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ABSTRACT Overcrowding in emergency departments (EDs) has long been a problem worldwide and has
serious consequences for patient satisfaction and safety. Typically, overcrowding is caused by delays in the
boarding time of ED patients waiting for inpatient beds. If the hospitalization of patients is predicted early
enough in EDs, inpatient beds can be prepared in advance and the boarding time can be reduced. We design
machine learning-based hospitalization predictive models using data on 27,747 patients and compare the
experimental results. Five predictive models are designed: 1) logistic regression, 2) XGBoost, 3) NGBoost,
4) support vector machine, and 5) decision tree models. Based on the predictive results, we estimate the
quantitative effects of hospitalization predictions on EDs and wards. Using the data from the ED of a general
hospital in South Korea, our experiments show that the ED length of stay of a patient can be reduced by
12.3 minutes on average and the ED can reduce the total length of stay by 340,147 minutes for a year.

INDEX TERMS Emergency department, machine learning, hospitalization prediction, estimation of quan-
titative effects.

I. INTRODUCTION
Emergency department (ED) overcrowding is a severe prob-
lem in the health sector worldwide [1]. It occurs when a
discrepancy is observed between the medical demands of ED
patients and resource supplies that are required for proper
patient flow and treatment [2]. ED overcrowding reduces the
quality of treatment for patients and increases their length of
stay (LOS) and mortality rate [2], [3]. The resources related
to handling ED overcrowding include treatment-related per-
sonnel, testing laboratories, and inpatient beds. The lack of
available beds to accommodate patients hospitalized in EDs
is the most critical factor for ED overcrowding [4].

Boarding time is defined as the time between making
the clinical decision to hospitalize ED patients and their
departure from the ED. This time is often prolonged because
the demand for inpatient beds outweighs the availability of
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FIGURE 1. Ratio of boarding time to LOS in the ED (fourth quarter of
2018, Korea University Anam Hospital).

beds [5], [6]. During the fourth quarter of 2018, the average
LOS for hospitalized patients in the ED at a general hospital
in South Korea was more than 7 h (Fig. 1).
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The ratio of the boarding time to the LOS in the ED was
47% on average. Since boarding time is a hindrance to receive
medical treatment in the ED, it is beneficial to reduce the
boarding time as much as possible. However, the competition
between ED patients and outpatients for a finite number of
inpatient beds increases the boarding time.

Predicting the hospitalization of ED patients is one of the
measures taken to reduce the boarding time and facilitate
inpatient bed management, staff planning, and specialized
workflows within the ED [7]. This study hypothesizes that
hospitalization predictions can initiate the preparation of
inpatient beds in advance and ultimately help reduce the
LOS of ED patients. Therefore, we aim to identify a model
that accurately predicts ED patients who are hospitalized to
inpatient beds at an early stage of ED stay. We also estimate
the quantitative effects of hospitalization predictions on EDs
and wards and the extent to which they contribute to reducing
the LOS in the ED.

We performed a predictive analysis for a single general
hospital. ED patients’ flows are similar across general hospi-
tals. ED patients typically go through the following steps: ED
entrance, triage and initial exam, treatment, disposition, and
hospitalization or discharge from the ED [8], [9]. In addition,
most EDs obtain similar clinical information from the initial
exams for their patients [10], [11]. This study uses data
recorded from the ED patients’ flow and initial exams that are
similarly implemented at general hospitals. For these reasons,
there is little complication in applying the machine learning
methods and quantitative effect analysis to their hospitals.

The remainder of this paper is organized as follows.
Section II reviews various algorithms and previous literature
on hospitalization predictions for ED patients. The data, algo-
rithms, and experimental settings for this study are described
in Section III. Section IV explains the experimental results.
Section V discusses the interpretation of the quantitative
effects of hospitalization predictions. Finally, the conclusions
of this study are presented in Section VI.

II. RELATED LITERATURE
This section introduces various predictive studies for ED
patients. Some researchers have generally used logistic
regression (LR) and ensemble-based classification algo-
rithms in predictive studies. Kim et al. [12] predicted the
hospitalization of patients visiting the ED and showed which
characteristics of the patients influenced their likelihood of
hospitalization. Their predictive model was mainly analyzed
based on accuracy and the area under the ROC curve (AUC).
They found that the older the patient and the more urgent
their condition, the more likely they were to be hospitalized.
Lucke et al. [13] divided 21,287 ED patients into two groups
(>70 years and <70 years old) and predicted hospitalization
using LR. They evaluated patients’ hospitalization predic-
tions using indices like AUC and positive prediction values.
Their study demonstrated that predictive models could help
identify patients who were more likely to be hospitalized
using readily available information, such as their vital signs.

