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ABSTRACT We present an RGBD infant head reconstruction method with a mobile phone depth sensor on
a novel dataset. Acquiring 3D models from infants enables many important medical tasks such as automatic
cranial asymmetry classification for plagiocephaly therapy progress estimation. Existing methods for 3D
infant head reconstruction employ synchronized multi-view configurations or hand-held laser scanning
methods making their widespread employment difficult. In contrast, RGBD reconstruction methods either
rely on static scenes failing on this task due to rapid infant head movements or employ dynamic methods
lacking the high fidelity surface reconstructions required for accurate cranial measurements. We propose a
domain-specific 3D reconstruction method augmenting static RGBD methods focusing on the rigid parts of
the head and exploiting scene knowledge about the data acquisition methodology. We evaluate our approach
using provided ground truth anthropometric measurements of the biparietal diameter and report competitive
accuracy.

INDEX TERMS Anthropometry, RGBD reconstruction, segmentation, structure from motion.

I. INTRODUCTION
Starting in the early 90s, it is recommended that infants
sleep on their backs to mitigate the Sudden Infant Death
Syndrome (SIDS) [1]. While keeping their infants on their
backs successfully reduces the risk of SIDS [2], studies hint
at an increase in an infant’s head shape deformation (plagio-
cephaly), favored by a homogeneous sleeping posture [3],
[4]. Plagiocephaly refers to the medical condition of the
skull deformation caused by persistent external directional
forces [5]. Studies indicate that 37 to 46 percent [6], [7] of
the infants 7 to 12 weeks of age suffer from plagiocephaly.
While plagiocephaly can be successfully treated, unaddressed
plagiocephaly can lead to a multitude of risk factors for the
infant [8]–[12].

Common treatments are repositioning strategies [13],
physical therapy [13], and cranial remolding orthoses [14].
During treatment, the therapy progress (i.e. the state of
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the infant’s skull deformation) is supervised by medical
experts, using specialized measurement tools, such as skull
calipers [15], laser scanners [16], or multi-view 3D camera
setups [15]. The listed tools require additional hardware,
a trained operator and are potentially uncomfortable for the
infant. For these reasons, a ubiquitous measurement method
for therapy progress tracking that could even be used by
untrained personnel such as the infant’s parents would be
desirable.

In this work, a 3D infant head reconstruction method
and cranial asymmetry measurement method using a mobile
phone is proposed. The advent of 3D sensor-equipped mobile
phones such as the iPhone TrueDepth camera [17] enables
widespread 3D reconstruction and measurement applications
such as room measurements for interior design preview and
object reconstruction.

The task of 3D infant head reconstruction comes with
several challenges: Due to the sensitive data and the recent
availability of phones equipped with depth sensors, publicly
available data sets are hard to come by. Next, reconstructing
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FIGURE 1. Overview of the proposed pipeline. The line segments depicted in the cross-section of node ‘‘Asymmetry
Measurement’’ are color-coded as follows: AP (green), BP (violet), DIAG1 (blue), and DIAG2 (orange). The circumference is
colored red.

FIGURE 2. Key landmarks and reference plane (x-y plane). The red points
denote keypoints that are used to compute the reference plane
following [19], [20]. Blue points denote keypoints that are used by other
methods [15].

an infant’s head with an RGBD sequence is hard due to
the uncooperative behavior of the subject. Single-sensor 3D
reconstruction methods can be simplified considerably when
the reconstruction target is rigid and stationary [18]. Both
assumptions do not hold when trying to reconstruct the head
of an infant due to non-rigidity in the face area arising from
facial expressions and sudden rapid, uncontrolled bodymove-
ment of the infant. Additionally, the resulting 3D models
often suffer from 3D artifactsmaking automaticmeasurement
extraction challenging. In contrast, cranial vault measure-
ments are performed on the rigid part of the human head
which could be significantly easier to reconstruct.

Our contribution is twofold. First, we record 8 RGBD
sequences, spanning a variety of infant heads with different
head asymmetries. For each subject, cranial measurements
were recordedmanually by experts using specialized calipers.
Second, we extend state-of-the-art RGBD reconstruction
methods to generate 3D shapemodels of the head, without the
aforementioned inconvenience and effort of existing methods
for supervision.

