939-1945)
demonstrated the power of the frequency response approach
to the design of feedback systems and revealed the weak-
nesses of any design method based on the assumption of
linear deterministic behaviour. The two assumptions which
facilitate control algorithm design are: there is no human
interaction with the system, and precise knowledge of the
environment is known with which the system interacts [1].
However, these are not practical assumptions when consid-
ering industry scenarios. The nature of real systems are not
necessarily linear, real measurements contain errors and are
contaminated by noise, and in real systems, both the process
and the environment are uncertain. In order to have the best-
suited controller for the system, the design techniques to
be used should consider the following behaviours: linear
and nonlinear, deterministic and non-deterministic, and the
presence of noise or measurement error. In the 1980s, post
World War II, research had begun to make optimal feedback
logic more robust to disturbances and variations in the mea-
surements received from the systems [26], [29]. This research
topic has rapidly grown since its conception and is still a topic
of research to date.

The development of control system frameworks through
key historical events such as the Industrial Revolution, World
War I, and World War II highlighted the absence of system-
atic methods to handle hard constraints imposed on control
systems. This had resorted to ad-hoc methods, such as single
loop controllers augmented by various selectors. The birth
of MPC had brought about a means to accommodate the

requirement of having controllers take imposed constraints
into account. MPC has a predictive capability and can better
encapsulate dynamic characteristics of dynamical systems
than traditional PID controllers. In addition, adaptive control
techniques were developed to account for uncertainties or
adaptations of control systems, with these being either model-
based or data-driven approaches [19].

The evolution of controller objectives and designs are high-
lighted in this section. In summary, initially, control systems
performed predefined actions based on the system’s current
state response. However, this objective was satisfied by fixed
controllers as the understanding of control theory grew and
developed model-based techniques to encapsulate the system
dynamics better. Due to the complexities of the considered
plants, the possibility of accounting for disturbances brought
about the idea of model-free adaptive control. Essentially,
none of these methods is explicitly model-free as the system
dynamics are captured through various function approxima-
tion methods. These methods include traditional statistical
methods and learning-based methods.

Intelligent probabilistic and statistical methods include
fuzzy logic [30], [31], Kalman filters, particle filters [32],
[33], Bayesian optimisation [34], amongst others. Since the
conception of the fuzzy logic method, stability analysis of the
technique has been formalised, it has been applied in both
model dependent and independent control frameworks and
has been applied to problems in a range of industries [35]. The
reader is referred to the following surveys and applications
of this technique to control problems [36]–[39]. Although
fuzzy logic in control theory has shown success in several
applications, unfortunately, in some cases, its drawback limits
the application to control systems. Fuzzy logic drawbacks
include it not being considered a systemic approach to solving
problems, inconsistent performance, and significant training
and validation requirements. There are multiple applications
of Kalman filters to control problems, as reviewed in [40],
as they are computationally efficient in terms of memory use.
However, they assume that both the system and the obser-
vations are linear. Bayesian optimisation has been directly
applied to control problems and used an optimisation tech-
nique for hyper-parameter tuning. Bayesian optimisation is
sensitive to the parameters used, and the difficulty of estimat-
ing the Bayesian optimisation model is itself a drawback.

This literature review focuses on the development from
MPC, DDMPC, and learning-based model-free adaptive con-
trol techniques. These are further discussed in this section and
this paper.

A. MODEL PREDICTIVE CONTROL
MPC is a feedback control algorithm that uses the model
representation to forecast behaviours by solving an online
optimisation problem to select the most suitable control
action, such that the system being acted upon (plant or pro-
cess) is driven towards the desired target. This advanced
model-based process control method was born in the petro-
chemical industry in the late 20th century. This class of
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model-based control methods require an explicit dynamic
model of the plant to predict the impact of future actuations of
the control variables based on the feedback or output from the
plant. MPC is commonly known as Receding Horizon Con-
trol (RHC) as, in brief, at each discrete time step, the future
actuations to be applied to the plant are determined. This set
of actuations is obtained using the dynamic model, and at
each sampling time, the set of future actuations is updated
based on the updated feedback from the system. For details
on the early development of MPC, the reader is referred to the
survey paper [41]. MPC is a MIMO advanced process con-
trol method, whilst the PID controller is traditionally SISO,
however, has been extended and applied to MIMO systems.
Furthermore, the ability to acknowledge constraints and the
predictive capability of the MPC framework are seen as an
improvement and advantages in comparison to traditional
PID controllers. In contrast, PID controllers are model-free
in comparison to model-based MPC frameworks.

The statement made in [42] encapsulates the objectives of
MPC: ‘‘One technique for obtaining a feedback controller
synthesis from knowledge of open-loop controllers is to mea-
sure the current control process state and then compute very
rapidly for the open-loop control function. The first portion
of this function is then used during a short time interval,
after which a new measurement of the process state is made
and a new open-loop control function is computed for this
measurement. The procedure is then repeated.’’. This state-
ment guided the development of the family ofMPC controller
designs into mature techniques to tackle control problems in
the industry with a strong theoretical basis. The MPC model
was designed to solve multi-variable, constrained, infinite
horizon, and possibly nonlinear optimal control problems via
finite horizon solutions with a receding horizon implemen-
tation. These finite horizon solutions involve optimising the
objective function for the (finite) prediction horizon, where
the predictions are based on a mathematical model of the
dynamical system to be controlled in real-time. Some of
the most primitive work on MPC, which laid the founda-
tion of this field, and the applications of MPC in industry
include the description of successful applications of Model
Predictive Heuristic Control (MPHC) in 1978 [43] which wss
later known as Model Algorithmic Control (MAC), and the
outline of Dynamic Matrix Control (DMC) [44], [45]. Both
algorithms, MAC and DMC, make explicit use of dynamic
process model.