Graham et al. [11] used three algorithms, namely LR, the
gradient boosting model (GBM), and decision tree (DT),
to predict the hospitalization for ED patients and analyzed
107,545 patient data. They suggested that when choosing
a predictive model, simplicity and interpretation efficiency
took precedence over the model’s performance. Some stud-
ies have considered using neural networks in addition to
regression and ensemble-based classifications for hospital-
ization predictions. Araz et al. [14] performed hospitaliza-
tion predictions based on LR, DT, support vector machine
(SVM), extreme gradient boosting (XGBoost), random for-
est (RF), and artificial neural network (ANN) models using
data from 118,005 patients. Among the predictive models,
XGBoost showed the highest AUC. Hong et al. [8] analyzed
LR, XGBoost, and deep neural networks (DNNs). Based on
560,486 patient visits, they analyzed three groups of data:
patient severity classification data, clinical data from previous
visits, and all the available data from previous and current
visits. In this analysis, XGBoost and DNN displayed good
AUC values when predicting ED patient hospitalizations.
Golmohammadi [15] presented hospitalization predictions
using LR, ANN, and a statistical method that patterned the
similarity of patient characteristics to predict hospitalization.
He showed that the overall accuracy of the three models was
greater than 80%.

ED data include information on the main symptoms of the
patients who visit the ED. In general, these symptoms are
recorded in free text and are not standardized. Even the same
symptom is expressed in various ways. Consequently, the
number of main symptoms in the data is quite large, reaching
hundreds or thousands [16]. Since including several symp-
toms in a predictive analysis could reduce the prediction accu-
racy, if the target of the analysis was narrowed to a specific
patient (e.g., a diabetic patient), the number of main symp-
toms that needed to be preprocessed would decrease. There-
fore, the complexity of preprocessing can be reduced, and
the accuracy of the predictions can increase. Accordingly,
some researchers have performed predictive studies restrict-
ing the target of the analysis, such as studies on patients
with a specific disease or patients of a particular age group.
Dinh et al. [17] limited the targets of analysis to adult
patients aged 16 years or older and included 860,832 patient
data in the analysis. LR was used to predict hospitaliza-
tions to improve the patient flow and aid clinical decision-
making in the ED. LR was interpreted based on AUC. Their
study showed that accurate hospitalization predictions for
ED patients could be made using initially available patient
information, such as age, mode of arrival, and time of arrival.
Fenn et al. [18] constructed a predictive model using Light-
GBM to divide the likelihood of the hospitalization into
four stages: low, medium, high, and very high. A total of
468,167 patient data points were used. Medical personnel
could respond flexibly to patients’ follow-up processes by
dividing them into several categories according to their like-
lihood of hospitalization. This constructed predictive model
was measured based on AUC. Goto et al. [19] studied
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hospitalization predictions for children who visited the ED.
Using data from 52,037 children, they used lasso regression,
RF, XGBoost, and DNN to predict two clinical outcomes:
critical care or hospitalization. These models were evalu-
ated for their sensitivity and specificity; DNN was the best
predictor of hospitalization in children. Horng et al. [20]
used data from 230,936 ED patients to predict their dis-
eases. In addition to curated data, such as patients’ vital
signs, they used free-text information on important symp-
toms to identify patients with sepsis. They employed an
SVM to predict sepsis and assessed it based on AUC. The
SVM achieved high performance using data routinely avail-
able during triage (e.g., reasons for visits and vital signs).
Ram et al. [21] conducted a study to predict the number of
daily ED visits of asthmatics using Twitter and Google data
collected from various regions. They showed that a predictive
model using data over a short period of three months could
predict the ED visits of asthmatics in near real-time. The DT
and ANN models that were used predicted the number of ED
visits for asthmatics in daily low-, medium-, and high-volume
categories. The models were evaluated in terms of their AUC
and precision values; the predictive accuracy of the medium-
volume category obtained using the hybrid ANN and DT
models was the highest. Barack-Corren et al. [7] studied the
prediction of hospitalization for pediatric patients who visited
the ED. A total of 59,033 patient data points were used, and
the predictions were tested using the data that were available
within 10, 30, and 60 min after the patients arrived at the
ED. The predictions were made using a hybrid model that
combined Naive Bayes and LR. They estimated the potential
effects of hospitalization predictions for ED patients. From
the perspective of the ED patients’ flow, they derived the
effects of the time saved in the ED and the time costs in the
inpatient ward (i.e., the total time during which empty beds
were held for ED patients in the inpatient ward).