II. RELATED WORK
A. MEASUREMENT TECHNOLOGIES
Direct methods for cranial vault asymmetry measure-
ments are conducted by an expert using a caliper [15].
In contrast, a multitude of digital methods have been

proposed. Plank et al. [20] use a non-invasive laser shape
digitizer to extract a 3D shape model. Scan acquisition was
conducted by putting a stockinet over the head of the infant.
Meyer-Marcotty et al. [19] employ a non-invasive 3D scan-
ning solution consisting of five synchronized depth sensors
with an infant situated in the center. Jelinek et al. [21] use
magnetic resonance imaging (MRI) and extract the rele-
vant cross-sections to determine the cranial vault asymme-
try. Skolnick et al. [15] compare direct caliper measurements
with digital photogrammetric measurements.

Digital methods define a coordinate system constructed
from key anatomical landmarks (depicted in Fig. 2). The x-y
plane is denoted as the reference plane. A measurement plane
is constructed parallel to the reference plane by offsetting
the reference plane in the z-direction. Different methods
to determine the offset are used: Meyer-Marcotty et al. [19]
choose the offset in such a way, that the head perimeter is
maximized. Plank et al. [20] determine the vertex height with
respect to the reference plane and set the measurement plane
offset to 0.3 times the vertex offset. A pair of diagonals within
the measurement plane is constructed (see Fig. 1) and their
lengths are used to determine the cranial vault asymmetry.

B. IMAGING SENSORS
In the family of digital 3D measurement methods, camera-
based sensors are low-cost and ubiquitous. In this con-
text, three sensor modalities are discussed in the context
of 3D shape reconstruction: Synchronized multi-sensor net-
works, single moving RGB sensors, and single moving
RGBD sensors.

Synchronized multi-sensor reconstruction methods are
among the most accurate solutions. Because all data is
acquired at the same time, even moving and deforming
objects can be reconstructed on a frame-by-frame basis.

A singlemoving camera is among themost accessible solu-
tions because every modern smartphone is equipped with a
camera. Structure-from-motion (SfM) algorithms can deliver
3D reconstructions in this sensor setup but require sufficiently
textured objects to estimate the camera trajectory reliably.
While this is not an issue in the facial area, the missing
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texture near the scalp is a challenging area to reconstruct
with RGB data only. To overcome these challenges, Barbero-
García et al. [22] employ a textured cap using an off-the-shelf
tool for a photogrammetry pipeline.

Active RGBD sensors can address this issue by addition-
ally providing range information for most pixels by e.g.
projecting infrared dot patterns on the target [23]. Addi-
tional challenges stemming from varying facial expressions
and sporadic head movements have to be addressed by the
employed 3D reconstruction method.

C. RGBD 3D SHAPE RECONSTRUCTION
A large body of work exists for RGBD 3D shape reconstruc-
tion. Reconstruction methods can be divided into static scene
reconstruction and dynamic scene reconstruction. In the
seminal work by Newcombe et al. [24] the KinectFusion
algorithm is proposed enabling real-time surface reconstruc-
tion without using any color information. The sensor pose
of an incoming frame is obtained via the iterative clos-
est point (ICP) method using all depth data from earlier
frames. Registered frames are integrated into a global scene
model encoded with a truncated signed distance function
(TSDF) [24] by converting each depth frame into a projective
TSDF and aggregated with weighted running averaging.

A plethora of extensions for KinectFusion have been devel-
oped [18]. Dai et al. [25] employ sparse SIFT keypoints [26]
in conjunction with dense correspondences in a global bundle
adjustment objective to improve global model consistency.
An involved correspondence filtering and dense verification
step is performed. The current scene model is encoded using
a TSDF and a feedback loop back into the correspondence
estimation step is set up resulting in high-quality surfaces
with robust camera tracking.

In contrast, dynamic 3D scene reconstruction meth-
ods model the surface deformation of objects in the
scene [27]–[29]. Zollhöfer et al. [18] review the literature on
the topic and classify dynamic 3D scene reconstruction as
inherently ill-posed, and identify the increased number of
unknowns, fast motions and real-time performance. Addi-
tional prior knowledge of the object class can improve the
dynamic shape reconstruction process. Hesse et al. [30], [31]
use a modified version of the statistical human shape model
SMPL [32] to recover a watertight mesh from an RGBD
sequence of an infant lying on an examination table and
undergoing rapid body movement. The baby is segmented by
exploiting the controlled recording setup and fitting a plane
to the table.

