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ABSTRACT In this paper, the opinion dynamics model with antagonistic (competitive) relationship,
multiple interdependent topics and the stubborn individuals is investigated. Different from the classical
Friedkin-Johnsen (FJ) model, in our model, antagonistic and cooperative relationships are considered
simultaneously. Furthermore, multiple logically interdependent topics are discussed in our model where the
logical interdependence between the different topics is captured by a logic matrix. For structurally balanced
and unbalanced network topologies, we rigorously examine the stability and convergence of our proposed
model. A few conditions of stability and convergence are obtained. These conditions completely depend on
network topology, stubborn coefficient and the logic matrix. They fully show that these factors jointly affect
the evolution of opinions. Finally, a few numerical simulations are provided to illustrate our obtained results.

INDEX TERMS Opinion dynamics, antagonistic relationship, multiple interdependent topics, stability.

I. INTRODUCTION
In recent years, opinion dynamics has received much atten-
tion for researchers in various fields. As an interdisciplinary
subject of sociology, biology, economics, physics and control
theory, opinion dynamics plays a great role in the devel-
opment of human society [1]–[10]. In the society, the reci-
procity between individuals constitutes the social network.
As a special complex network, social networks have been
studied extensively and many great achievements have been
obtained [11]–[14]. Opinion dynamics is an important branch
of social network research, it is concerned with the funda-
mental question of how individuals are influenced by other
individuals in a social group. Here the term ‘‘opinion’’ is
used to denote individuals’ displayed attitudes to objects
(i.e., topics or issues). The key problem of opinion dynamics
lies in the constructing of models. In social networks, individ-
uals interact and discuss opinions on a topic or a set of topics
according to certain rules. Establishing mathematical models
to analyze the evolution of opinions in social networks not
only reveals the basic laws of the development of human
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society and animal population, but also plays an important
role in the development of scientific knowledge and engineer-
ing technology [15], [16].

In order to investigate the evolution of opinions and the
impact of interactions between individuals, many opinion
dynamics models have been proposed over the past few
decades. Among them, the classic DeGroot model [17] was
proposed in the 1970s. The DeGroot model examines how a
group of individuals reach an agreement on a common topic
by exchanging their subjective opinions in a social network.
In the DeGroot model, the opinion of individual i is deter-
mined by a weighted average of the opinions of individual i
and its neighbors at the previous moment. If the network
contains a spanning tree and the strong connected subgraph
which consists of all root nodes is aperiodic, then theDeGroot
model always reaches opinion consensus for the arbitrary
initial opinions [18].

Subsequently, investigators made a further analysis of the
DeGroot model, and a lot of variable models were proposed
to capture the properties of opinion evolution [19]–[21].
Sociologist found that social actors accept readily opinions
of like-minded individuals, and accept the more deviant
opinions with discretion. This phenomenon is called the
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biased assimilation [22]. Combining the updated rules of
the DeGroot model with the idea of biased assimilation, the
bounded confidence (BC) models were proposed [22], [23].
In BC modes, individuals only accept opinions within their
confidence intervals but ignore the opinion which are outside
the confidence intervals. Compared with the DeGroot model,
BC models capture the basic rules of individual interaction
in human society and may model more complex phenomena,
such as, animal flocking [24]. In fact, different individu-
als may have different confidence intervals. Heterogenous
BC models were used to represent this phenomenon [25].
In BC models, the network topologies are dependent on
the system states, so it is more difficult to perform a strict
mathematical analysis on it. So far, the rigorous mathematical
analysis of BC models is still an open problem. For example,
the statistical characteristics for the distribution of clusters are
still unclear [25].

Another classic extension of the DeGroot model is the
FJ model [26]. In the FJ model, the presence of the stub-
born individuals was considered. The so-called stubborn
individuals are willing to maintain their initial opinions as
their prejudices. Different from the DeGroot model where
each individual updates its opinion based on its own and
neighbors’ opinions, in the FJ model, the stubborn individ-
uals also factor their initial opinions into every iteration of
opinions. In other words, the stubborn agents never forget
their prejudices, and are influenced by exogenous conditions.
Therefore, it is difficult to reach opinion consensus for the
FJ models. In fact, if the stubborn agents exist in the social
network, social groups often formmultiple clusters [27]–[29].
In [30] and [31], sufficient conditions for the stability of the
FJ model was obtained. In [27], the FJ model was referred to
a best-response game. By minimizing its own local function,
the individuals update their opinions according to opinions of
themselves and their neighbors [27]. For further extensions
of the FJ model, please refer to references [31]–[33].

In all the literatures mentioned above, only coopera-
tive relationship between individuals was investigated, while
the possible antagonistic relationship between individuals
was ignored. However, in fact, no matter in human soci-
ety or in nature, confrontation and competition can be
found [34], [35]. In human society, people compete with
each other for resources. In nature, animals fight for
water and territory. In biological system, cooperative and
antagonistic relationships exist in the form of activators/
inhibitors [34]. Therefore, the opinion dynamics models with
antagonistic relationship have attracted extensive attention
recently [36], [37]. Due to the existence of confrontation,
it is difficult for social networks to achieve consensus. In this
case, the concept of bipartite consensus was proposed in
literature [35] to represent a kind of special disagreement of
opinions. The signed graphs were used to characterize the
cooperative and antagonistic relationship between individu-
als [35]. In [38], both state-dependent susceptibility to per-
suasion and antagonistic interactions were investigated. For
three specializations of state-dependent susceptibility, some

sufficient conditions of bipartite consensus were obtained.
In [39], the competition between two stubborn agents was
examined, the convergence and stability were discussed for
the structurally balanced signed network. It should be pointed
out that most existing literatures focus on the structurally
balanced social networks. In this paper, for the structurally
balanced and unbalanced networks, we will try to examine
how opinions evolve.

Many of the previous models focus on a specific topic, but
in the social networks, the agents always discuss a few topics
at the same time [33]. A corresponding multidimensional
FJ model was proposed in [33] where each topic was assumed
to be inter independent. However, the topics may be interde-
pendent in our real life, and the dynamics of the topic specific
opinions are entangled. The multiple interdependent topics
(the attitude to fruit and the attitude to watermelon) make
models more complex. In [40], the authors proposed two
continuous-time opinion dynamics models where the topics
are multi interdependent. Besides, the necessary and suffi-
cient conditions for the network to reach a consensus on each
separate topic were obtained. If the dependencies between
topics were ignored, then those models in [40] may not reach
a consensus. This means that it is very important to consider
the dependencies between topics when modelling opinion
dynamics. As we all know, so far, the antagonistic relation-
ship, stubbornness and multiple interdependent topics have
not been considered simultaneously in any paper. In fact, this
situation is possible in real social networks. So, in this paper,
we consider the antagonistic relationship, stubbornness and
multiple interdependent topics simultaneously to model the
opinion evolution. Of course, this undoubtedly increases the
difficulty of mathematical analysis model. In particular, when
the network topology is structurally unbalanced, the existing
results can not provide more meaningful reference. For a
structurally unbalanced network, the relationship between
individuals may be very chaotic. The evolution of opinions
is often unexpected. This invisibly increases the difficulty
of discussion. Therefore, the most existing literature pays
more attention to the structurally balanced network. However,
in this paper, by using the spectrum analysis and graph theory,
we give a sufficient condition of the network convergence
for the structurally unbalanced network, i.e., the network
is connected. Of course, this condition may be relatively
conservative.