Natural gradient boost (NGBoost) is a boosting-
based machine learning algorithm published in 2019 by
Duan et al. [22]; this algorithm was designed to estimate
the uncertainty in regression prediction, such as in proba-
bilistic precipitation prediction. They showed that NGBoost
offers competitive performance in negative log-likelihood,
particularly when working on small datasets. In healthcare
research, NGBoost has been used for predictive studies based
on machine learning, such as brain tumor predictions [23]
and treatment frequency predictions for macular degenera-
tion [24]. However, because NGBoost has not been used for
ED hospitalization predictions, this study intends to investi-
gate its use in hospitalization predictions for ED patients.

As machine learning research has become increasingly
dynamic, hospitalization predictions for ED patients are
being steadily studied.

Table 1 summarizes machine learning-based predictive
studies for ED patients. Except for the studies of Jaccinta
(2016) and Davood (2016), most studies have used a large
amount of data, ranging from data on 50,000 to that on
500,000 cases. However, in practice, medical data collection

TABLE 1. Predictive studies for ED patients.

facesmany challenges, owing to patient privacy and organiza-
tional issues. In addition, if a large amount of data is available,
a large amount of time and computing resources are required
to train the models on the data. For these reasons, many
research cases may confine the use of large datasets [25].

However, if the quantity of collected data is smaller, hos-
pitalization predictions may be less effective.

This study makes four major contributions. First, this study
shows that high-accuracy hospitalization predictions are pos-
sible using data on less than 50,000 patients. In our study,
we employ 27,747 patient data points, which are significantly
less than those of previous studies, to predict hospitalization
for ED patients. This study also verifies predictive perfor-
mance based on the amount of data. Second, this study ana-
lyzes hospitalization predictions for all ED patients without
confining the group under study to patient characteristics
such as age and disease. The long boarding time of a patient
between their stay in an ED and that in a ward contributed to
ED overcrowding, regardless of each patient’s specific dis-
ease and age. Third, this study uses NGBoost, which has not
been used for ED patient hospitalization predictions.We use a
smaller set of data than that used in previous studies. There-
fore, we need an algorithm suitable for deriving prediction
performance from a small set of data. Because NGBoost has
the advantages which derive a good prediction performance
from a small set of data, according to Duan et al. [22],
we use it. Finally, this study shows the quantitative effects
of hospitalization predictions on EDs and wards, which most
studies have not. This study refers to the method used by
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Barack-Corren et al. [7] to estimate the effects of hospi-
talization predictions. We reconstruct the method according
to the flow of ED patients and the administrative system
and demonstrate how much hospitalization predictions could
reduce ED overcrowding.

III. MATERIALS AND METHODS
The data collected from the ED include all the electronic
records of the patient, from their date of visit to the reason for
their hospitalization or discharge [26]. This section describes
the information on the variables contained in the data and the
design of predictive models for hospitalization predictions.
Furthermore, this section explains a method for estimating
the time saved in the ED and the time costs in inpatient ward
when hospitalization predictions are adopted in practice.

A. DATA COLLECTION AND DESCRIPTION
This study is based on data recorded in the electronic sys-
tem of Korea University Anam Hospital (KUAH), a general
hospital in South Korea. The collected data include records
on 27,747 patients for seven months from October 2018 to
April 2019. An average of 131 patients visit the hospital’s
ED per day, and approximately 26 ED patients (20%) are
admitted to the general wards or intensive care units. Except-
ing personal patient information, such as names and medical
record numbers, we use all the collected data on the ED
patient records. This study uses 22 variables collected within
20 min after a patient’s entrance to the ED. Within this
timeline, the following information is available:

1) DEMOGRAPHICS
It refers to basic information such as the patient’s age, gender,
and time of arrival at the ED. Gender variables are recorded
in eight categories for each gender of the patient, based on
their year of birth (the 1900s and 2000s) and nationality
(Korean and foreigner).

2) DISEASE STATUS
This refers to information about whether a patient has a
disease or not. The disease’s status is classified into three
categories: presence, absence, and others.

3) VISIT ROUTE
This variable refers to the place from where a patient arrives
at the ED. The patient may have arrived directly or have been
transferred to the ED from another hospital.

4) CATEGORY OF INDIVIDUALS IN TRAFFIC ACCIDENTS
This variable describes a patient’s role at the time of an acci-
dent (e.g., whether the patient was a pedestrian or a driver).

5) INDIVIDUALS IN TRAFFIC ACCIDENT
In the case of a car accident, these variables describe the
situation at the time of the accident (e.g., whether the patient
is wearing a helmet or knee protector).