Given that the skull is rigid and the additional difficulties
that entail the employment of dynamic 3D scene reconstruc-
tion methods, we instead leverage static 3D scene recon-
struction methods segmenting the rigid parts of the baby
head and estimating the camera trajectory not with respect
to the static parts of the scene but the rigid moving head
shape. We drop the real-time performance aspect to simplify
the algorithm design process leaving real-time capabilities
to future work. Our approach draws from [25], injecting

FIGURE 3. Mask refinement via OpenPose landmarks: OpenPose body
landmarks (left) and facial landmarks (right) are depicted by dots of
different colors. Red dots populate the set L−, blue dots populate the set
L+ and gray dots are not used.

custom head segmentation functionality into the method to
deal with the movement in the scene as well as the dynamic
background. We adjust relevant hyperparameter settings to
adapt a method that was used for room-scale reconstruction
to close up head reconstruction.

III. DATA ACQUISITION
We create a dataset of infants diagnosed with plagiocephaly.
The whole dataset contains RGBD sequences from 8 infants.
Each infant’s parent gave written consent for use in a sci-
entific study. For data capture, an iPhone 12 Pro running
Record3D1 to access the TrueDepth camera is used, also pro-
viding the camera matrix K ∈ R3×3. Each RGBD sequence
consists of 1248 frames on average at 30 frames per second.
The infant was held by their parent and the operator was
recording the video, slowly moving the camera around the
infant while trying to keep a distance of roughly 30 cm to
the target. Different head stabilization grips are present in the
dataset with the parent stabilizing the head near the chin or the
back of the neck. Due to the infant’s movement and to avoid
injuries, the supporting grip is not always rigid throughout
a recording session. Infants with significant hair growth are
wearing a skin-tight cap. The footage contains spurious head
movements, body motions, and changing facial expressions
making 3D reconstruction challenging. Sometimes the infant
moves the head too close to the sensor resulting in several
frames without valid depth data.

IV. METHOD
A. SYSTEM OVERVIEW
The stages of our proposed reconstruction pipeline are
depicted in Fig 1. First, for all frames, initial foreground
masks are estimated. Then, SIFT keypoints and facial land-
marks are extracted in the foreground region. Then, SIFT key-
points are extracted and matched pair-wise. Correspondences
are filtered with a random sample consensus (RANSAC) [33]
approach. Global camera poses are estimated incrementally
employing a correspondence count-based greedymerge strat-
egy. The preliminary camera trajectory in conjunction with
the facial landmarks is used to refine the foreground masks
retaining only 3D information on the rigid parts of the head.
The camera poses are finalized byminimizing a global energy
function containing pair-wise dense correspondences. In the
final step, all depth images are integrated into a TSDF and
key measures classifying the head asymmetry are extracted.

1https://record3d.app/
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B. KEYPOINT AND FOREGROUND EXTRACTION
In an RGBD sequence of N = 1500 consecutive frames the
i-th RGB image is denoted by I i and the i-th depth map is
denoted by Di for all 1 ≤ i ≤ N . A pixel coordinate with
present depth value is denoted by (u, v) ∈ �i, where �i

denotes the set of all pixels of frame iwith valid depth values.
We apply OpenPose [34] head keypoint extraction [35] on
each RGB image I i resulting in keypoints L i for each frame
filtering by detection score and discarding all keypoints with
invalid depth values, and depth values above 50 cm. This
filtering is done to discard keypoints stemming from other
persons in the scene. Additionally, an initial foreground mask
is estimated by thresholding the depth map in an adaptive
fashion for each frame:

First, for a depth frame Di the closest pixel of the infant’s
head is estimated by first identifying all depth values that
are close to the sensor (< 50 cm). Then for the remaining
valid depth values the depth value that is the 1% percentile
is estimated to be among the closest pixels on the head
with respect to the camera. This closest depth is denoted by
d̄i ∈ R. The initial mask is then computed by thresholding
Di by d̄i+ 0.1m. The resulting binary foreground masks are
denoted byM i.

C. SPARSE CORRESPONDENCES
In the next step, SIFT features are extracted from each image
I i within the segmented region specified by M i. Due to the
rapid head movement observed in many frames, it is impor-
tant to only extract SIFT features on the foreground because
the camera movement with respect to the static objects is dif-
ferent from the camera movement with respect to the moving
infant head. We deviate from the SIFT keypoint detection
parameters formulated in [26] with a contrast threshold of
0.002, edge threshold of 20, and σSIFT = 0.8. This results
in many SIFT keypoints also covering areas of lower con-
trast. This is typically not beneficial for keypoint matching,
resulting in many incorrect keypoint correspondences. The
constrained camera movement and object distance results
in effective correspondence filtering opportunities discussed
below.