The main contributions of this paper are as follows. Firstly,
we have extended the classical FJ model and proposed a
more general model. Competitive relationship and multiple
interdependent topics, stubborn individuals are considered
simultaneously in the proposedmodel. Secondly, by using the
matrix theory and graph theory, the conditions of convergence
and stability have been obtained for the structurally balanced
and unbalanced network topologies. Meanwhile, these con-
ditions depending on stubborn coefficient, network topology
and logic matrix also fully show how these factors affect
the opinion evolution together. In particular, we find that the
structural unbalance will not destroy the convergence of the
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connected network. Finally, numerical simulation have been
used to show that the dependence between topics can not
only affect the final opinion value, but also can influence the
convergence of opinions.

This paper is organized as follows. In section II, we intro-
duce the related knowledge of graph theory and make a
brief introduction to our model. Main results and proofs are
given in III. Section IV provides four simulation examples to
illuminate our results. Finally, our conclusion is given in V.

II. PRELIMINARIES
In this section, model and mathematical preliminaries are
provided to derive the main results of this paper.

A. NOTATIONS
Throughout this paper,Rm×n andRn denote, respectively, the
m × n real matrix space and the n-dimensional real vector
space. |A| = [|aij|]ni,j=1 means that each entry of matrix A
takes an absolute value. The notation 1n denotes the column
vector of [1, 1, . . . , 1]T ∈ Rn, and In is the identity matrix
of size n. Given a square matrix A, ρ(A) denotes its spectral
radius. Given a pair of matrices A ∈ Rm×n,B ∈ Rp×q, their
Kronecker product is defined by

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

. . .
...

am1B am2B · · · amnB

 ∈ Rmp×nq.

B. GRAPH THEORY
The graph consists of nodes and arcs (or edges). A node can
be represented by a dot in the plane. And an arc is a directed
line or curve which connecting a dot to another dot or itself.
A graph is denoted by G = (V ,E), where V stands for the
finite set of nodes and E ∈ V × V is the set of arcs. The
node i connected to the node j is defined as the arc eij = (i, j).
An arc eii = (i, i) is called a self-loop, and it connects a node
to itself. In our paper, we use nodes, agents and individuals
interchangeably to represent the same concept. For any arc
eij = (i, j) ∈ V the inverse arc eji = (j, i) exists, we call
that the graph is a undirected graph, otherwise, the graph is
directed. Sequence of nodes v0 7→ v1, v1 7→ v2, . . . , vr−1 7→
vr ∈ V is called a walk from v0 to vr ; the node vr is reachable
from the node v0 if there at least exists one walk from v0
to vr . A walk without repeating nodes is referred to a path.
In the graph G(V ,E), if there is a node i which has a directed
path from i to other nodes, then the graph G(V ,E) contains a
spanning tree and the node i is named the root node. Suppose
a matrix A ∈ Rn×n satisfies: aij 6= 0 ⇔ (j, i) ∈ E , then
the matrix is called the weighted adjacency matrix of the
graph G(V ,E). In this situation, G(A) is used to represent the
graph G(V ,E). If the adjacency matrix A is allowed to take
both positive and negative values, then it is called the signed
adjacency matrix and its associated graph is called the signed
graph. SupposeA ∈ Rn×n, if there exist two setsV1

⋂
V2 = ∅

where ∅ denotes the empty set and V1
⋃
V2 = V such that

aij ≥ 0 for ∀i, j ∈ Vl(l ∈ {1, 2}) and aij ≤ 0 for ∀i ∈
Vp, j ∈ Vq, p 6= q, (p, q ∈ {1, 2}), we claim that the signed
graph G(A) is structurally balanced [35]. In other words, the
signed graphG(A) is structurally balanced if and only if there
exists a diagonal matrix P =diag[d1, d2, . . . , dn] such that
PAP ≥ 0 where di ∈ {1,−1} [35].

C. MODEL DESCRIPTION
Opinion dynamics models on a particular topic have
been widely researched and many conclusions have been
drawn [41]–[44]. With the progress of communication tech-
nology, communication online is becoming more and more
common. The amount of information in social networks
has increased dramatically [19]. As a result, the spread and
diffusion of many topics on social networks happen at the
same time. Furthermore, these topics may be always inter-
dependent. So in this paper, we examine the evolution of
individuals’ opinions under multiple interdependent topics.
This implies that in our model the individuals’ opinions on
one specific topic are influenced by the opinions about the
other topics. Now, let’s consider the following scenario: a
group of people discuss two topics, for example, fruit and
watermelon. Watermelon is a very common and popular fruit
in summer. If an individual hates fruit, then he dislikes to eat
watermelon. If the influence process changes the individuals’
attitudes toward fruit, saying that eating more fruit is good
for health, then as a kind of fruit, there will be more people
like to eat watermelon. On the contrary, the influence process
changes the individuals’ attitudes against fruit, warning that
fruit now has high levels of the hormone detected, then fewer
people choose watermelon even on a hot day. So it can be
observed that there exists usually a certain logical relationship
between multiple topics in social networks.

To ensure the consistency of the belief system, individuals
may need to adjust their positions on multiple related topics
at the same time. Tension and discomfort caused by inconsis-
tencies can be resolved through an individual’s introspective
process. This introspective process was researched in cogni-
tive dissonance and cognitive congruence theory [40]. It is
thought to be an automatic process in the brain and can enable
individuals to develop a system of consistent attitudes and
beliefs. The external form of this introspective process can be
reflected by the logical matrix mentioned below to a certain
extent [40].

An opinion dynamics model describing multiple logically
interdependent topics in discrete time was firstly proposed
by Parsegov [14]. In [14], the authors characterized the logic
interdependent relationships through a matrix of multi-issues
dependence structure(MiDS). In [40], the authors defined
a logical matrix to encode the logical coupling relation-
ships between issues. Similarly, in this paper, we introduce a
logic matrix to represent the dependencies between different
topics. It should be pointed out that only cooperative rela-
tionship between individuals was considered in [14], [40].
To our knowledge, there is no literature to research the impact
of competition on the evolutions of individuals opinions
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with multiple interdependent topics. Therefore, in this paper,
we simultaneously consider both the competitive relationship
and multiple interdependent topics, and propose a novelty
opinion dynamics model based on the classic FJ model.

xi(k + 1) = λiC
n∑
j=1

wijxj(k)+ (1− λi)xi(0),
i = 1, . . . ,N , (1)

where xi(k) ∈ Rm represents the opinions of individual i at
time k . C ∈ Rm×m is the logical matrix. It is used to describe
the dependencies between topics. The constant λi ∈ [0, 1]
expresses the susceptibility of the individual i to interpersonal
influence. Naturally, (1 − λi) represents the stubbornness
of individual i regarding initial opinions xi(0). If λi = 0,
we call the individual i a totally stubborn agent. It implies
that the individual i refuses to communicate with others or
ignores the other individuals’ opinions. So his/her opinions
will never change. If 0 < λi < 1, we call the individual i
a stubborn agent, which implies he/she is not completely
‘‘open-minded’’ [26]. The stubborn agents communicate with
the others, but retain their original opinions to a certain extent.
If λi = 1, we call the individual i a non-stubborn agent.
The non-stubborn agent ignores the initial opinions and is
influenced by the opinions of other individuals. In our article,
we consider a special class of non-stubborn agents: they
can be influenced by other stubborn agents. This implies
that there exists a path from the stubborn agent to the non-
stubborn agent. Such individual can be considered as ‘‘an
implicitly stubborn agent’’.