6) ARRIVAL MODE
This variable refers to the transportation mode used by the
patient to reach the ED. It is classified into walking, hospital
ambulance, public transportation, or others.

7) TRIAGE
Triage evaluates and prioritizes the severity of a patient’s
injury or illness within a short period of time after the patient
arrives at the ED. The closer the triage is to level 1, the more
severe the patient’s status is.

8) REACTION STATUS
This describes how a patient reacts when arriving at the ED.
It is divided into five categories, depending on the patient’s
reaction.

9) CHIEF COMPLAINTS
The chief complaints are the patient’s symptoms when the
patient arrives at the ED, such as abdominal pain and fever.
These chief complaints are collected from texts and include
379 symptoms. Most complaints that occurred in the bottom
5% frequency are observed only once. These are all catego-
rized as ‘‘others.’’

10) VITAL SIGNS
Vital signs are important indicators of the state of a body’s
life support functions. The ED staff quickly checks for signs
of patient vitality before seeing the patient. Blood pressure,
body temperature, pulse rate, oxygen saturation, and breath-
ing are five vital signs observed in the ED.

11) CAUSE OF INJURY
The cause of injury is any physical or chemical source that
leads to injury (e.g., falls, slips, burns, and drug addiction).

12) INTENTIONALITY OF INJURY
The intentionality of injury refers to whether a patient’s injury
occurs intentionally or not.

13) HOSPITALIZATION
Hospitalization is the dependent variable in this study. This
explains whether the patient is hospitalized or not.

Categorical variables are converted to binary vari-
ables using one-hot encoding [27]. After preprocessing,
220 variables are used for the predictive models, and there
are no missing values for the 27,747 ED patients.

Table 2 summarizes the basic descriptive statistics of each
variable for the 27,747 patients. The p-value of each vari-
able represents the statistical significance of hospitalization.
As summarized in Table 2, the ages of the patients in the
ED are evenly distributed. Patients in their 90s or older have
the highest likelihood of hospitalization (48.2%). A total of
73.1% of patients with ED have diseases, of which 26%
are hospitalized. This accounts for 89.9% of the 5,949 ED
inpatients and is consistent with the results of the study
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that patients with chronic diseases, such as diabetes and
sepsis, frequently visited the ED [28]. A total of 0.1% of
ED patients use hospital ambulances to visit the ED, and
80.8% go to hospitalization wards. On the contrary, 51.2%
of ED patients are assigned to triage level 3, accounting for
the largest proportion. However, the hospitalization ratio of
patients is in the decreasing order of the triage level (i.e., the
hospitalization ratio of level 1 patients is the highest and that
of level 5 patients is the lowest).

B. MACHINE LEARNING ALGORITHMS
Most studies related to hospitalization prediction have used
machine learning algorithms. In this study, we also use
machine learning algorithms to classify ED patient hospital-
ization; 1 for hospitalization and 0 for discharge from the ED.
Since LR, SVM, and DT have provided good hospitalization
predictions [11], [14], we use them in our study as well.
Additionally, since XGBoost is known to be superior to other
algorithms in terms of generalization performance and accu-
racy in several fields [29], we predict hospitalization using
XGBoost. We include NGBoost, which is a recent algorithm
that has not been used for ED hospitalization predictions in
other experiments.

1) LOGISTIC REGRESSION (LR)
LR is an efficient and straightforward method for binary or
multiple classification problems. It uses the logit or natural
log of the odds so that the probability of the data belonging to
a particular class is not excluded from the [0, 1] range. LR is a
supervised learning algorithm that categorizes classes accord-
ing to probability and provides accurate predictions [30].

2) EXTREME GRADIENT BOOSTING (XGBOOST)
XGBoost is a highly scalable algorithm developed to improve
performance and computational speed. Boosting is an ensem-
ble technique that adds new models to accommodate for
errors made by existing models. Gradient boosting is used
to create new predictive models using the residuals of fitted
models and minimize losses. XGBoost can be used for both
regression and classification [31].

3) SUPPORT VECTOR MACHINE (SVM)
SVM is a linear learning method and classification method
in supervised learning that finds the optimal hyperplane that
separates two classes. It maximizes the distance between
the two closest classes to achieve a high classification per-
formance [32]. The data points for the two classes closest
to the determined decision boundary are called the support
vectors. The distance between the support vector and decision
boundary is called the margin, and the decision boundary that
maximizes the margin is optimal [33].

4) DECISION TREE (DT)
DT is a nonparametric supervised learning method that is
used for classification and regression. It implements a simple

TABLE 2. Predictive variables and outcomes for 27,747 ED patients.
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TABLE 2. (Continued.) Predictive variables and outcomes for 27,747 ED
patients.

set of rules to create partitions of the generated data and iter-
ates the partitioning process to produce predictions. DT can
classify data without complicated calculations and can be
used for both categorical and classification variables. It is
generally suitable for predicting categorical outcomes [34].