Having a theoretical foundation set up for MPC in the late
20th century, the early 2000s focus was on the development of
the MPC controller design to reduce orders of magnitude of
computation time to compute online optimisation efficiently.
Such real-time responses could be given to the technology
to which it was applied, thus requiring fast-sampling rates.
Initially, explicit MPC control laws were determined offline
to achieve speed up through a customised algorithm, which
proved to be orders of magnitudes faster than the generic
solver. However, as the horizon size or states and constraints

increased, the number of polyhedral regions scaled, making
the lookup task in a table difficult to implement in practice.
Hence, [46] proposed methods include a combination of table
storage and online optimisation, or simplifying the problem
by imposing equality constraints as proposed in [47], or using
approximate primal barrier interior point method adorned
with several customised features like fast Newton step com-
putation and a fixed barrier parameters as suggested in [48].
The online approach is imperative and provides an added
advantage of weighted parameters horizon size on model
parameters which can be changed as required, unlike explicit
methods where entirely new lookup tables would have to be
constructed.

Given the potential of MPC, it has been widely applied to
applications including fields of power electronics [49], [50],
data centre cooling [51]–[53] and unmanned autonomous
vehicles (UAVs) [54] amongst others. The reader is referred
to [55] for a detailed review on the development of MPC.
In Section V-A a detailed description of the MPC method is
given.

B. DATA-DRIVEN CONTROL
In recent years, information has been available in abundance.
For example, data or information recorded from plants have
been used to model system dynamics, design stochastic mod-
els representing noise [1], fine-tune controllers [20], and
derive the control law merely using I/O data and learning
methods [19], [20]. Control frameworks that use data-driven
approaches may be applied to model-based or model-free
systems and may use either or both online and offline data.
The definition of DDC varies throughout the evolution of
this field and in the literature. In some instances, DDC refers
to a model-free framework that use data with intelligent
algorithms to derive the control policy. In contrast, in other
instances, DDC refers to the general use of data in control
irrespective of the dependence of the framework’s depen-
dence on the mathematical model of the system [20]. In this
literature review, DDC is seen as the latter.

1) DATA-DRIVEN MODEL PREDICTIVE CONTROL
MPC is a powerful technique; however, its performance is
determined by the accuracy of the representation of the
dynamicmodel used and the assumption that there is no exter-
nal disturbance. It is not realistic to encapsulate the dynamics
of complex nonlinear systems in a model representation and
assume that there are no external interactions with the system.
Thus, DDMPC are studied, as they use data-driven techniques
to extend the MPC frameworks. Historical data from the
system is used to model the dynamics of the plant to be used
in theMPC framework [4], data-driven approaches have been
used to formulate stochastic MPC models to encapsulate the
uncertainty that the system endures to autonomously improve
the performance of repetitive tasks [1]. If system identifica-
tion is omitted and the control policy is determined solely
from the data or the feedback information, this method is
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commonly referred to as data-driven optimal control and can
forms a part of model-free frameworks.

Extension of the MPC framework using both unsuper-
vised and supervised learning techniques have been studied.
Unsupervised learning techniques include, clustering algo-
rithms [56], mixture Gaussian learning method to detect false
data points in a smart grid estimation framework [57], and
non-Bayesian learning for fast convergence [58]. Supervised
learning techniques utilised include applying regression [59]
in conjunction with online modelling methods to estimate
the mathematical model of nonlinear time-varying systems.
The reader is referred to [60] for the stability analysis of the
DDMPC framework.

2) DATA-DRIVEN CONTROLLER TUNING
In control systems with fixed controller architectures, data-
driven approaches have been used to fine-tune the controller
parameters. Some of the earliest works in this field include
the tuning of the PID controller [61]. Prominent iterative
methods for controller tuning include IFT and CbT. Non-
iterative methods include VRFT and nCBT. These methods
are discussed in Section VI.

3) LEARNING-BASED DATA-DRIVEN CONTROL
Adaptive control methods initially were designed for model-
based frameworks, which use the plant’s dynamical system
representation to make decisions whilst handling uncertain-
ties. However, the proposition of model-free learning-based
methods for adaptive control was seen as promising as it does
not rely on exact physics and mathematical modelling of the
considered system. Instead, the aim is to use learning-based
methods to iteratively adapt the control law, which better
encompasses dealing with the disturbances’ negative effects
and the effects of parameter variation. As much as this is a
method with potential, it comes with its drawbacks of slow
convergence and the possibility of not being able to interpret
the learned control law [62].

Model-free DDC control methods, which use learning-
based methods and data to derive the control law, may
be NN based or non-NN based. DLT, LL and ILC
[63]–[65] are a non-NN based methods. DLT is a DDC
method which is considered a fundamental tool for discrete-
time nonlinear systems [63]. LL is classified as a non-NN
based machine learning method. ILC is a learning-based
method that iteratively updates the control policy for repet-
itive tasks through successive iterations. Although first pro-
posed in 1978 [64], ILC had not drawn much attention as it
was published in Japanese. However, in 1984 [65] the work
was published in English. For more details on ILC, the reader
is referred to a survey [66] and various industrial applications
of ILC [67], [68].

Model-free DDC frameworks have become prevalent
amongst the control and robotics communities in the recent
past. Particularly NN based learning methods that have been
used to develop model-free DDC frameworks, which include

RL [7] and learning from demonstration (LfD) [69], [70].
RL approaches have shown the capability to realise the
optimal control; common methods or frameworks used are
Q-learning and Actor-Critic (AC) architectures. A compre-
hensive review of some of the earliest works in this field is
discussed in [71], [72]. Data-driven policy derivation meth-
ods are further discussed in Section VII.