In order to facilitate our research, we reclassify all individ-
uals. We use the uniform name ‘‘non-opening agents’’ to rep-
resent totally stubborn agents, stubborn agents and implicitly
stubborn agents. The remaining individuals are called ‘‘open-
ing agents’’. They are not the stubborn agents. Furthermore,
they are also not influenced by the stubborn agents.
W = [wij] ∈ RN×N describes the network topology.

In this paper, both cooperative and competitive relationships
between individuals are considered simultaneously. It implic-
itly indicates that G(W ) is a signed graph. If wij 6= 0 shows
that the agent j can send information to the agent i at k instant.
In other words, the individual j is a neighbor of the indi-
vidual i. This means that the individual i can be affected by
the individual j, i.e., when making a decision the individual i
will consider the opinions of individual j. |wij| represents the
degree of impact and

∑N
j=1 |wij| = 1 are assumed for all

i = 1, 2, . . . ,N . And wij > 0 represents the cooperative
relationship and wij < 0 indicates the competitive or con-
frontational relationship.

We denote the entry of the matrix C with cpq, which
represents the influence of the issue q to the issue p.
If cpq > 0, it means that the issue p is closed to the issue q.
For example, the following two topics: (a) eating fish is good
for one’s health and (b) people should eat more salmons.
On the contrary, cpq < 0 means the issue q is opposite to
the issue p. Similarly, we give two issues: (a) eating fish is
good for one’s health and (b) fishes are now contaminated

by toxic chemical. A natural assumption in this paper is that∑m
q=1 |cpq| = 1, p = 1, . . . ,m and cii > 0, which implies

that the matrix | C | is a row-stochastic matrix.
In fact, both competition and logical relationship between

topics can impact on the finial opinions of individuals, wewill
illustrate this with a few examples.
Example 1: The model (1) will regress to the classical

FJ model if C = Im. And the compact form of the classical
FJ model is:

x(k + 1) = 3Wx(k)+ (IN −3)x(0), (2)

where 3 =diag[λ1, . . . , λN ]. x(k) = [x1(k)T , . . . , xN (k)T ]T

represents the opinions of all individuals at time k .We assume
that there are five individuals in the network and two topics
are discussed at the same time.We set the stubborn coefficient
as 3 =diag[0.7, 0.6, 0.8, 0, 0.9]. Obviously, the agent 4 is
a totally stubborn agent and the individuals 1,2,3 and 5 are
stubborn agents. The adjacent matrix is as follows

W1 =


0.4 0.15 0.2 0.15 0.1
0.2 0.3 0.1 0.1 0.3
0.4 0.1 0.3 0.1 0.1
0 0 0 1 0

0.15 0.15 0.2 0.3 0.2

 . (3)

The opinions of two independent topics (a) and (b) are repre-
sented by x1i (k) and x

2
i (k) respectively. Here, we choose the

initial opinions:

x(0) =
[
20,−20︸ ︷︷ ︸ −20, 5︸ ︷︷ ︸ 50, 20︸ ︷︷ ︸ 75,−50︸ ︷︷ ︸ 85, 5︸︷︷︸]T . (4)

Through simple calculation, the final opinions of all individ-
uals are:

x ′1 =
[
35,−22︸ ︷︷ ︸ 16,−11︸ ︷︷ ︸ 43,−13︸ ︷︷ ︸ 75,−50︸ ︷︷ ︸ 53,−24︸ ︷︷ ︸]T .

(5)

Comparing the initial opinions with the final opinions, one
can find that the opinions of all individuals have changed
except the individual 4. Especially, the individuals 2,3
and 5 have opposite attitudes towards the topic (b). Besides,
for the topic (a), the individual 2 changes from negative
attitude to positive attitude. By taking a comprehensive obser-
vation, it is obvious that the attitudes of other agents are
consistent with individual 4. These changes fully indicate
that stubbornness has a significant impact on individuals’
opinions. If both cooperative relationship and competitive
relationship exist between individuals, we replace the adja-
cent matrixW1 with W2:

W2 =


0.4 −0.15 0.2 −0.15 −0.1
0.2 0.3 −0.1 0.1 0.3
0.4 0.1 0.3 0.1 −0.1
0 0 0 1 0

0.15 −0.15 0.2 −0.3 0.2

 . (6)

And the other conditions remain the same, we obtain the
individuals final opinions

x ′2 =
[
−4, 1︸ ︷︷ ︸ 2,−4︸ ︷︷ ︸ 16, 1.6︸ ︷︷ ︸ 75,−50︸ ︷︷ ︸ 38,−15︸ ︷︷ ︸]T .

(7)
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Compared (5) and (7), it can be found that when there exists
competitive relationship between individuals, the attitude of
individual 1 has a significant change about topic (a) and
topic (b). This implies that competitive relationship can also
affect the individuals’ attitude towards events.
Example 2: Different from example 1, in this example,

we assume that topics are interdependent. For instance,
we have the topic (a): the attitudes about fruit and the
topic (b): the attitudes about watermelon (as a part of fruit).
In our cognition, people who don’t like fruit generally don’t
like watermelon. Conversely, people who don’t like water-
melon may also don’t like fruit. It implies that the opinions
of all individuals on these two topics should be consistent
in symbols. In other words, there is a positive interaction
between the two topics. We introduce the matrix C1 to
describe the relationship of the topics (a) and (b).

C1 =

[
0.9 0.1
0.4 0.6

]
. (8)

Next, we use the same initial opinions (4) and obtain the
final opinions of the five individuals

x ′C1
=

[
−1,−8︸ ︷︷ ︸ 0.2, 4︸ ︷︷ ︸ 15, 3︸︷︷︸ 75,−50︸ ︷︷ ︸ 33, 4︸︷︷︸]T .