After SIFT extraction, the relative camera pose to the head
is estimated between pairs of frames by SIFT keypoint match-
ing. A brute-force matching would result in N (N −1)/2 pair-
wise matching steps which is prohibitively computationally
demanding. Instead, a sparse matching graph is constructed
containing edges between temporally adjacent frames as well
as temporally distant frames. The undirected graph consisting
of N nodes X = {1, · · · ,N } and |C| edges is denoted by
C = Cclose ∪ Cfar with

Cclose = {(i, j) ∈ X2
| 1 ≤ |j− i| ≤ 5} (1)

and

Cfar = {(i, j) ∈ X2
| i 6= j ∧ (i | 5) ∧ (j | 5)}, (2)

where i | 5 tests whether i is divisible by 5.

Given a pair (i, j) going to be matched, the corresponding
SIFT keypoints are matched using nearest neighbor search
resulting in ni,j matches. Given ni,j ≥ 3 linearly independent
points, the 3D coordinates in the local camera coordinate
systems of frames i and j are denoted by pi,jk , p

j,i
k ∈ R3

respectively for all 1 ≤ k ≤ ni,j. The relative camera poses
are recovered by minimizing the reconstruction error

Ri,j, t i,j = argmin
R∈SO(3),t∈R3

ni,j∑
k=1

∣∣∣∣∣∣Rpi,jk + t − pj,ik ∣∣∣∣∣∣22 , (3)

resulting in the relative rigid transformations denoted by the
rotation Ri,j and translation ti,j. The objective (3) can be
minimized using the Kabsch algorithm [36]. The objective
(3) is not robust to outliers and a RANSAC [33] inspired cor-
respondence filtering method similar to [25] is incorporated
exploiting the camera geometry and scene-knowledge.

D. ROBUST KEYPOINT MATCHING
The RANSAC correspondence matching algorithm is derived
from [25]. From all correspondence candidates, a subset of
three correspondences is drawn and an initial rigid transform
is computed with the Kabsch algorithm. Then, a number
of correspondence inliers that conform with the estimated
transformation is identified. The whole process is repeated
1000 times and the transformation resulting in themost inliers
is identified. Transformation candidates resulting in less than
five inliers are rejected. All correspondences classified as
outliers are discarded.

A correspondence is classified as an inlier if and only if the
pair of points are within 5mm after applying the estimated
transformation. A transformation estimate with a rotation
angle of more than 30◦ or a translation distance of more than
20 cm is rejected outright. Additionally, a good spread of the
correspondences across the head is required to ensure a stable
rigid transformation estimate. To this end, the covariance
matrix of the centered source correspondences is computed
and the condition number is calculated. A condition number
larger than 100 is deemed unstable and the transformation
is rejected. The same test is performed on the covariance
matrix of the centered target correspondences. Next, the
cross-covariance between the centered source points and cen-
tered target points is formed and the condition number is
tested.

In the final validation step, a surface area test is performed
for the source and target point clouds. We describe the pro-
cedure for the source point cloud. The source point cloud
is projected to the plane spanned by the two eigenvectors
corresponding to the two largest eigenvalues of the centered
source point cloud covariance matrix. From the resulting 2D
point cloud the convex hull is determined. If the area of the
convex hull is below 16 cm2, the transformation is rejected.
All successfully matched pairs are encoded by the graph

with vertices X ′ ⊂ X and edges C ′ ⊆ C . Using the
graph defined by C ′ a greedy incremental merging strategy
is devised. The subgraph formed by the largest connected
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FIGURE 4. 3D reconstructions and camera trajectory relative to the reconstructed head of the infant.

Algorithm 1 Greedy Frame Merging Strategy
Require: Camera visibility graph (X ′′,C ′′)
1: Xmerge = [x0]
2: while |Xmerge| < |X ′′| do
3: x ← argmini∈X ′′\Xmerge

∑
j∈Xmerge

ni,j
4: Append x to Xmerge
5: end while
6: return Merging order Xmerge

component is denoted by the vertices X ′′ ⊂ X ′ and edges
C ′′ ⊆ C ′. First, the biggest connected component is extracted
and the remaining frames X \X ′′ are discarded. The merging
order Xmerge is determined following Alg. 1.

After determining the merging order, incremental camera
pose estimation is performed. Here, we describe a single step
of the merging approach that adds a single frame to the scene.
Given a set of frame indices X ′′, the set of already merged
frame indices S ⊆ X ′′, the camera pose estimates Rj ∈ SO(3)
and t j ∈ R3 for all j ∈ S, the next frame index i in the merging
order with i /∈ S and

Si = {j ∈ S|(i, j) ∈ C ′′}, (4)

the rigid camera-to-world transformation specified for frame
index i is denoted by Ri ∈ SO(3) and t i ∈ R3 and computed
via

Ri, t i = argmin
R∈SO(3),t∈R3

∑
j∈Si

ni,j∑
k=1

∣∣∣∣∣∣Rpi,jk + t − (Rjp
j,i
k + t j)

∣∣∣∣∣∣2
2

(5)

Analogous to (3), (5) can be minimized with the Kabsch
algorithm.