The birth of RL can be attributed to the culmination of
trial-and-error search psychology in the animal kingdom,
Dynamic Programming (DP) and optimal value functions.
DP optimises the input trajectory by using a function where
the unknowns are also functions generated by the system’s
state information in conjunction with a value function [73].
However, the optimisation problem, once reformulated, could
potentially be intractable due to the curse of dimensionality.
This is a drawback of DP, hence the proposition of Approx-
imate DP (ADP) [74]–[76]. ADP approximates the control
policy by using an offline iteration algorithm or an online
update algorithm [77]. RL leverages one suchADPmethod to
solve for the optimal policy offline. The design of ADP may
take one of many forms that are dependent on the structure of
the agent.

RL was formulated with the aim of minimising the loss
function over time for dynamical control systems [78], [79].
RL, an area of machine learning, which was developed as an
optimal sequential decision-making method, is considered an
adaptive control algorithm as it can account for uncertainty
without having to be reliant on a finite number of formulated
stochastic models like in the DDMPC framework [22], [80].
Unlike MPC and DDMPC frameworks which are reliant on
mathematical models, RL is model-independent which is
advantageous, particularly for industrial processors that are
nonlinear or a MIMO system (possibly both), as it is not a
trivial task to model their complexities mathematically [81].
A drawback of MPC is that its performance is proportional
to the length of the prediction horizon. However, for more
complex systems, to ensure computational feasibility, the
prediction horizon is shortened, which could result in sub-
optimal results in the long-term [22]. In contrast, some RL
algorithms conquer this challenge by pre-computing the opti-
mal solution offline [23], [82]. Furthermore, unlike MPC,
RL does not have the online computational demands of tra-
jectory optimisation methods. The development of RL for
control systems discussed in [22], [23].

DDC methods have to date been applied to a number of
industries and applications, including power electronics [63],
[83], [84], data center cooling [85], [86] and UAVs [87]–[89],
amongst others.

In summary, this section gives the timeline and devel-
opment from primitive model-based control techniques to
current day model-free control techniques. The taxonomy of
this section is summarised in Fig. 3, which classifies methods
based on their dependence on a model of the system, the use
of data and if the controller tuning methods are iterative or
non-iterative.
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FIGURE 3. The development from model-based to model-free control or
both continuous-time and discrete-time methods. The methods are
classified based on their dependence on a system model, the use of data
and if the controller tuning methods are iterative or non-iterative.

V. MODEL-BASED CONTROL
Model-based control techniques, MPC and its data-driven
extension, DDMPC, are discussed in Section V-A and
Section V-B, respectively.

A. MODEL PREDICTIVE CONTROL
The main objectives of the MPC controller are to prevent
the violation of input and output constraints, maintain out-
puts within specified boundaries whilst propelling the sys-
tem to the desired reference trajectory, and control as many
process variables as possible with limited available sensors
or actuators [90], [91]. The basic structure of the MPC
framework is summarised in Fig. 4, and the correspond-
ing MPC trajectory for a SISO system is given in Fig 5.
The mathematical model representation, Dynamic Model,
of the considered process plant, Plant, is used in deter-
mining the future actuations to be applied to the plant over
a prediction horizon, Predicted Input Control, and
the corresponding predicted observed outputs, Predicted
Output. From the calculated control actions over the predic-
tive horizon, the first action on the Predicted Control
Input acts on the dependent variables as a means to account
for the changes caused to the system by independent vari-
ables. The predictive trajectory may or may not be followed
due to disturbances. Independent variables that the controller
cannot adjust are taken as disturbances, and dependent vari-
ables in these processors are other measurements that rep-
resent either control objectives or process constraints. Since
the MPC model follows an iterative process, as a result of the
inherent nature of feedback algorithms, the output after the
first input from the set of actions allocated over the prediction
horizon, Output, is fed back into the controller through
updating the Dynamic Modelwith respect to the reference
signal, Reference, the objective function, Objectives,

and constraints, Constraints. Based on the residual, the
difference between the measured output and the reference
set, the prediction horizon is re-initialised, and the next set
of control actions are determined. This process is executed
multiple times to try and get the system acted upon to
behave as desired. Formally, repeatedly solving a constrained
optimisation problem to choose the control action whilst
accounting for predictions of future costs, disturbances, and
constraints over a moving time horizon are known as the
RHC. The prediction horizon is iteratively shifted forward,
hence MPC is commonly known as the RHC method. The
idea of receding horizons dates back to the 1960s [42] and
was used to ensure constraints are satisfied, limits on control
variables and sophisticated feed-forward action are main-
tained. MPC’s predictive capability, ability to optimise over
the current horizon while accounting for the future, which is
obtained by the iterative optimisation over a finite horizon,
and take into account model constraints are some of its many
advantages [92]. However, the drawback ofMPC includes the
computational inefficiencies which arise due to MPC being a
complex algorithm. Hence the system dynamics scale [92]
and its dependence on the dynamic model of the system. The
cost, time and effort of capturing an accurate dynamic model
of systems are the largest obstacles in MPC [93], [94].

FIGURE 4. Block diagram of MPC architecture showing receding horizon
strategy.

The predicted control trajectory in an MPC framework
is iteratively updated at each instant t over the interval
[t, t + N ], where t is the current time, and N is the num-
ber of discrete future time-steps which is also known as
the prediction horizon length. The corresponding predicted
control inputs, û (t + k|t) for k = 1, . . . ,N , and outputs,
ŷ (t + k|t) for k = 1, . . . ,N , are determined based on the
plant’s dynamic model and the current state xt . From the set
of predicted actuations, only the first actuation is applied to
the plant. The plant’s state is then re-sampled, and the future
predicted trajectory is recalculated [95], [96].