(9)

Comparing (5) and (7), we find that when the interde-
pendence between individuals is not considered, the atti-
tudes of individual 1 towards the two events are opposite.
When the dependency is considered, the attitudes of indi-
vidual 1 towards the two events are the same. It implies
that considering dependencies makes it easier to achieve
consistency in belief systems. Therefore, it is easier for social
networks to reach agreement on belief systems by considering
dependencies. That is to say, topic interdependence plays an
important role in the evolution of opinions.
Remark 1: The Example 1 illustrates competitive rela-

tionship between individuals and stubbornness can cause the
inconsistency of agent’s opinions. The Example 2 shows that
the interdependent relationships between different topics can
affect the final opinions of agents too. In this paper, compet-
itive relationship, stubbornness and multiple-interdependent
are investigated. To some extent, our model is more popular.
Remark 2: Different from the classic FJ model [26], where

a special topic was considered, in ourmodel, multiple interde-
pendent topics are researched simultaneously. Furthermore,
we allow elements of the adjacency matrix W to have nega-
tive values, it implies cooperative relationship and competi-
tive relationship are considered at the same time. However,
the classic FJ model ignored the competitive relationship
between individuals.

D. MATHEMATICAL PRELIMINARIES
The following definitions and lemmas are needed for the
derivation of our main results in this paper.
Definition 1: If for any initial value xi(0)(i = 1, 2, . . .N ),

the sequence xi(k)(i = 1, 2, . . .N ) has a limit, the model (1)

is convergent. Especially, if ρ((3W )⊗C) < 1, the model (1)
is stable. A stable model (1) is convergent.
Lemma 1 ([45]): Suppose A ∈ Rn×n and B ∈ Rm×m. The

spectrum of the matrix A ⊗ B consists of all products λiµj,
where λ1, . . . , λn are eigenvalues of A and µ1, . . . , µm are
those of B.
Lemma 2 ([18]): A is a stochastic matrix, G(A) has a span-

ning tree and its strongly connected component of all its root
nodes is aperiodic. Then, 1 is the only maximum-modulus
eigenvalue of A, and its algebraic multiplicity is 1.
Lemma 3 ([15]): Let C ∈ Rm×m be an irreducible matrix,

and there exists at least a diagonal entry cii > 0, then ρ(C) =
ρ(|C|) if and only if G(C) is structurally balanced.
Lemma 4 ([19]): Suppose that the matrix W is a row-

stochastic matrix. limk→∞W k exists if and only if each
independent strongly connected component ofG(W ) contains
at least one node whose the lengths of all loops are coprime.

III. MAIN RESULTS
In this section, we discuss the stability and convergence of
system (1). For the convenience of analyzing the problem,
we will rewrite the system (1).

Let x(k) = [x1(k)T , x2(k)T , . . . , xN (k)T ]T , W =

[wij]N×N , x(0) = [x1(0)T , x2(0)T , . . . , xN (0)T ]T , 3 =

diag[λ1, λ2, . . . , λN ]. Then the model (1) can be rewritten by
following compact from:

x(k + 1) = [(3W )⊗ C]x(k)+ [(IN −3)⊗ Im]x(0). (10)

We assume that the index set of non-opening individuals is
expressed as {1, 2, . . . , n1}, the index set of opening agents is
{n1+ 1, n1+ 2, . . . ,N }. Now we can rewrite the matrix3W
with the following from:

3W =
[
311W 11 311W 12

0 W 22

]
, (11)

where 311
=diag[λ1, λ2, . . . , λn1 ], W

11
= [wij]n1×n1 , i, j ∈

{1, 2, . . . , n1}, W 12
= [wij]n1×(N−n1), i ∈ {1, 2, . . . , n1},

j ∈ {n1 + 1, n1 + 2, . . . ,N }. W 22
= [wij](N−n1)×(N−n1),

i, j ∈ {n1 + 1, n1 + 2, . . . ,N }.
In our paper, the considered graph is a signed graph. Here,

we firstly consider the structurally balanced graph.
(A) G(W ) is a structural balanced graph.
Because G(W ) is structurally balanced, there exists

a diagonal matrix P =diag[d1, d2, . . . , dN ] such that
PAP ≥ 0 where di ∈ {1,−1}.
Let

y(k + 1) = (P⊗ Im)x(k + 1). (12)

As P−1 = P, we also obtain that x(k+1) = (P⊗ Im)y(k+1).
At this time

y(k + 1)

= (P⊗ Im)x(k + 1)

= (P⊗ Im){[(3W )⊗ C]x(k)+ [(IN −3)⊗ Im]x(0)}

= [(P3WP)⊗ C]y(k)+ [(IN −3)⊗ Im]y(0). (13)
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Let y1(k) = [y1(k)T , y2(k)T , . . . , yn1 (k)
T ]T , P1 =

diag[d1, d2,. . . , dn1 ], y
2(k) = [yn1+1(k)

T , yn1+2(k)
T , . . . ,

yN (k)T ]T , P2 =diag[dn1+1, dn1+2, . . . , dN ]. Then we have

P =
[
P1

P2

]
Therefore, we can rewrite model (13) with the following

form:[
y1(k + 1)
y2(k + 1)

]
=

[
(P1311W 11P1)⊗ C (P1311W 12P2)⊗ C

0 (P2W 22P2)⊗ C

] [
y1(k)
y2(k)

]
+

[
(In1 −3

11)⊗ Im
0

] [
y1(0)
y2(0)

]
=

[
(P1311W 11P1)⊗ C (P1311W 22P2)⊗ C

0 (P2W 22P2)⊗ C

] [
y1(k)
y2(k)

]
+

[
[(In1 −3

11)⊗ Im]y1(0)
0

]
.

That is to say:

y1(k + 1) = [(P1311W 11P1)⊗ C]y1(k)

+[(P1311W 12P2)⊗ C]y2(k)

+[(In1 −3
11)⊗ Im]y1(0), (14)

y2(k + 1) = [(P2W 22P2)⊗ C]y2(k). (15)

Theorem 1: If the opening agents are absent, then the
model (1) is stable. At this time, the final opinion

x ′C : = lim
k→∞

x(k)

= P∗{[(ImN − P3WP)⊗ C]−1(IN −3)}P∗x(0), (16)

where P∗ = P⊗ Im.
Proof:We construct a matrix B as following:

B(N+1)×(N+1) =
[
1 01×N
β P3WP

]
,

where β = [β1, β2, . . . , βN ]T , βi = 1 − λii. Obviously, the
matrix B is row-stochastic,G(B) contains a spanning tree and
an unique root node.

In other words, strongly connected component consist-
ing of all root nodes is aperiodic. According to Lemma 2,
we know that 1 is the only maximum-modulus eigenvalue of
B, and its algebraic multiplicity is 1.

Furthermore, we have

|λIN+1 − B|

=

∣∣∣∣[λ λE
]
−

[
1 01×N
β P3WP

]∣∣∣∣
=

∣∣∣∣λ− 1 01×N
−β λIN − P3WP

∣∣∣∣
= (λ− 1)|λIN − P3WP|. (17)

According to (17), it can be obtained that ρ(P3WP) < 1.
We know that ρ(C) ≤ 1, hence we have ρ[(P3WP)⊗C] < 1,

if this holds:

y(k + 1) = [(P3WP)⊗ C]y(k)+ [(IN −3)⊗ Im]y(0)

= [(P3WP)⊗ C]{[(P3WP)⊗ C]y(k − 1)

+[(IN −3)⊗ Im]y(0)} + [(IN −3)⊗ Im]y(0)

= . . .