E. FOREGROUND MASK REFINEMENT
After merging is finished, there exists a pose estimate for
each frame index. In the next step, the foreground masks are
refined exploiting gained knowledge of the scene through the
merging process. A depiction of this process is supplied in
Fig. 5. To be more precise, the camera trajectory, and the
OpenPose keypoints are used to refine the masks consider-
ably. To this end, the auxiliary camera positions t ′i are defined

using trajectory center t̄ with

t ′i = t i + 0.35(t̄ − t i), (6)

enveloping the head of the infant. The auxiliary camera posi-
tions, as well as the OpenPose 3D keypoints of the face are
combined to form an auxiliary point cloudQ. Then the convex
hull of Q is calculated. Each depth value of each image is
transformed into the world coordinate system via Ri and ti.
Subsequently, each point is tested whether it lies within the
convex hull. Pixels within the convex hull are marked as
foreground pixels and the pixels outside of the convex hull
are classified as background pixels.

Due to large temporal shape variability in the mouth
area, we try to remove the corresponding pixels from the
foreground mask. Pixels below the plane containing the
subnasale, left tragion and right tragion are classified as
background pixels. To construct the separation plane auto-
matically, landmark point clouds L+,L− ⊂ R3 are con-
structed exploiting the predicted landmark positions in space.
The set L+ contains points that are above the separation
plane and L− contains points that are below the separation
plane (see Fig. 3). The separation plane is estimated seeking
the max-margin class separation plane. This is achieved by
training a linear support vectormachine (SVM) [37]with pos-
itive samples L+ and negatives samples L− respectively. This
results in our finalized foreground masks M̂i for all frames
1 ≤ i ≤ N . Themask refinement process is depicted in Fig. 5.

F. DENSE CORRESPONDENCES
The initial camera pose estimates are computed using the
sparse SIFT feature matches. The predicted camera trajectory
might not be accurate enough for 3D reconstruction. For this
reason, a dense correspondence term is introduced and mini-
mized globally by optimizing all frame camera poses jointly.
The sparse SIFT keypoints are discarded but the initial cam-
era trajectory is used as an optimization starting configuration
and refined to enable detailed 3D surface reconstruction.

The dense correspondence energy formulation is split into
two parts, a pixel candidate selection followed by a sum over
pairwise dense geometric image energy.
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FIGURE 5. Geometric depiction of the mask refinement process. The estimated camera trajectory is shifted towards the center of all camera
positions. Then the convex hull is computed (shown by black lines) and all points outside of the convex hull are marked as background pixels. For
facial keypoints a separation plane (depicted in yellow) is estimated using a linear support vector machine. All points that fall below the separation
plane are marked as background pixels.

FIGURE 6. Dense pixel association.

FIGURE 7. Segmentation results of the Pyramid Scene Parsing
Network [38] on selected frames of the recorded dataset. The network
seems to interpret the infant’s hair as animal fur or background.

For the pixel candidate selection, a normal image is cal-
culated from each depth map by estimating a plane from the
3 × 3 neighborhood of each pixel. Per image pair candidate
pixel selection is computed by shooting rays from the source
image into the scene and projecting them onto the target
image. Depth disparity, color disparity, and normal deviation
are thresholded resulting in a binary mask of valid dense pixel
correspondences. The source-to-target mapping is for a pixel
(u, v) in frame i to a pixel (u′, v′) in frame j is computed via

d̃ ju′,v′

u′v′
1

 = KR−1j

RiK−1d iu,v
uv
1

+ t i − t j
 , (7)

FIGURE 8. Segmentation results before and after refinement. From left to
right: color image, initial foreground estimation, and refined foreground
mask. Each row shows a different view of the same reconstruction target.
The color image is only used for visualization purposes.

where d iu,v denotes the depth value of pixel location (u, v) of
the source frame i and d̃ ju′,v′ denote the predicted depth of the
corresponding target frame pixel location (u′, v′). Note, that u′

and v′ are functions of Ri,Rj, t i, and t j. Given the RGB values
I iu,v, I

j
u′,v′ ∈ [0, 1]3, normal vectors νiu,v, ν

j
u′,v′ ∈ R3, and

depth values d iu,v, d
j
u′,v′ ∈ R a valid candidate has to satisfy

the following conditions [25]. We denote a pixel for a pair of
frames (i, j) valid by vi→j

u,v ∈ {0, 1} with

vi→j
u,v = |I

i
u,v − I

j
u′,v′ |1 ≤ λcolor ∧

(νiu,v)
T ν

j
u′,v′ ≥ λnormal ∧

|d ju′,v′ − d̃
j
u′,v′ | ≤ λdepth. (8)