The MPC relies on the discrete-time state-space model
of the plant to predict the plant’s future actuations over the
receding horizon, which is used in the design of the controller
and can be expressed by

xt+1 = Axt + But , (1)
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FIGURE 5. Discrete-time trajectory illustrating MPC and receding horizon
strategy.

and the corresponding measured output is given by

yt = Cxt , (2)

where A,B, and C are the discrete state-space plant model
dynamic matrices, u is the control input which is also known
as the manipulable variable, y is the measured output vec-
tor, and x is the state variable vector. The objective is to
find the control sequence that minimises the quadratic cost
function

J (u) =
N∑
k=1

(
xTk Qxk + uTk Ruk

)
,

s.t Q = QT
≥ 0, R = RT > 0, (3)

where Q and R are respectively the state and the con-
trol cost weight matrices. This objective function is sub-
ject to the linear inequality constraints on the system
inputs:

umin ≤ ut+k ≤ umax , k = 1, . . . ,N , (4)

1umin ≤ 1ut+k ≤ 1umax , k = 1, . . . ,N , (5)

where umin and umax respectively are the minimum and
maximum bounds of the control actions, and 1umin and
1umax are respectively the minimum and maximum control
increments.

This general MPC model can be reformulated to be more
realistic and include noise or be developed with an infinite
prediction horizon or terminal constraint for a more robust
model. The reader is referred to [55], [91], [97], for further
details on MPC models, to Table 2 for an overview of the

literature on the development of MPC and Table 3 for appli-
cations of MPC to control problems.

TABLE 2. Overview of MPC literature.

TABLE 3. Overview of MPC applications.

B. DATA-DRIVEN MODEL PREDICTIVE CONTROL
MPC’s potential is limited by the accuracy of the model
representation of the system and the available actuations.
DDMPC is an extension to MPC which aims to pro-
vide means to enhance the powerful MPC framework by
using data for system identification [1], [107], [108] and
encapsulate disturbances in the model of the plant through
data-driven stochastic model predictive control to satisfy con-
straints in the presence of uncertainty and achieve recursive
feasibility [1].

The step of model identification estimates the nominal
model of the system using data has been prominent for
linear systems, but more recently, system identification has
been studied for nonlinear systems [109]–[111]. The devel-
opment of data-driven stochastic MPC, used to encapsulate
disturbance in the model, is described by [112]–[115] are
summarised by [116].

DDMPC is an adaptive control technique that combines
themodel-basedMPCmethodwith data-driven learning tech-
niques. DDMPC extends on the MPC framework by learn-
ing from the trajectory data of the system at every time
step to construct a safety set which is used to learn in
which region of the state-space the system should operate
[4], [70], [116]–[118]. Although DDMPC is an extension of
MPC, it shares the drawback of MPC that this framework is
dependent on a mathematical model of a system, however,
the advantages of DDMPC is that it may be easier to model
the system and its uncertainties using data rather than through
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merely using physics, and is simpler to integrate into control
frameworks than MPC [119].

Applications of the DDMPC framework range from the
mechatronics [120] to home assistance appliances [121]. The
reader is referred to the following work [116], [122], [123] for
details on the guarantees of the robustness of the DDMPC
framework. An overview of the literature on DDMPC is
given in Table 4, and the applications of DDMPC to control
problems are tabulated in Table 5.

TABLE 4. Overview of DDMPC literature.

TABLE 5. Overview of DDMPC applications.

VI. DATA-DRIVEN CONTROLLER TUNING
Data-driven methods used to tune the parameters of fixed
controllers include IFT, VRFT, nCbT and CbT.

VRFT and nCbT are offline direct, non-iterative data-
driven methods used to optimise the controller. The optimal
parameters of the controller are thus identified using a single
I/O data set of the control plant. VRFT [133] and nCbT [134]
are both used to select the parameters of linear time-invariant
systems (LTIs). VRFT formulates the controller tuning prob-
lem by introducing a virtual reference signal for parameter
identification. However, the nCbT method does not introduce
a virtual signal and performs better than VRFT even if the
data is noisy as it uses a correlation-based approach.

Given that VRFT and nCbT are offline methods, if any
changes are made to the plant, the plant’s parameters must
be re-tuned. A drawback of VRFT is that its performance
relies on whether or not the system dynamics are sufficiently
encapsulated in the data set through the plant’s sensors. The
reader is referred to the following references on the extension
of VRFT: applications of VRFT for nonlinear systems [135]
which, in contrast to the linear implementation, is an iterative
method; an extension of VRFT for MIMO systems [136],
and the study of the robustness and other extensions of this
method [137].

IFT and CbT are iterative data-driven controller tuning
methods. IFT [138] is a model-free method which at each
successive iteration, optimises the fixed-structure controller’s
parameters using the feedback received from the closed-loop
system. This technique is suited to doing precise, repeti-
tive tasks. IFT applies the quasi-Newton method, which is
a gradient-based method that has its own drawbacks [139],
the convergence rate is reliant on how good the approxi-
mation is of the positive-definite matrix, and the method is
computationally demanding with respect to both storage and
computation [140]. CbT is a correlation-based tuning method
and is closely related to IFT. However, it differs with respect
to the means of obtaining the gradient estimates, and CbT
only uses one experiment per iteration. The reader is referred
to the following references [141], [142] on the extension of
CbT to MIMO systems.

A summary of the controller tuning methods are tabulated
in Table 7 and the literature on the tuning of controller is
tabulated in Table 6.

TABLE 6. Overview of literature on data-driven controller tuning
techniques.

VII. MODEL-FREE CONTROL
MFAC [145], as the name suggests, do not require precise
quantitative knowledge of the system. This DDC method
has been favoured as it simply uses online or offline I/O
data measurements of the controlled system to determine
the control policy and has the potential to adapt to environ-
mental changes or disturbances [146], without the explicit
use of parametric or non-parametric models of the system
to be controlled during adaptation [20]. Properties of MFAC
include not requiring system identification, controller tuning,
controller design specific to the process and an exact mathe-
matical model representing the system’s dynamics (including
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TABLE 7. Overview of data-driven controller tuning techniques, distinguished based on the use of online and offline data, if the method is iterative or
non-iterative, applicable to fixed or adaptive controllers, and if the controller tuning method is suitable for linear or nonlinear systems.

nonlinear dynamics). In addition, closed-loop stability anal-
ysis is available to guarantee stability [146].