= [(P3WP)⊗ C]k+1y(0)

+{[(P3WP)⊗ C]k + . . .+ ImN }

× [(IN −3)⊗ Im]y(0). (18)

As ρ[(P3WP) ⊗ C] < 1, we have limk→∞[(P3WP) ⊗
C]k+1 = 0. Besides, {[(P3WP) ⊗ C]k + . . . + ImN }
[ImN − (P3WP) ⊗ C] = ImN − [(P3WP) ⊗ C]k+1,
so limk→∞{[(P3WP)⊗C]k+. . .+ImN } = [ImN−(P3WP)⊗
C]−1. Therefore, limk→∞ y(k + 1) = [ImN − (P3WP) ⊗
C]−1[(IN −3)⊗ Im]y(0).
Notice that x(k + 1) = (P⊗ Im)y(k + 1) and our proof has

been completed.
Corollary 1: If the graph G(W ) is strongly connected and

3 6= IN , then the model (1) is stable.
Proof: The strong connectivity of G(W ) implies that the

agents are either stubborn or reachable by the other stubborn
agents. It indicates that the opening agents disappear. Accord-
ing to Theorem 1, the conclusion is obviously true.

When the logic matrix is structurally unbalanced, we have
the conclusion as follows.
Theorem 2: If the matrix C is irreducible and G(C) is

structurally unbalanced, then the model (1) is stable and the
vector of final opinions is (16).
Proof: According to Lemma 3, if the matrix C is irre-

ducible and G(C) structurally unbalanced, then ρ(C) <

ρ(|C|) = 1. Noticing that ρ((P3WP)⊗C) = ρ(P3WP)ρ(C)
and ρ(P3WP) = ρ(3W ) ≤ 1, then we obtain that
ρ((P3WP) ⊗ C) < 1. Next, according to the proof of
Theorem 1, one can complete the proof of Theorem 2.

Next, we consider the case where there exist opening
agents and the matrix C is structurally balanced. And the
conclusion is as follows.
Theorem 3:When there exist the opening agents. Suppose

the matrix C is structurally balanced and G(W ) has a self-
loop. The model (1) is convergent if and only if each inde-
pendent strongly connected component of G(C) and G(W 22)
contains at least one node whose the lengths of all loops are
coprime. The final opinions

x ′C = P∗
[
[(In1 − P

1311W 11P1)⊗ C]−1 0
0 I(N−n1)m

]
QP∗x(0), (19)

where

Q =
[
(In1 −3

11)⊗ Im (P1311W 12P2W 22
∗ )⊗ CC∗

0 W 22
∗ ⊗ C∗

]
,

W 22
∗ = limk→∞(P2W 22P2)k and C∗ = limk→∞ Ck .
Proof: It can be seen from the above that x(k + 1) and

y(k + 1) have the same convergence. If each independent
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strongly connected component of G(C) and G(W 22) contains
at least one node which the length of all loops is coprime,
then each independent strongly connected component of
G(P2W 22P2) also contains at least one node which the length
of all loops is coprime. According to the Lemma 4, we know
that limk→∞(P2W 22P2)k exists. Obviously, limk→∞ Ck also
exists. Then we have y2(k)→ (W 22

∗ ⊗ C∗)y
2(0) as k →∞,

if this holds, according to (14) and (15), similar to the proof
of [14], one immediately obtains (19). The sufficient part has
proved.

Proof of necessity: According to (14) and (15), the conver-
gence of the model (1) implies that limk→∞[(P2W 22P2) ⊗
C]k exists. Furthermore, the existence of limk→∞[(P2W 22

P2) ⊗ C]k shows that both limk→∞[(P2W 22P2)]k and
limk→∞ Ck exist. Otherwise, we suppose that limk→∞[(P2

W 22P2)]k doesn’t exist. Noticing that the matrix P2W 22P2

is a stochastic matrix, 1 is an eigenvalue of it. On the
other hand, when limk→∞[(P2W 22P2)]k doesn’t exist, there
must exist a eigenvalue α of the matrix P2W 22P2 such that
α 6= 1 and its modulus is 1. Since the matrix C is struc-
turally balanced, it means that 1 is the maximum-modulus
eigenvalue of it. According to Lemma 1, 1 · α = α is the
maximum-modulus eigenvalues of P2W 22P2 ⊗ C . Noticing
α 6= 1, therefore we conclude that limk→∞[(P2W 22P2) ⊗
C]k doesn’t exist. This is obviously contradictory. Similarly,
if we suppose that limk→∞ Ck doesn’t exist, we can obtain
that limk→∞[(P2W 22P2) ⊗ C]k also doesn’t exist. Noting
that both G(C) and G(W 22) have a self-loop, it implies that
each independent strongly connected component ofG(C) and
G(W 22) contains at least one node with the length of all
loops is coprime. According to Lemma 4, we know that both
limk→∞ Ck and limk→∞[(P2W 22P2)]k exist. The proof of
Theorem 3 has been completed.
(B) G(W ) is a structurally unbalanced graph.
In this section, we reclassify the individuals. We divide

all individuals into non-totally stubborn individuals which is
represented by index set {1, 2, . . . , n2} and totally stubborn
individuals with {n2+1, n2+2, . . . ,N }. Then the system (1)
can be represented as following:

xi(k + 1) = λiC
n2∑
j=1

wijxj(k)+ (1− λi)xi(0)

+λiC
n∑

j=n2+1

wijxj(0)(i ∈ {1, 2, . . . , n2}), (20)

xj(k + 1) = xj(0), (j ∈ {n2 + 1, n2 + 2, . . . ,N }). (21)

We rewrite the matrix 3W as follows:

3W =
[
322W 11 322W 12

0 0

]
, (22)

where 322
=diag[λ1, λ2, . . . , λn2 ], W

11
= [Wij]n2×n2 ,

W 12
= [Wij]n2×(N−n2), (i ∈ {1, 2, . . . , n2}, j ∈ {n2 +

1, n2+2, . . . ,N }). Then the model (20), (21) can be rewritten

as follows:[
x1(k + 1)
x2(k + 1)

]
=

[
(322W 11)⊗ C (322W 12)⊗ C

0 0

] [
x1(k)
x2(k)

]
+[(IN −3)⊗ Im]

[
x1(0)
x2(0)

]
. (23)

Remark 4: If 322W 11 is structurally balanced, similar to
Theorem 2, we can obtain the conclusion of the convergence
of the model. As the length of our paper, we will not repeat
here. Next, the main thing that we focus on is the convergence
of system (23) when 322W 11 is structurally unbalanced.
In this case, our conclusion is as follows.
Theorem 4: The system (23) is convergent if 322W 11 is

structurally unbalanced and strongly connected. At this time,
x2(k) → x2(0); x1(k) → [(In2 − 3

22W 11) ⊗ C]−1{[(In2 −
322)⊗ In2 ]x

1(0)+ [(322W 12)⊗ C]x2(0)}.
Proof: As G(322W 11) is structurally unbalanced and

strong connected, according to Lemma 3, we have
ρ(322W 11) < ρ(|322W 11

|) ≤ 1. As ρ(C) ≤ 1, we can
get ρ[(322W 11) ⊗ C] < 1. According to the proof of The-
orem 2, we can obtain limk→∞ x1(k) = [(IN − 322W 11) ⊗
C]−1{[(IN −322)⊗ In2 ]x

1(0)+ [(322W 12)⊗ C]x2(0)}.