In case the coordinates (u′, v′) are not within the frame j
or no valid depth d ju′,v′ or normal νju′,v′ exists, the dense

correspondence is also rejected and vi→j
u,v = 0. RGB values,

normal vectors, and depth values are interpolated bi-linearly
at the coordinates (u′, v′). Depth discontinuities are filtered
by λnormal. The threshold parameters λcolor, λnormal, λdepth ∈

R+ are adaptively refined during the dense alignment proce-
dure following a coarse-to-fine strategy (see Section IV-G).
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FIGURE 9. 3D reconstruction results for one sequence: The first row shows four RGB images of a recorded sequence. The second row
shows the corresponding 3D reconstruction projected into the respective frame. The third row shows an overlay of the rendered view and
the RGB image. Pixels from the RGB image are only replaced for the pixels specified by the refined foreground mask M̂i .

We denote the set of valid pixels for the frame pair (i, j) by
V i→j with

V i→j
unfiltered = {(u, v) ∈ �i|vi→j

u,v = 1}.

V i→j
=

{
V i→j
unfiltered if |V i→j

unfiltered| ≥ 1000
∅ else,

(9)

discarding dense correspondences altogether, if less than
1000 dense correspondences are found. Equipped with a
dense correspondence filtering strategy, a dense correspon-
dence energy function E can be defined. A geometric visu-
alization providing intuition is depicted in Fig. 6. Following
the dense geometric error formulation in [25] and denoting
θ = (R1, , · · · ,RN , t1, · · · , tN ), we write

E(θ ) =
∑

(i,j)∈C

∑
(u,v)∈V i→j

r i→j
u,v (θ )2 (10)

with

r i→j
u,v (θ ) = (νiu,v)

T

pi→j
u,v − K

−1d iu,v

uv
1

 (11)

and

pi→j
u,v = R−1i

RjK−1d ju′,v′
u′v′
1

+ t j − t i
 . (12)

G. OPTIMIZATION
Following up on the introduced energy E , in this section,
a numerical minimization scheme is devised to find adequate
camera poses (R̂i, t̂ i) for all frames 1 ≤ i ≤ N . To fix the

global transformation, we set the transformation of the first
frame to R1 = I and t1 = 0 and seek the camera poses
θ̂ = (R̂2, · · · , R̂N , t̂2, · · · , t̂N ) minimizing E denoted by

θ̂ = argmin
R2,··· ,RN ,t2,··· ,tN

E(R1, · · · ,RN , t1, · · · , tN ). (13)

The structure of objective function E allows the employment
of non-linear least squares solvers. Assuming an adequate
initialization of the camera trajectory provided by the sparse
correspondence pipeline, the Gauss-Newton method is used
for objective minimization. The residuals and Gauss-Newton
matrix are assembled in parallel on anNVIDIAGeForce RTX
3090 using the JAX library [39]. Rotations are optimized by
linearization assuming small angles [24].
To avoid costs arising frommisaligned frames in the objec-

tive we remove the variables Ri and t i from the objective
if the frame i is disconnected within the objective (10) and
would prevent the Gauss-Newton matrix from factorizing
successfully using sparse Cholesky decomposition.
Dense alignment is performed with a coarse-to-fine strat-

egy, running the Gauss-Newton algorithm for 60 itera-
tions. The optimization is performed in three stages run-
ning for 20 iterations each varying the threshold parameters
λcolor, λnormal and λdepth (see Table 1). The current imple-
mentation optimizes all camera poses jointly without any
real-time capable hierarchical optimization (see e.g. [25]) and
runs for approximately 4 hours per sequence.

V. 3D RECONSTRUCTION AND MEASUREMENTS
Using the OpenPose keypoints of the ears, the nasion, and the
subnasale, the camera trajectory is transformed to conform to
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FIGURE 10. Additional 3D reconstruction results for a second infant. See
Fig. 9 for details.

FIGURE 11. Additional 3D reconstruction results for a third infant: See
Fig. 9 for details.

the origin and axes described in Section II-A. Missing key-
point detections were annotated manually. Then, all frames
that were not discarded during optimization are integrated
into a TSDF using the code provided by [40]. The recon-
struction volume is discretized with a voxel size of 1mm. All
measured quantities are directly computed using the TSDF.
For visualization purposes, the TSDF is converted into amesh
via marching cubes [41].