Given the many advantages of model-free adaptive con-
trollers, the potential of extending their capabilities to various
applications in the automatic control industry is currently
being studied and applied. An example includes model-free
adaptive controllers directly replacing PID controllers used
in SISO systems, with the advantage of omitting the step of
controller tuning [146]. MFAC framework being applicable
to MIMO systems is a characteristic that is both attractive
and the reason behind the attention these frameworks are
currently receiving.

A summary of the advantages of the data-driven learn-
ing methods for policy derivation discussed in this section
includes that they do not rely on the exact physics and
mathematical modelling of the considered system and can
adapt the control law, which better encompasses dealing with
the disturbances’ negative effects and the effects of parame-
ter variation. However, irrespective of the potential of data-
driven control methods for policy derivation, they come with
the drawbacks of slow convergence and the possibility of not
being able to interpret the learned control law [62].

A comparison table is presented in [20] on the classifica-
tion of various control methods based on the following char-
acteristics: whether or not either or both online and offline
data are used, the system is suitable for SISO or MIMO
systems, if the design encapsulates nonlinearmodel dynamics
or only LTI systems, whether or not the optimal policy is
iteratively updated or directly learnt from a single data set,
if the RL algorithm is an on-policy or off-policy algorithm,
whether or not the algorithm is NN based or not, and their
respective computational demands.

A particular distinction between model-free control tech-
niques is whether or not the technique is NN based.
Non-NN based and NN based techniques are discussed in
Section VII-A and Section VII-B, respectively.

A. NON-NEURAL NETWORK BASED METHODS
Prominent non-NN based methods used in policy deriva-
tion include DLT, ILC and LL, which are discussed in
Section VII-A1, Section VII-A2 and Section VII-A3
respectively.

1) DYNAMIC LINEARISATION TECHNIQUES
Earlier work on MFAC studied the application of DLT for
discrete-time SISO nonlinear systems [145], [147]–[150].

Given that this is a model-free framework, a sequence of
identical local dynamic linearisation data models were built
along the closed-loop system’s dynamic operation points
using a DLT, with a pseudo-partial derivative (PPD). The
I/O measurement data of a controlled plant is used to esti-
mate the time-varying PPD, which is iteratively updated. The
DLT includes compact-form dynamic linearisation (CFDL),
partial-form dynamic linearisation (PFDL), and full-form
dynamic linearisation (FFDL). The reader is referred to
[146], [150] for details on these methods, for which stability
and convergence can be proven under certain assumptions.
Most of these methods have been designed for SISO non-
linear plants; however, they cannot be directly extended and
applied to MIMO systems without addressing input cou-
pling. These are discussed in [150]–[152]. These methods
are favourable as they do not require external training or
testing. However, their computational burden and the imprac-
tical assumptions made to prove stability and convergence
discourage them from being used.

2) ITERATIVE LEARNING CONTROL
ILC [64], [65] is well-suited for systems that perform repet-
itive operations through the tracking of output errors and
tracks actuations from previous iterations. ILC guarantees
convergence as the number of iterations approach infinity.
ILC is a model-free data-driven adaptive control method that
requires very little knowledge of the plant and uses both
online and offline data to directly determine and update the
control policy. The reader is referred to the following litera-
ture surveys on ILC [67], [153]–[157].

Critically reviewing the ILC method, it is highlighted that
the performance of thismethodwith respect to convergence to
the desired trajectory relies on unrealistic assumptions, mak-
ing it an unrealistic method to apply to plants with significant
uncertainty [158]–[161].

3) LAZY LEARNING
LL is a class of supervised machine learning algorithms that
was applied to the control field [162]. LL was developed
to build a relationship between the input and output data.
Historical data is used as the training set. In addition, LL algo-
rithms use online data for real-time updating. Examples of
LL methods include K-nearest neighbours, local regression
and lazy naive Bayes rules. LL is a powerful technique.
However, its computational cost is high, a requirement for
large amounts of training data, the impact that noisy training
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data has on the training phase, and the lack of theoretical
analysis are drawbacks [163].

B. NEURAL NETWORK BASED LEARNING
NN parameterised model-free adaptive controllers use NN
structures to implicitly represent the system’s dynamics. The
development of NN based optimal control techniques are
commonly classified as RL for optimal control, event-based
control, signal processing, machine intelligence for control
and intelligent control, amongst others.

NNs are used inMFAC by creating a multilayer perceptron
NN with weight factors updated as the controller’s behaviour
varies. The adaptation of the weighting assists in iteratively
reducing the error value. The ‘memory’ characteristic of the
controller is valuable and provides adaptive characteristics
which make them suitable for learning-based techniques.

RL, derived from neutral stimulus and reaction, is a
machine learning method that envelopes both supervised and
unsupervised learning. The increased popularity of RL algo-
rithms is attributed to their success in addressing sequen-
tial decision-making problems [17]. RL algorithms aim to
develop agents to learn how to take favourable actions in an
environment to maximise the notion of cumulative reward.
RL methods are particularly used when the state-action space
is too large to be completely known but can use some experi-
ence samples, or when the model is unknown but experiences
can be sampled to determine a policy. RL use NNs to approx-
imate this policy function or a value function.

The three methods used in RL to determine the optimal
policies are Dynamic Programming (DP), Monte Carlo (MC)
methods and Temporal Difference (TD) methods. From these
three methods, DP is mathematically well established but
is model-based, MC method is model-free but does not use
online data, hence updating the estimate of the value policy
happens at the end of the episode [164], [165]. Whilst, the TD
method is model-free and is implemented using online data
that can be used to update the value function.