IV. NUMERICAL EXAMPLE
In this section, we will give four examples to verify the
validity of our conclusions. In the following simulations,
the blue and red lines are used to represent the opinions of
stubborn agents and non-stubborn agents, respectively.
Example 3: In this example, we consider a network with

7 agents. The network topology, logic matrix and the initial
opinions of 7 agents are given as follows:

W3 =



0.3 0 0 0.3 0.1 0 − 0.3
0.3 0.2 0.1 0 0.2 − 0.2 0
0 0.3 0.2 0.4 0.1 0 0
0.2 0 0.2 0.4 0.2 0 0
0 0 0.2 0.3 0.3 0 − 0.2
0 − 0.3 0 0 0.2 0 0.5
−0.1 0 − 0.4 0 0 0.3 0.2


,

C2 =

[
0.9 0.1
0.8 0.2

]
,

x(0)a = [0.3,−0.1, 0.6, 0.5, 0.1,−0.6, 0.4],

x(0)b = [0.5, 0.3,−0.8, 0.1, 0.7, 0.6, 0.2]. (24)

x(0)a and x(0)b represent the initial opinions of 7 agents about
the topic (a) and the topic (b), respectively. According to
W3, we know that G(W3) is structurally balanced and has a
spanning tree. Let 31 = diag[0, 0.7, 1, 1, 1, 1, 1], then the
individual 1 is a totally stubborn agent and the individual 2
is a stubborn agent. The non-stubborn agents 3,4,5,6
and 7 are influenced by the agents 1 and 2, which implies
that the conditions of Theorem 1 are satisfied. The evolutions
of opinions are shown in Fig.1 and Fig.2. According to Fig.1
and Fig.2, we find that the system reaches the equilibrium
point quickly.
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FIGURE 1. Evolution of opinions for the topic a in Example 3.

FIGURE 2. Evolution of opinions for the topic b in Example 3.

Let 3 = IN , we can obtain a similar DrGroot model.
In the model, we consider the same initial opinions (24) and
the evolutions of opinions are shown in Fig.3 and Fig.4. It is
obvious that the final opinions of the similar DeGroot model
reach an agreement. It implies that the stubborn agents play an
important role in social networks. Furthermore, if letC2 = I2,
our model degenerates into the classical FJ model. Under
these circumstances, for the initial opinions (24), the evolu-
tions of opinions are shown in Fig.5 and Fig.6. Compared
Figs.1.2 with Figs.5.6, one can find that logical matrix C can
affect the final opinion value. So, for the same initial opinions,
our presented model and the classical FJ model will generally
converge to the different opinions.
Example 4: In this example, we replace the network topol-

ogy and logic matrix in example 3 with W4 and C3. Other
conditions remain the same.

W4 =



0.3 0 0.3 0 0 0 −0.4
0.3 0.4 0 0 0.3 0 0
0 0.5 0.1 0.1 0 −0.3 0
0.2 0 0.3 0.3 0.2 0 0
0 0 0 0.2 0 0 −0.8
0 0 0 0 0 0.2 0.8
0 0 0 0 0 0.7 0.3


.

C3 =

[
0.9 −0.1
−0.8 0.2

]
.

FIGURE 3. Evolution of opinions of the similar DeGroot model for topic a
in Example 3.

FIGURE 4. Evolution of opinions of the similar DeGroot model for topic b
in Example 3.

FIGURE 5. When C = Im, evolution of opinions for topic a in Example 3.

According to W4, it can be easily found that the agents 6
and 7 are opening agents and the agents 3,4,5 are influenced
by the agents 1 and 2. The network topology W 22 consisting
of the agents 6 and 7 is given as follows:

W 22
=

[
0.2 0.8
0.7 0.3

]
.
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FIGURE 6. When C = Im, evolution of opinions for topic b in Example 3.

FIGURE 7. Evolution of opinions for the topic a in Example 4.

According to C3 and W 22, we know that each independent
strongly connected component ofG(C3) andG(W 22) contains
at least one node which the length of all loops is coprime.
Besides,G(C3) is structurally balanced. Therefore, the condi-
tions of Theorem 3 are satisfied. It implies that the system (1)
is convergent for any initial opinions. We use the initial
opinions (24) in Example 3. The evolutions of opinions are
shown in Fig.7 and Fig.8. Similar to Example 3, we assume
that 3 = IN . According to Fig.9 and Fig.10, the similar
DeGroot model can achieve bipartite consensus.
Example 5: In this example, we still consider a network

with 7 agents. The network topology and the initial opinions
are as follows:

W5 =



0.3 0 0 0.2 0 − 0.5 0
0.2 0.3 0 0.4 0 0.1 0
0.5 0 0 0 0.3 0 − 0.2
0 0.4 0 0.5 0 − 0.1 0
0 0.5 0 0 0.1 0.4 0
0 0.4 0 0.3 0 0.3 0
0 − 0.2 0 0.4 0 0 0.4


.

x(0)a′ = [0.6, 0.5, 0.1,−0.6, 0.4,−0.1, 0.3],

x(0)b′ = [−0.8, 0.1, 0.7, 0.6, 0.2, 0.3, 0.5]. (25)

FIGURE 8. Evolution of opinions for the topic b in Example 4.

FIGURE 9. Evolution of opinions of the similar DeGroot model at topic a
in Example 4.

FIGURE 10. Evolution of opinions of the similar DeGroot model at topic b
in Example 4.

Let 3 = diag[1, 1, 1, 1, 1, 0.7, 0] and C = C2. In this case,
the individual 7 is a totally stubborn agent. According to
G(W5), we know that the graph consisting of all agents except
the agent 7 is structurally unbalanced and strongly connected.
According to Theorem 4, the system (23) is convergent for
any initial opinions. We use the initial opinions (25) and
the evolutions of opinions are shown in Fig.11 and Fig.12.
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FIGURE 11. Evolution of opinions for the topic a in Example 5.

FIGURE 12. Evolution of opinions for the topic b in Example 5.

FIGURE 13. Evolution of opinions of the similar DeGroot model at topic a
in Example 5.

According to Fig.11 and Fig.12, one can easily find that the
system (23) converges to the stable point quickly. We also
assume that 3 = IN , at this time, the similar DeGroot can
achieve consensus which is shown in Fig.13 and Fig.14.
Through the above three examples, we find that both

stubborn individuals and competitive relationship between
individuals can create inconsistent opinions.
Example 6: In this example, we still consider a network

with 7 agents. The network topology and logic matrix are

FIGURE 14. Evolution of opinions of the similar DeGroot model at topic b
in Example 5.