FIGURE 12. 3D reconstruction artifacts.

TABLE 1. Hyperparameter schedule.

The offset of the reference plane is computed with two dif-
ferent methods following [19] (MAX PERIMETER) or [20]
(LEVEL3), the corresponding slice is extracted from TSDF
volume resulting in a TSDF image. The largest polygon is
extracted from the image using marching squares [41] and
the perimeter is computed. Then, four line segments LR, AP,
DIAG1, and DIAG2 were constructed as depicted in Fig. 1
and Fig. 2.

VI. EVALUATION
A. DESCRIPTIVE STATISTICS
Given a dataset of n = 8 samples with caliper measurements
{yi}ni=1 and digital measurements {fi}ni=1 of the biparietal
diameter (BP), we compute the Pearson correlation coeffi-
cient with

r =

∑n
i=1(yi − ȳ)(fi − f̄ )√∑n

i=1(yi − ȳ)2
∑n

i=1(fi − f̄ )2
, (14)

where

ȳ =
1
n

n∑
i=1

yi and f̄ =
1
n

n∑
i=1

fi (15)

denote the empirical mean of {yi}ni=1 and {fi}
n
i=1 respectively.

In the paper, the squared Pearson correlation coefficient r2 is
used.

Themeasurement deviation is denoted by ci = fi−yi for all
1 ≤ i ≤ n. The measurement bias is defined as the empirical
mean c̄ of {ci}ni=1 with

c̄ =
1
n

n∑
i=1

ci. (16)

From the empirical standard deviation σ with

σ =
1

n− 1

n∑
i=1

(ci − c̄)2, (17)

the estimated standard error of the mean σ̂ is defined by

σ̂ =
σ
√
n
. (18)
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FIGURE 13. Quantitative evaluation on biparietal diameter measured directly with a caliper vs digital measurement
on the 3D scans.

We denote the bias in the paper with the pair (c̄, σ̂ ) using the
notation c̄± σ̂ . To evaluate the significance of the estimated
digital measurement bias, a t-test is performed with the null
hypothesis assuming a bias that is normally distributed with
zero mean. The t-value T is then defined by

T =
c̄
σ̂

(19)

and the respective p-value p following a two-sided test for the
null hypothesis is computed via

p = 2(1− F(T , n− 1)), (20)

where F denotes the cumulative distribution function of the
student’s t-distribution evaluated at T with n − 1 degrees of
freedom.

B. EXPERIMENTAL SETUP
All scans from the created dataset are processed by the pro-
posed pipeline and 3D scans and cranial vault asymmetry
measures were extracted. We also experimented with Heges,
a commercial RGBD reconstruction app2 intended to work
well on static scenes. Not a single scanning procedure could
be completed due to movements of the infant during record-
ing. Commercial solutions requiring remote data processing
could not be considered for data privacy concerns.

C. FOREGROUND SEGMENTATION
In Section IV-B and Section IV-E, we propose an
application-specific segmentation pipeline. Given the vast
literature on trained neural networks for segmentation, it is
interesting to evaluate whether such a method could solve
the segmentation tasks without additional domain adaptation.
To this end, we run the Pyramid Scene Parsing Network [38]
on one of our recorded image sequences. The segmentation
results are depicted in Fig 7. The predicted pixel classifica-
tions indicate that additional domain-specific training data is
required to fine-tune these methods to the task at hand and
result in usable segmentations. To the best of our knowledge,
no infant segmentation dataset is publicly available.

2https://apps.apple.com/de/app/heges-3d-scanner/id1382310112

Additionally, we compare the foreground masks estimated
by depth thresholding (see Section IV-B) and after refinement
(see Section IV-E). Exemplary results are depicted in Fig. 8.
We observe an over-segmentation of the head using just the
depth thresholdingmethod.Most dynamic pixels are removed
from the initial foreground estimation after refinement. Lim-
itations of the proposed method are visible when segmenting
the back of the head. The refinement method removes too
many pixels. The separation plane estimated in Section IV-E
is defined using landmarks in the facial area and near the ears.
Additionally, we observe poor detection results of the ears.
This error in the plane estimation is more prominent at the
back of the head. Natural key landmarks are hard to define
and detect at the back of the head.