1) Dynamic Programming:Given that themodel precisely
encapsulates the plant dynamics, DP can deterministi-
cally find the optimal policy, however, it is unrealistic
to expect an accurate model of the non-trivial systems.
Popular DP methods include policy iteration and value
iteration methods [23], [73].

2) Monte Carlo Method: MC finds the optimal policy
by estimating the average returns for different poli-
cies by sampling multiple sequences of states, actions
and rewards under the determined policy. MC is most
suitable for systems that have finite tasks with explicit
terminal states [23], [166].

3) Temporal Difference: TD method is widely used in
RL as it has a relatively cheap computational cost and
can learn from experiences (like MC methods) with
bootstrapping (like DP methods). Furthermore, TD is
a model-free method and instead learns the dynamics
from interactions with the system. Another favourable
characteristic of TD is that it does not require waiting

until the end of a training episode to update the value
function [23], [167].

Adaptive Dynamic Programming (ADP) [74], [75],
an extension of DP and an optimal control scheme [168]
which is suitable for linear plants with quadratic objec-
tive functions over an infinite horizon. This method can be
extended to nonlinear plants, models with different cost func-
tions, and systems defined for finite horizons. The reader is
referred to the following literature surveys for the develop-
ment of ADP [169], [170]. The application of NNs to DP
problems was proposed to derive the value function, such that
the framework is model-free and robust to disturbance. ADP
is a TD learning method that updates the current estimate of
the value function at either each or over a few iterations rather
than at the end of a full episode [167]. This is an attractive
characteristic as updates do not only occur at the end of
an episode. Some prominent ADP NN based schemes with
an adaptive critic structure include Q-learning [171]–[174],
SARSA [164] and AC methods.

DP, in a deterministic fashion, finds the optimal policy,
however, it is model-based and computationally demanding
for complex tasks. Asynchronous or offline DPmethods have
been developed, however, they perform poorly when less
common states are encountered. Both TD and MC approx-
imate DP solutions using less computational power and are
model-independent. The MC method finds the optimal value
by averaging the value function over the sample trajecto-
ries of states, actions and rewards, unfortunately, the vari-
ance in the samples trajectories are high. TD combines the
ideas of DP and MC methods into one unifying algorithm.
TD methods learn from sampled data like in MC methods,
while also performing mid-trajectory learning, like in DP,
however, TD methods experience high bias due to estimating
values through previously estimated values which is com-
monly referred to as bootstrapping. For a comprehensive
introduction to these methods, the reader is referred to [17].
A summary of these methods’ characteristics are tabulated in
Table 8.

Data-driven optimal control is where RL meets control
theory. The controller is designed using input-output data
from the system, which is passed through NN based con-
trol methods or intelligent methods, commonly referred to
as ‘black-box’ approaches, which implicitly learn the sys-
tem’s dynamics. In contrast to model-based control sys-
tems, explainability, robustness and stability provided by
deterministic models are not provided or are currently
being studied [20].

RL methods commonly model the problem as a Markov
Decision Process (MDP). MDP is a multi-stage discrete-time
representation of the stochastic optimal control problem and
a classical formulation of sequential decision making where
both immediate and future rewards are considered [17], [175].
MDPs can be expressed as a tuple 〈S,A,P,R, γ 〉, where S
is the set of states s,A is the set of actions a,P is the set
of state transition probabilities p,R is the set of rewards r,
and γ is the discount factor accounting for all rewards, where
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TABLE 8. Overview of RL methods, adapted from [23].

γ ∈ [0, 1] [176]. The set of states and actions are specific to
time t , hence at any given time t a set of states st is a subset of
S and similarly for actions, state transition probabilities and
rewards. The reader is referred to [17], [23] for details on the
three differentMDPs: fully observableMDPs (FOMDP), par-
tially observable MDPs (POMDP) and semi-MDPs (SMDP).

The RL paradigm, as shown in Fig. 6, consists of two
components, the agent and the system. If compared with
the closed-loop controller depicted in Fig. 2a, it is noted
that the controller is simply replaced with an agent in the
RL paradigm. The agent which is the the decision-maker
is continuously learning and updating its policy. The agent
attempts to learn and conquer the system through meaning-
ful sequential interactions with the system. The system is
comprised of everything the agent cannot arbitrarily change.
Relating to the overview of process control, Fig. 2a, the agent
would be the controller’s logic, and everything else would
make up the system. RL algorithm’s decision-making process
is formalised in the MDP.

The optimal solution to a RL problem refers to the policy
that generates the highest reward over a trajectory. Formally,
the optimal policy must satisfy the principle of optimality
which is defined as: the optimal policy π∗ is optimal if and
only if V π∗(s) ≥ V π 6=π

∗

(s) for all s ∈ S [177].

FIGURE 6. RL under MDP framework [17].

Two main model-free methods used in RL algorithms are
value-based and policy-based methods. AC approaches are
hybrid approach that employs both value functions and policy
searches [127].

1) Value-Based Methods: Value-based methods do not
store an explicit policy but rather a value function
from which the policy can be implicitly obtained. The
value function V returns the expected value of the
return R of being in an initial state s and subsequently
following the policy π , is defined by the state-value

function as follows

V π (s) = E [R|s, π] . (6)

The optimal state-value function is the corresponding
state-value function for the optimal policy π∗, defined
by

V ∗(s) = max
π

V π (s) ∀ s ∈ S. (7)

Using V ∗(s), the optimal policy could be derived by
choosing all the actions available at st and selecting the
action a that maximises Est+1∼τ (st+1|st ,a)

[
V ∗(st+1)

]
.

The transition dynamics τ is not available, hence the
state-action function is constructed. The state-action
function returns the expected value given the initial
action a and the policy π is subsequently followed
from the initial state, the state-action value function is
defined as

Qπ (s, a) = E [R|s, a,π] . (8)

Given the state-action value functionQπ (s, a), the opti-
mal policy can be retrieved by greedily choosing the
action with the highest value. Under this policy, the
value function can be defined by maximisingQπ (s, a):
V ∗(s) = max

a
Qπ (s, a) [178].