5) NATURAL GRADIENT BOOSTING (NGBOOST)
NGBoost, proposed by Duan et al. [22], is a supervised
learning algorithm with stochastic prediction capabilities.
It estimates the parameters of the conditional probability
distribution P(y|x) as a function of x by boosting. NGBoost
outputs the overall probability distribution for predictions
using natural gradients [35].

C. STUDY SETTING
This section describes the fitting process of the predictive
models using the hyper-parameter tuning and a prediction
evaluation method. We also present two types of experiments
for hospitalization predictions and explain the derivation of
feature importance. Finally, we show how the quantitative
effects of hospitalization predictions could be estimated.

1) MODEL FITTING AND EVALUATION
The predictivemodels are all tested under the same conditions
with a training dataset of 19,422 (70%) and a test dataset
of 8,325 (30%) randomly selected samples. When LR- and
SVM- based predictive models are tested, recursive variable
elimination and cross-validation methods are used to extract
variables that maximize performance. The DT, XGBoost, and
NGBoost models, which are based on embeddedmethods, are
structured to select the features that contribute to the models’
accuracy; thus, separate feature selection is not required.
The predictive models are optimized with hyper-parameters
that maximized AUC by 10-fold cross-validation. Using an
optimized combination of hyper-parameters, 19,422 (70%)
samples are trained, excluding the test set. Subsequently, the
performance of the models on the test set is reviewed within
a 95% confidence interval.

2) PREDICTION AND PERFORMANCE
For the hospitalization predictions, we conduct the following
experiments.

TABLE 3. Confusion matrix.

a: PERFORMANCE COMPARISON FOR PREDICTION MODELS
This analysis uses five machine learning algorithms
(LR, XGBoost, NGBoost, DT, and SVM) to compare the pre-
dictive outcomes for ED patients’ hospitalizations. We pre-
dict hospitalization for ED patients using 27,747 samples.
The predictive results are presented in a confusion matrix,
and they are interpreted. Table 3 represents a confusionmatrix
for the predictive results of this study. A confusion matrix is a
concept in machine learning that contains results about actual
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and predictive classification performed by classification algo-
rithms. The confusion matrix has two dimensions. The actual
class of the object indexes one dimension, and the class
predicted by the classifier indexes the other dimension [36].

This study postulates that if hospitalization predictions are
obtained within 20 min after patients arrive at an ED, it would
positively lead to the reduction of ED overcrowding. There-
fore, it is desirable to select a model with a high true-positive
rate; the true-positive rate (also called recall or sensitivity) is
defined as themeasure of a predictive model’s ability to select
true positive cases from among actual positive cases. In some
cases, patients discharged from the ED are incorrectly pre-
dicted to be hospitalized (false positives). Then, outpatient
hospitalization is delayed due to the reserved empty inpatient
beds for the ED patients, and time is wasted on keeping the
beds empty. Consequently, specificity, the true-negative rate
(i.e., true-negative cases divided by actual negative cases),
should also be considered to avoid wasting time in inpatient
beds when researchers are selecting the best predictivemodel.
Accuracy is the ratio of the total number of correctly predicted
predictions, and it increases even if the true-negative rate,
which may not be of most importance, increases.

However, it is important to verify the reliability of the
predictive model for a new dataset. AUC is a comprehensive
performance measure for all possible classification thresh-
olds, and it is scale-invariant. It measures the quality of the
predictive model, regardless of the classification threshold
that is selected. Therefore, in this study, we use AUC to select
the best predictive model.

b: PERFORMANCE COMPARISON FOR MORE
TRAINING SAMPLES
One of the critical questions in predictive modeling research
is how performance changes according to the amount of
training data [10]. To test the potential benefits of using more
data in modeling, the size of each dataset in this experiment
is changed depending on the number of days. We test predic-
tive performance by gradually increasing the amount of data
(10, 20, 30, 60, 90, 120, 150, 180, and 212 days). The size of
each dataset is determined by calculating the average number
of patients per day from the collected data and multiplying it
by the number of days specified for each dataset. Then, each
dataset is randomly constructed from the data obtained during
the seven months. The experiment show which predictive
algorithm is most effective in handling datasets containing
less than 27,747 patient data (i.e., data available for this
study).

c: FEATURE IMPORTANCE
Feature importance is derived from tree-based algorithms.
Every node creates a set of similar samples using parameters
(Gini index or entropy [37]) that remove impurities for the
variables in a DT. In this study, we derive the feature impor-
tance of hospitalization predictions using the Gini index for
XGBoost and NGBoost predictions.