FIGURE 15. Evolution of opinions for the topic a in Example 6.

as follows:

W6=



0.8 0 0 0 −0.1 0 −0.1
0.3 0.2 0 0 0 −0.5 0
0.3 0.3 0.4 0 0 0 0
0 0 0 0 0.5 0.5 0
0 0 0 0.6 0 0 0.4
0 0 0 0.7 0 0 0.3
0 0 0 0 0.8 0.2 0


.

C4 =

[
0.9 −0.1
0.8 0.2

]
.

Let 31 = diag[0, 0.6, 0.8, 1, 1, 1, 1]. Obviously, the
matrixC4 is irreducible andG(C4) is structurally unbalanced.
And there exists at least a diagonal entry cii > 0. So the
condition of theorem 2 is satisfied, i.e., the system is stable.
For randomly initial values, Fig.15 and Fig.16 illustrate the
evolutions of opinions. According to Fig.15 and Fig.16, one
can easily find that the system (10) converges to the stable
point quickly. Let C4 = I2, i.e., our model becomes the
classic FJ model. The evolutions of opinions are represented
by Fig.17 and Fig.18. Obviously, through Fig.17 and Fig.18,
the system (10) does not converge. It implies that considering
the dependent relationship between topics may affect the
convergence of opinions. So, according to Example 3 and 6,
it can be concluded the dependent relationship between topics
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FIGURE 16. Evolution of opinions for the topic b in Example 6.

FIGURE 17. When C4 = I2, evolution of opinions for the topic a in
Example 6.

FIGURE 18. When C4 = I2, evolution of opinions for the topic b in
Example 6.

can not only affect the final opinion value, but also affect the
convergence of opinions. Therefore, it is very important to
consider the dependencies between topics.

V. CONCLUSION
In this paper, by extending the classic FJ model, a new
opinion dynamics model has been presented, in which the

individuals’ opinions are affected by the competitive mecha-
nism, stubborn agents and the interdependent relationship of
multiple topics. For structurally balanced network topologies,
we have obtained the conditions of stability and convergence
of the model respectively. For structurally unbalanced net-
work topologies, we have achieved the conditions of conver-
gence. These conditions fully illustrate the influence of topic
interdependent relations and individual competition mecha-
nism on the evolutions of opinions. Finally, several examples
have been used to verify our conclusions.

REFERENCES
[1] Y. Dong, M. Zhan, G. Kou, Z. Ding, and H. Liang, ‘‘A survey on the fusion

process in opinion dynamics,’’ Inf. Fusion, vol. 43, pp. 57–65, Sep. 2018.
[2] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, and Y. Shi, ‘‘Graph K-means

based on leader identification, dynamic game, and opinion dynamics,’’
IEEE Trans. Knowl. Data Eng., vol. 32, no. 7, pp. 1361–1438, Jul. 2020.

[3] Y. Tang, D. Zhang, P. Shi, W. Zhang, and F. Qian, ‘‘Event-based formation
control for nonlinear multiagent systems under DoS attacks,’’ IEEE Trans.
Autom. Control, vol. 66, no. 1, pp. 452–459, Jan. 2021.

[4] G. Chen, X. Duan, N. E. Friedkin, and F. Bullo, ‘‘Social power dynamics
over switching and stochastic influence networks,’’ IEEE Trans. Autom.
Control, vol. 64, no. 2, pp. 582–597, Feb. 2019.

[5] L. Vassio, F. Fagnani, P. Frasca, and A. Ozdaglar, ‘‘Social power dynamics
over switching and stochastic influence networks,’’ IEEE Trans. Control
Netw. Syst., vol. 1, no. 1, pp. 109–120, Apr. 2014.

[6] V. Gazi and K. M. Passino, ‘‘Stability analysis of swarms,’’ IEEE Trans.
Autom. Control, vol. 48, no. 4, pp. 692–697, 2003.

[7] Y. Tang, D. Zhang, D. W. C. Ho, W. Yang, and B. Wang, ‘‘Event-based
tracking control of mobile robot with denial-of-service attacks,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 50, no. 9, pp. 3300–3310, Sep. 2020.

[8] H. Liang, Y. Yang, and X. Wang, ‘‘Opinion dynamics in networks with
heterogeneous confidence and influence,’’ Phys. A, Stat. Mech. Appl.,
vol. 392, no. 9, pp. 2248–2256, 2013.

[9] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo, ‘‘Opinion dynamics
and the evolution of social power in influence networks,’’ SIAM Rev.,
vol. 57, no. 3, pp. 367–397, 2015.

[10] P. Jia, N. E. Friedkin, and F. Bullo, ‘‘Opinion dynamics and social power
evolution: A single–timescale model,’’ IEEE Trans. Control Netw. Syst.,
vol. 7, no. 2, pp. 899–911, Jun. 2020.

[11] W. Zhang, Q.-L. Han, Y. Tang, and Y. Liu, ‘‘Sampled-data control for a
class of linear time-varying systems,’’ Automatica, vol. 103, pp. 126–134,
May 2019.

[12] X. Wu, Y. Tang, and J. Cao, ‘‘Input-to-state stability of time-varying
switched systems with time delays,’’ IEEE Trans. Autom. Control, vol. 64,
no. 6, pp. 2537–2544, Jun. 2019.

[13] X. Wu, Y. Tang, J. Cao, and X. Mao, ‘‘Stability analysis for continuous-
time switched systems with stochastic switching signals,’’ IEEE Trans.
Autom. Control, vol. 63, no. 9, pp. 3083–3090, Sep. 2018.

[14] S. E. Parsegov, A. V. Proskurnikov, R. Tempo, and N. E. Friedkin, ‘‘Novel
multidimensional models of opinion dynamics in social networks,’’ IEEE
Trans. Autom. Control, vol. 62, no. 5, pp. 2270–2285, May 2017.

[15] G. He, H. Ruan, Y. Wu, and J. Liu, ‘‘Opinion dynamics with com-
petitive relationship and switching topologies,’’ IEEE Access, vol. 9,
pp. 3016–3025, 2021.

[16] Y. Tang, F. Qian, H. Gao, and J. Kurths, ‘‘Synchronization in complex net-
works and its application—A survey of recent advances and challenges,’’
Annu. Rev. Control, vol. 38, no. 2, pp. 184–198, 2014.

[17] M. H. DeGroot, ‘‘Reaching a consensus,’’ J. Amer. Statist. Assoc., vol. 69,
no. 345, pp. 118–121, Mar. 1974.

[18] W. Ren and R. W. Beard, ‘‘Consensus seeking in multiagent systems
under dynamically changing interaction topologies,’’ IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[19] L. Wang, Y. Tian, and J. Du, ‘‘Opinion dynamics in social networks,’’
(in Chinese), Scientia Sinica, Inf., vol. 48, no. 1, pp. 3–23, Jan. 2018.

[20] M. Ye, Opinion Dynamics and the Evolution of Social Power in Social
Networks. Berlin, Germany: Springer, 2019.

[21] Z. Xu, J. Liu, and T. Basar, ‘‘On a modified DeGroot-Friedkin model
of opinion dynamics,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2015,
pp. 1047–1052.