D. QUALITATIVE EVALUATION
We showcase the 3D reconstruction quality and trajectory.
The resulting scans and their projection into the source video
are depicted in Fig. 9, Fig. 10, and Fig. 11 for a selection
of frames showing four different viewing angles each. The
complete videos are provided in the supplementary material.
Rendering the reconstructed shape over the image sequence
gives visually pleasing results. In contrast, 3D reconstruction
with Heges was unsuccessful.

The proposed reconstruction pipeline generates 3Dmeshes
even under rapid head movements of the infants. This is
possible even if the sensor operator is moving too close to
the subject and no depth data is available for multiple frames
depicted in the supplementary material.

We also showcase the limitations of our proposed method.
In general, visual artifacts are observable in the area at the
back of the head, rendering subsequent reliable measure-
ments of the perimeter, AP, DIAG1, and DIAG2 impossi-
ble (see Fig. 12). Although the reconstructions are visually
pleasing in the face and ear area, small cracks are observed
near the back of the head. This is likely due to misaligned
camera poses. The foreground mask estimation might be the
limiting factor for accurate head reconstruction, consistently
oversegmenting or undersegmenting the back of the head
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FIGURE 14. Camera trajectory recovered by colmap and the proposed method. Each row shows the result for a different infant. The first row shows the
camera trajectory computed by colmap and the proposed method respectively. Colmap is only using 2D information and a global scale can not be
recovered. For this reason, the colmap trajectory is rotated, translated, and scaled to minimize the sum of squared camera distances over all frames. The
trajectories are depicted in a top view using orthographic projection. The second row shows two histograms of the distance between the camera
positions of colmap and the proposed method over all frames. The last rows shows the reconstructions recovered from our method supplying the camera
trajectories computed from colmap and the proposed method respectively. For infant A, the large camera trajectory estimated from colmap results in a
failed 3D reconstruction. For infant B, even small deviations in the camera trajectory from colmap lead to clearly visible reconstruction artifacts.

(Fig. 9, Fig. 10, and Fig. 11). OpenPose does not seem to be
trained on the viewing angles present in our dataset, leading
to infrequent detections of the ears. Training a custom ear
detector might alleviate this issue.

E. QUANTITATIVE EVALUATION
We compare our method with colmap [42], [43], an open-
source RGB multi-view reconstruction method. Colmap

performs 3D reconstruction in two steps: In the first step, the
camera poses and a sparse point cloud using SIFT keypoints
are recovered [42]. In the second step, a dense point cloud
is computed [43]. We run colmap on two sequences with
and without incorporation of the initial foreground mask (see
Section IV-B). The resulting camera trajectory and 3D recon-
structions are depicted in Fig. 14. We proceed by running the
multi-view stereo pipeline of colmap, but colmap is unable to
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construct a dense point cloud from the estimated camera tra-
jectory. Colmap appears to have trouble with the low-textured
scene as well as the dynamic scene. These results indicate that
an application-specific reconstruction method is required to
tackle this problem.

Quantitative evaluation was conducted by comparing the
biparietal diameter value measured with a caliper with the
measurement extracted from the scans. The measurement
plane was extracted from eight scans using the methods
MAX PERIMETER and LEVEL3 outlined in Section V
resulting in a squared Pearson correlation coefficient of
r2MAX PERIMETER = 0.954 and r2LEVEL3 = 0.954 respectively
(see Fig. 13). The bias expressed as the mean deviation
and standard error on the mean of both methods are 2.6 ±
0.7 and 3.3 ± 0.8 in millimeters respectively. The p-values
for the methodsMAXPERIMETER and LEVEL3, 0.009 and
0.005 respectively, suggest a statistically significant observed
bias.

Skolnick et al. [15] reported an r2 score of 0.902 and a bias
of 4 ± 0.4 on a dataset consisting of 31 scans with extracted
measurements. Although our results are competitive, much
more samples have to be included in the evaluation and the
3D reconstruction has to be improved, especially in the area
at the back of the head.

VII. CONCLUSION
We present a fully automatic 3D infant head reconstruc-
tion method using the RGBD stream from a mobile phone.
Qualitative and quantitative evaluation suggest accurate 3D
reconstruction in the face and ear area bringing us one step
closer too an ubiquitous cranial vault asymmetry measur-
ing tool. Future work can address the reconstruction quality
in the area near the back of the head, potentially enabling
successful extraction of all measurements required for cra-
nial vault asymmetry estimation. Acquiring a bigger dataset
would enable an evaluation that highlights the significance
of the proposed approach. Additionally, real-time capabilities
could enable 3D reconstruction on the mobile device without
the need to transfer the data to an external device which could
enable real-time feedback to the user improving the camera
trajectory.
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