FIGURE 2. Case of patients flow in ED.

d: ESTIMATING TIME EFFECTS OF HOSPITALIZATION
PREDICTIONS
This section describes how to estimate the consequences of
hospitalization predictions. The estimation method for the
consequences of hospitalization predictions reflects patients’
flow in the ED and administrative processes. The typical
patient flow in the ED is as follows. After a patient enters
the ED, classification based on severity is performed at the
triage stage. Initial examinations, such as blood and reaction
tests, are then completed. All the data used to predict hospi-
talization in ED patients are acquired through triage, initial
examinations, and registration. During treatment, physicians
diagnose and treat the patients. After treatment is completed,
physicians decide whether the patient needs to be directly
discharged from the ED or hospitalized to an inpatient bed;
this decision is called disposition.
We briefly describe the effects of hospitalization predic-

tions in the ED. This study emphasizes that predictive models
can enable decision-making about hospitalization to be made
early within 20 minutes of patients entering the ED. The
administration can prepare an inpatient bed for the ED patient
to be hospitalized in advance. Accordingly, it is possible to
shorten the boarding time for the ED patient to wait for the
inpatient bed after their treatment. In other words, hospitaliza-
tion predictions in the ED can positively affect the overcrowd-
ing by reducing patients’ boarding time and ED length of stay.
When the patient’s hospitalization is decided, an inpatient
bed in a ward is prepared for the patient. We assume that the
boarding time is the same as the bed preparation time, and the
hospitalization prediction for the patient is available 20 min
after entering the ED.
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The ED patients’ flow is categorized into two cases. First,
as shown in Fig. 2(a), there is the case wherein an ED patient
whose boarding time is shorter than the treatment time in the
ED. If the patient is predicted to be hospitalized after the
results of the initial examinations are available, bed prepa-
ration for the patient begins in the wards. While the inpatient
bed is in preparation, the patient will still be treated in the ED.

If the bed preparation is completed before the treatment
ends, the inpatient bed in the wards remains empty until the
treatment ends. The prediction effect depends on how long the
inpatient bed in the wards can be kept empty. The maximum
holding time of the beds is defined as the maximum duration
of time a bed in a ward reserved for an ED patient is kept
empty.

This study observes the time effects of hospitalization
predictions according to the varying maximum holding time
of beds. Second, as shown in Figure. 2(b), if the boarding
time is longer than the treatment time, the bed preparation
is not completed until the treatment ends. In this case, the
patient’s LOS in the ED is reduced by the difference between
the times at which the original hospitalization decision
(i.e., disposition) is made and a prediction is made. It is
assumed that the inpatient bed for the ED patient is occupied
as soon as it is ready.

The quantitative effect of hospitalization predictions
depends on the quality of the predictions. When new data are
provided, the models we use can predict the probability that a
patient is hospitalized. The classification threshold is defined
as a reference point that classifies a prediction as either hospi-
talization or non-hospitalization. If the predicted probability
of hospitalization is higher than the classification thresh-
old, the patient is classified as a predicted inpatient. This
study estimates the time effects of hospitalization predictions
according to prediction quality using the classification thresh-
old.Wefind classification thresholds that yielded specificities
of 90, 95, 99, and 99.9%, respectively. Here, we use data from
patients who are not hospitalized. According to the obtained
classification threshold, all the patients are classified as either
predicted inpatients or non-hospitalized patients. Using the
classified results, we could estimate the time saved in the ED
and the time costs in the inpatient wards for hospitalization
predictions, referring to Algorithms 1 and 2.

We define the time saved in the ED as the reduced EDwait-
ing time due to the ED patients’ hospitalization predictions
and the time costs in the inpatient ward as the time is taken
to maintain an empty bed in the ward. Table 4 explains the
variables included in Algorithms 1 and 2.

IV. RESULTS
A. PERFORMANCE COMPARISON FOR
PREDICTION MODULES
This section describes the results of the hospitalization
predictions for a test dataset (8,325 patients). All five
hospitalization predictive models show high discernment
ability. In Table 5, for 1,788 hospitalized patients, SVM

TABLE 4. Notations for the pseudocode.

predicts 1,248 (69.8%) patients, and XGBoost predicts 1,196
(66.9%) patients to be hospitalized. In contrast, for 6,510
non-hospitalized patients, NGBoost most accurately predicts
6,352 (97.6%) patients to be non-hospitalized.