Prominent value-based methods are SARSA and
Q-learning. Value-based methods are best suited for
when using a finite set of actions, rather than contin-
uous action space problems.

2) Policy-Based Methods: Policy-based methods directly
learn the optimal control policy π∗ and do not need to
maintain a value function model. Frequently, a param-
eterised policy with respect to θ , πθ is chosen. The
parameter are selected to maximise the expected return
E [R|θ ] using either gradient-based or gradient-free
optimisation [178]. Successfully trained NNs with
encoded policies are discussed for both gradient-based
methods in [179] and gradient-free methods in [180].
Policy-based methods are discussed in detail by [181].
Policy-based methods are useful when the action space
is continuous or stochastic. One disadvantage of policy-
basedmethods is that they use theMC technique, which
uses the total rewards. As a result, the agent has to
traverse an entire episode before any learning occurs,
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which potentially results in a high variance when there
are drastic changes.

3) Actor-Critic Methods: AC method, shown in Fig. 7,
combines the benefits of learned value functions
and policy search methods. The AC methods are
TD methods with two independent memory struc-
tures representing the policy and the value function.
The actor-network determines how the agent behaves
(policy-based) by proposing a set of possible actions
given a state. The critic-network measures how good
the action taken is (value-based) and returns the proba-
bility distribution over the actions that an agent can take
based on the given state. AC methods are TD learn-
ing methods that do not use the total reward. Instead,
a critic model approximates the value function at each
discrete time-step, unlike policy-based methods based
on MC, which increases the learning rate. The values
function replaces the reward function of a policy gradi-
ent algorithm that calculates rewards at the end of the
episode [178] and instead updates the value function
within the episode.
AC is an on-policy method with two separate paramet-
ric structures represented byNNs, the actor-network for
optimal policy evaluation and the critic-network for the
value function. The actions taken by the agent or the
actor-network are evaluated by the critic, which repre-
sents the reward function, and the objective function
using the TD approach [165].

FIGURE 7. Actor-critic structure based on [165].

Q-learning and AC methods are prominently used
methods in data-driven learning-based MFAC control
systems. Q-learning [182] is a RL method that aims
to learn the value of applying an action in a par-
ticular state. Q-learning is particularly considered an
adaptive control method based on its inherent prop-
erties of stochastic transitions and rewards without
adaptation. Q-learning is formulated as a finite-state,
finite-action MDP, which derives the optimal policy
by maximising the expected value of the total reward

over a series of successive iterations. Q-learning and
Deep Q Network (DQN) are off-policy methods with
a slow convergence rate but high efficiency. Unlike
the value-based method, Q-learning and AC meth-
ods guarantees convergence for nonlinear methods,
have a reduced variance estimate of the expected
value, and their sampling is efficient via the TD
updates [165].

RL algorithms use the three aforementioned methods,
DP, MC and TD, to solve for the optimal policy cou-
pled with value-based, policy-based and AC methods.
DQN [183], Deterministic Policy Gradient (DPG) [184],
Deep DPG (DDPG) [185], Trust Region Policy Optimisation
(TRPO) [186] and Proximal Policy Optimisation (PPO) [187]
are major contributions to the field of RL and have been
widely applied to control systems in determining the optimal
policy. A summary of the characteristics of these RLmethods
is described in Table 10. The reader is referred to the follow-
ing reviews on RL methods [19], [22], [23], [188].

A summary of the properties of the MPC method and an
array of the data-driven optimal control methods are tabulated
in Table 9, a summary of notable related literature on DDC
for MFAC is given in Table 11, and Table 12 tabulates the
learning-based data-driven applications.

VIII. EMERGING TRENDS
The ultimate goal of automated control would be to develop a
uniform data-driven framework that is based solely on the I/O
measurements and is widely applicable to various industries.
RL and deep RL do hold promise in this regard; however, they
are still in their infancy to obtain this for complex systems.

In this survey, the use of data in control frameworks is
studied. From the literature, it is seen that model-based tech-
niques have been extensively studied and applied. However,
model-free methods are still in their embryonic stage, espe-
cially given the limited theoretical analysis. More recently,
complementary model-based and data-driven control frame-
works like DDMPC, data used in the study of controllers,
system identification, and uncertainty modelling have been
prominent over modular methods. The gap in the literature
is the application and development of multi-scale and hier-
archical learning structures, such as using learning methods
alongside model-based controllers or pre-processed offline
data, which could be used in feature extraction. Furthermore,
the literature on the handling of uncertainty does not account
for irregularities such as time delays or feedback over varying
time intervals but only noise in measurement.

It is highlighted that the development of the theoretical
analysis of model-free methods has not been established.
Stability, robustness and convergence guarantees are nascent
properties in process control. However, proving stability for
nonlinear systems and for model-free frameworks [7] is
not trivial. Challenges to prove stability and convergence
under stochastic conditions include proving effectiveness in
terms of performance, learning rate and utilised reward func-
tion [17], [164]. This is one of the main challenges with RL.
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TABLE 9. Overview of the characteristics of control methods. The methods are distinguished based on their dependence on a dynamic model of a system,
the use of online or offline data, in what regard is the method using the feedback information, whether the controller is fixed or adaptive and if the
control method is suitable for linear or nonlinear systems.

TABLE 10. Overview of RL algorithms used for control systems.

TABLE 11. Overview of literature on DDC for MFAC.

Recent works on theoretical analysis the formalisation and
analysis include [5], [126], [126].