VOLUME 10, 2022 31605



G. He et al.: Opinion Dynamics With Antagonistic Relationship and Multiple Interdependent Topics

[22] P. Dandekar, A. Goel, and D. T. Lee, ‘‘Biased assimilation, homophily, and
the dynamics of polarization,’’ Proc. Nat. Acad. Sci. USA, vol. 110, no. 15,
pp. 5791–5796, 2013.

[23] A. Nedic and B. Touri, ‘‘Multi-dimensional Hegselmann-Krause dynam-
ics,’’ in Proc. IEEE 51st IEEE Conf. Decis. Control (CDC), Dec. 2012,
pp. 68–73.

[24] E. Girejko, L. Machado, A. B. Malinowska, and N. Martins, ‘‘Krause’s
model of opinion dynamics on isolated time scales,’’Math. Methods Appl.
Sci., vol. 39, no. 18, pp. 5302–5314, Dec. 2016.

[25] S. E. M. Tadmor, ‘‘Heterophyllous dynamics enhanced consensus,’’ SIAM
Rev., vol. 56, no. 4, pp. 577–621, 2014.

[26] N. Friedkin and E. Johnsen, Social Influence Networks and Opinion
Change. New York, NY, USA: HarperCollins, 1999.

[27] D. Bindel, J. Kleinberg, and S. Oren, ‘‘How bad is forming your own
opinion?’’ Games Econ. Behav., vol. 92, pp. 248–265, Jul. 2015.

[28] J. Ghaderi and R. Srikant, ‘‘Opinion dynamics in social networks with
stubborn agents: Equilibrium and convergence rate,’’ Automatica, vol. 50,
no. 12, pp. 3209–3215, 2014.

[29] S. Stephens-Davidowitz and A. Pabon, Everybody Lies: Big Data, New
Data, and What the Internet Can Tell us About Who we Really are.
New York, NY, USA: Harper-Collins, 2017.

[30] P. Frasca, C. Ravazzi, R. Tempo, and H. Ishii, ‘‘Gossips and prejudices:
Ergodic randomized dynamics in social networks,’’ IFAC Proc. Volumes,
vol. 46, no. 27, pp. 212–219, 2013.

[31] C. Ravazzi, P. Frasca, R. Tempo, and H. Ishii, ‘‘Ergodic randomized
algorithms and dynamics over networks,’’ IEEE Trans. Control Netw. Syst.,
vol. 2, no. 1, pp. 78–87, Mar. 2015.

[32] N. A. F. P. Jia and A. Mirtabatabaei, ‘‘Opinion dynamics and the evolu-
tion of social power in influence networks,’’ SIAM Rev., vol. 57, no. 3,
pp. 367–391, 2015.

[33] N. E. Friedkin, ‘‘The problem of social control and coordination of com-
plex systems in sociology: A look at the community cleavage problem,’’
IEEE Control Syst. Mag., vol. 35, no. 3, pp. 40–51, Jun. 2015.

[34] Y. Zhu, S. Li, J. Ma, and Y. Zheng, ‘‘Bipartite consensus in networks
of agents with antagonistic interactions and quantization,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 65, no. 12, pp. 2012–2016, Dec. 2018.

[35] C. Altafini, ‘‘Consensus problems on networks with antagonistic inter-
actions,’’ IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935–946,
Apr. 2013.

[36] D. Xue, S. Hirche, and M. Cao, ‘‘Evolution of social power over influ-
ence networks containing antagonistic interactions,’’ Inf. Sci., vol. 540,
pp. 449–468, Nov. 2020.

[37] Z. Meng, G. Shi, K. H. Johansson, M. Cao, and Y. Hong, ‘‘Behaviors of
networks with antagonistic interactions and switching topologies,’’ Auto-
matica, vol. 73, pp. 110–116, Nov. 2016.

[38] S. Zhai and W. X. Zheng, ‘‘Dynamic behavior for social networks with
state-dependent susceptibility and antagonistic interactions,’’ Automatica,
vol. 129, Jul. 2021, Art. no. 109652.

[39] X. Lin, Q. Jiao, and L. Wang, ‘‘Competitive diffusion in signed social
networks: A game-theoretic perspective,’’ Automatica, vol. 112, Feb. 2020,
Art. no. 108656.

[40] M. Ye, M. H. Trinh, Y.-H. Lim, B. D. O. Anderson, and H.-S. Ahn,
‘‘Continuous-time opinion dynamics on multiple interdependent topics,’’
Automatica, vol. 115, May 2020, Art. no. 108884.

[41] F. Dietrich, S. Martin, and M. Jungers, ‘‘Control via leadership of opinion
dynamics with state and time-dependent interactions,’’ IEEE Trans. Autom.
Control, vol. 63, no. 4, pp. 1200–1207, Apr. 2018.

[42] L. Li, A. Scaglione, A. Swami, and Q. Zhao, ‘‘Consensus, polarization and
clustering of opinions in social networks,’’ IEEE J. Sel. Areas Commun.,
vol. 31, no. 6, pp. 1072–1083, Jun. 2013.

[43] X. L. Shi, J. Cao, G. Wen, and M. Perc, ‘‘Finite-time consensus
of opinion dynamics and its applications to distributed optimization
over digraph,’’ IEEE Trans. Cybern., vol. 49, no. 10, pp. 3767–3779,
Oct. 2019.

[44] V. Amelkin, F. Bullo, and A. K. Singh, ‘‘Polar opinion dynamics in social
networks,’’ IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5650–5665,
Nov. 2017.

[45] R. S. Varga, Matrix Iterative Analysis. New York, NY, USA: Springer,
1999.

GUANG HE received the M.S. degree in com-
putational mathematics from the Harbin Institute
of Technology, Heilongjiang, China, in 2006, and
the Ph.D. degree in electrical engineering from
Donghua University, Shanghai, China, in 2016.
He has been an Associate Professor with the
School of Mathematics and Finance, Anhui Poly-
technic University, Anhui, China, since 2017. His
current research interests include switched sys-
tems, opinion dynamic, and consensus.

ZHENGQIANG CI received the B.S. degree in
financial engineering from Chuzhou University,
Anhui, China, in 2019. He is currently pursuing the
M.S. degree in mathematics and applied mathe-
matics with Anhui Polytechnic University, Anhui.
His current research interests include complex net-
works and opinion dynamics.

XIAOTAI WU (Member, IEEE) received the M.S.
degree in applied mathematics from Jiangsu Uni-
versity, Zhenjiang, China, in 2006, and the Ph.D.
degree in control theory and engineering from
Donghua University, Shanghai, China, in 2012.
He is currently a Full Professor with the Depart-
ment of Mathematics, Anhui Polytechnic Univer-
sity, China. His current research interests include
stability and control of stochastic hybrid systems
and multi-agent systems.

MENGYAO HU received the B.S. degree in
industrial engineering from Anhui Polytechnic
University, Anhui, China, in 2019. She is cur-
rently pursuing the M.S. degree in mathematics
and applied mathematics with Anhui Polytechnic
University, Anhui. Her current research interests
include social networks and switched systems.

31606 VOLUME 10, 2022