The AUC, accuracy, sensitivity, and specificity of each
model are summarized in Table 6. Table 6 summarizes that
SVM has an accuracy of 0.8961 (95% CI 0.88–0.90), and
XGBoost also has an accuracy of 0.8961 (95%CI 0.64–0.91).
SVM and XGBoost display the highest accuracy.

Although NGBoost has the lowest accuracy, it has the
highest specificity of 0.9717 (95% CI 0.97–0.98). XGBoost
has the second-highest specificity of 0.9582 (95% CI
0.58–0.98). XGBoost has the highest AUC of 0.9332
(95% CI 0.92–0.94).

B. PERFORMANCE COMPARISON FOR MORE
TRAINING SAMPLES
Table 7 lists the size of each dataset according to the col-
lection period. In Table 7, up to 30 days, we use 10-day
increments. It is expected that a significant performance gain
can be achieved if data are added for predictions, when
datasets used for predictions are relatively small. We present
the results of this experiment in Table 8. Table 8 summarizes
the AUC of each predictive model depending on the size of
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Algorithm 1 Estimating Time Saved in the ED for an ED
Patient
1: Time_saved_in_ED is set as the difference between dis-

position and model_prediction
2: if boarding_time < time_saved_in_ED
3: time_saved_in_ED = boarding_time
4: Else
5: time_saved_in_ED = time_saved_in_ED
6: if disposition – bed_preparation_complete ≤

max_holding
7: time_saved_in_ED = time_saved_in_ED
8: else
9: time_saved_in_ED = 0

10: end

Algorithm 2 Estimating Time Costs in Inpatient Beds for an
ED Patient
1: TP_bed_ready_time is set as the sum of

model_prediction and boarding_time.
2: # time costs in case of true positive
3: if disposition – TP_bed_ready_time > 0
4: TP_time_cost = disposition – TP_bed_ready_time
5: else
6: TP_time_cost = 0
7: TP_time_cost is redefined as the minimum value

between max_holding and TP_time_cost.
8: # time costs in case of false positive
9: FP_bed_ready_time is set as the sum of

model_prediction and avg_boarding_time.
10: if non_inpatient_LOS – FP_bed_ready_time > 0
11: FP_time_cost = non_inpatient_LOS –

FP_bed_ready_time
12: else
13: FP_time_cost = 0
14: FP_time_cost is redefined as the minimum value

between max_holding and FP_time_cost.
15: end

the dataset. As the size of the dataset increases, the AUC of
each model improves. While the AUC of LR, XGBoost, and
SVM slightly increases (i.e., less than 1%) as the size of the
dataset increases, the AUC of DT increases by approximately
3% or more as the dataset increases in size from the 10days
dataset to the 60 days dataset.

In other words, the AUC of the DT is remarkably degraded
for small datasets. The AUC of XGBoost is the highest regard-
less of the dataset size. LR and NGBoost show relatively
high AUC values when comparing the dataset collected after
10 days to that collected after 120 days. LR,

NGBoost, and SVM show similar AUC values for the
150 days dataset. Fig. 3 shows the AUC of each model
according to the size of the dataset. Fig. 4 shows the sensitivity
of the three models that shows a higher AUC than the other
models. SVM has the highest sensitivity for the entire test

TABLE 5. Hospitalization predictions results represented as confusion
matrices.

TABLE 6. Hospitalization prediction results based on performance
indicators.

dataset (Table 6); however, it had a significantly low sensi-
tivity for small datasets (i.e., 10 and 20-day datasets).

To focus on true-positive predictions, SVM can be selected
for datasets with a size of 180 days or more. However, it is not
recommended to select it for datasets with a size less than or
equal to 30 days.
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TABLE 7. Size of the dataset according to collection period.

TABLE 8. AUC of each model according to data size.

FIGURE 3. AUC comparison between more training samples.

C. FEATURE IMPORTANCE
Feature importance can be derived from tree-based hospital-
ization predictive models. This study compares the results
of feature importance from XGBoost (see Fig. 5 (a)) and
NGBoost (see Fig. 5 (b)). The two models are selected for
having the highest AUC values among the tree-based models.
XGBoost shows high information gain from the triage

level, reaction status, vital signs, demographics, and main

FIGURE 4. Sensitivity comparison between more training samples.

FIGURE 5. Feature importance from XGBoost and NGBoost.

complaints of the patients. For patients with triage levels 3,
4, and 5, the probability of hospitalization is low; thus,
these variables may have contributed to the prediction of
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TABLE 9. Time effects of XGBoost hospitalization predictions.

non-hospitalized patients. NGBoost has the highest speci-
ficity (i.e., the highest ratio of true-negative predictions).
Therefore, most of the variables in the NGBoost feature
importance may relate more to non-hospitalized predic-
tions. Appendices A and B show the feature importance of
XGBoost and NGBoost according to the size of the dataset.