Several other areas of improvement of RLmethods include
accounting for data inefficiency, constraint handling, means

TABLE 12. Overview of model-free learning-based data-driven
applications.

to discourage policies from arriving at intractable states, and
the construction of representative simulators. Data ineffi-
ciency refers to the requirement of lengthy periods of training
data to improve the efficiency of a policy derivation and initial
agent training, especially if simulators cannot be used in the
training process due to their inaccuracies. Emerging fields
used to try and inject prior knowledge into the agent include
transfer learning [207], [208], including the concept of a
replay buffer or experience replay [183], [209], [210] as used
by DQN, and increasing learning efficiency using eligibility
traces which essentially combines TD and MC methods into
unifying algorithmwhich allows for agents to updatemultiple
value functions per iteration, like MC, without termination
of an episode [17]. Alternative methods to increase the rate
of the training process includes exploiting heuristics for RL,
such as heuristically accelerated RL (HARL) [211], [212]
and meta RL [213]–[215] which use simulations to train
the agent; RNN is a common algorithm used in this regard.
Finally, alternative methods suggest using twomodular struc-
tures instead, one for offline decision making and another for
online high-level RL.

Another critical challenge of using RL in process control
is scalability. Emerging trends include using multi-agent RL
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methods [216] and LfD [4]. Since exact methods are not
feasible for problems with more than 100 states [23], [183],
[186], [210], recent work with numerous states have used
multi-agent RL to achieve optimality [217]. Q-learning and
other deep RLmethods have been useful for various industrial
applications.

The promise of RL agents in a plethora of industries can
be unlocked with the development of robust and good agents.
The objective of RL algorithms is to develop an agent to
take actions to maximise the cumulative reward. The training
process of these agents requires a high volume of trial-and-
error episodes in a given environment to optimise for the
given reward function. In the light of safety and being cost-
conscious, high fidelity simulators are nascent, especially
to derive research on the development of RL-based algo-
rithms [218]–[222]. With the increase in computing power
and the availability of vast amounts of data developing sim-
ulators that apply a mathematical function to input data and
returns an output is possible. Some commonly used simula-
tors includeMATLAB Simulink and ANSYS for engineering
problems, Gazebo and MuJoCo for robotics and physics-
based simulations, Bottleneck simulators which are model-
based RL simulators that have also been proposed [223],
amongst others.

Extensions to simulators include digital twins [224]–[226].
Digital twins provide a virtual representation of the real-time
digital counterpart of physical systems or processors. A digi-
tal thread is a data pipeline used to obtain data through sensors
from the design stage to build and, finally, the operation of the
physical system or end product. This obtained data is then
feedback to the digital twin. Using the amalgamation of the
information from the digital thread with the digital twin, per-
formance information can be extracted, and credible updates
made can then be applied along the design, production, and
end product or system stages. Thus, a means to holistically
optimise the end-to-end process. Both manufacturing and
engineering industries are moving from using knowledge-
based intelligent processes to data-driven, and knowledge-
enabled smart processes [227], [228]. The former has been
used for informed decision making, whilst the latter uses real-
time transmission and analysis of data across the end-to-end
process with the aid of simulators and optimisation mech-
anisms, providing positive impacts throughout the process.
These techniques are used to improve the performance of end-
to-end cycles of engineering or manufacturing but also are
suggested to be used to build resilient models by incorporat-
ing preventative measures that account for disruption risks.
These frameworks make use of cyber-physical integration
and digital twins. The reader is referred to [208] for manu-
facturing applications using digital twins and cyber-physical
systems, [229] for the discussion of managing disruption
risks, and [230] for a survey on digital twins technologies,
techniques and engineering perspectives.

Through the evolution of controller frameworks, NN-based
techniques have particularly been prominent for MFAC.
These NN-based control policy derivation techniques have

been critically discussed in this review. Their black-box
nature, in most cases, provides an improvement to the control
method and thereby, the system performance, however, they
lack in providing insight into the updates and development
made through the stages of training and adaptation. The need
for white-box models or techniques which are explainable
and interpretable in both design and inner logic is crucial
to unleashing further enhancements in controller designs
to make context-based recommendations and to increase
user trust through transparency [231]–[235]. This area of
research is commonly referred to as Explainable Artificial
Intelligence (XAI).

A summary of references related to emerging trends are
given in Table 13.

TABLE 13. Overview of literature on emerging trends.

IX. CONCLUSION
The development of model-based predictive control to data-
driven control techniques is motivated by eliminating the
step of mathematically modelling plants, especially nonlinear
complex ones, to develop policies robust to disturbances
directly from I/O data and to use data to fine-tune fixed design
model-based controllers.

It is highlighted that model-based frameworks are
restricted to the accuracy of the mathematical model rep-
resenting the plant. However, if the model accurately rep-
resents the plant, the model-based framework with fixed
controllers is robust. The paradigm of learning the control
policy directly from the feedback signal has been promi-
nent in the recent past as it discards the requirement of
modelling the physics of the plant but, as a result, has
to explore a greater search space in deriving the optimal
policy.

In this review, the taxonomy and timeline of data-driven
control techniques were given, the corresponding references
have been summarised in the respective sections. It is noted
that there is an overlap of studies between the control and
the RL communities working on developing robust adaptive
optimal policies using online I/O data from the controlled
plant. Drawbacks of these methods include having to opti-
mise weight functions, parameters and other coefficients of
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the learning functions to improve the performance of these
methods. These methods are powerful and hold promise, but
their potential is restricted by the limited theoretical analysis
of convergence, stability and robustness.

Future research in this field would focus on providing the
theoretical analysis for the RL based methods, constructing
high fidelity simulators which in turn would be a catalyst in
the development and research in this field, providing insight
to learning-based black-box techniques such that they are
interpretable and explainable, commonly referred to as XAI,
as well as optimising the end-to-end process of developing
and actualising control frameworks with the aid of digital
twins and digital threads. Thus, with the ultimate goal of
developing a uniform framework that can be used for adaptive
optimal control across various applications; a framework that
is independent of controller tuning and system identification.
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