D. ESTIMATING TIME EFFECTS OF HOSPITALIZATION
PREDICTIONS
Table 9 shows the estimated time effects of the hospitalization
predictions. To estimate the time effects, we use the predictive
results of XGBoost based on all the performance indicators
(i.e., AUC, accuracy, sensitivity, and specificity), as shown
in Table 6. The time saved in the ED and time costs in
inpatient beds are calculated while adjusting the specificity
from 90 to 99.9% and the maximum holding time of beds
from 30 to 240 min.

When the maximum holding time of beds is 240 min, the
time saved in the ED per patient is estimated to be 12.3 min
at 95% specificity, which is close to the specificity (95.82%)
of XGBoost. The time costs of inpatient beds per patient are
estimated to be 17.9 min.

According to the predictions of the five predictive models
at 95% specificity, the quantitative effects of hospitalization
predictions are compared. The most reliable results are the
time effects obtained using the predictive results of the best-
performing model. In this study, since XGBoost is the best
performance model, the predictive results are regarded as the
most reliable among the five predictive models. The results of

XGBoost show higher ED time saved and inpatient bed time
costs for an ED patient (see Table 10).

V. DISCUSSION
We construct and test LR, XGBoost, NGBoost, SVM, and
DT models to predict hospitalization for ED patients. This
study shows that hospitalization can be predicted precisely
(at a highAUC from 0.89 to 0.92) using the information that is
available within 20min after a patient enters the ED.Accurate
hospitalization predictions can potentially reduce ED over-
crowding, improve the quality of patient care, and support the
implementation of proper treatment resources [12].

We train five predictive models by varying the size of
the dataset and examine whether the performance of the
models improves when more data are used for hospitalization
predictions. The results show that as more data are used for
predictions, theAUC values of the predictivemodels increase.
Although this study uses a small amount of data compared
to other studies, it shows that the predictive models trained
on a relatively small dataset (i.e., larger than or equal to a
150days dataset) provide hospitalization predictions at high
AUC values (from 0.8754 to 0.9332). In particular, the pre-
dictive models perform well for all ED patients without any
restrictions based on the analysis target (i.e., patients with a
specific disease or patients of a specific age group).

Duan et al. [22] hypothesized that theNGBoostmodel used
in our experiments would perform well, even with a small-
size dataset. Although hyper-parameter searching and tuning
are done for NGBoost, the accuracy of NGBoost (0.8610)
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TABLE 10. Time effects of all hospitalization prediction at 95% specificity.

when working on the entire dataset is worse than that of
the other models (0.6521 to 0.6980). Therefore, we con-
clude that NGBoost is not appropriate in improving the
proportion of correct hospitalization predictions; however,
NGBoost has high specificity. In this study, 21.4% of the ED
patients are hospitalized (i.e., minor class), and 78.6% are
non-hospitalized (i.e., major class). NGBoost has the ability
to predict a major class. Therefore, this study demonstrates
the possibility of deploying NGBoost to predict a major class
in the ED (e.g., triage predictions for level 3).

The quantitative effects of hospitalization predictions are
estimated as the time saved in the ED and time costs in
inpatient beds. For these estimations, we use the predictive
results of XGBoost. When the maximum holding time of the
beds is set to 240 min, the LOS for an ED patient is reduced
by 12.3 min (i.e., time saved in the ED for a patient) and that

for all patients per year is reduced by 340,147 min,
as shown in Table 9. These results indicate that hospitalization
predictions help reduce ED overcrowding. However, the time
requires to hold an empty inpatient bed for ED patients is
17.9 min (i.e., time costs in inpatient beds for an ED patient),
and the total time to hold empty inpatient beds for all ED
patients per year is 496,441 min. As shown in Table 9, the
time costs in inpatient beds are approximately 1.5 times

higher than the time saved in the ED. However, time costs
in inpatient beds are calculated under the postulation that
holding an empty inpatient bed always prevents the inpatient
bed occupancy of an incoming patient.

TABLE 11. Average inpatient bed utilization of local hospitals in
South Korea (national medical center in South Korea).

The quantitative effects of hospitalization predictions can
be interpreted according to three perspectives. First, the sig-
nificant proportion of time costs in inpatient beds estimated in
this study may not be the actual cost spent on preventing the
inpatient bed occupancy of incoming patients. As shown in
Table 11, the average inpatient bed utilization at local medical
centers in South Korea is less than 90% [38]. In addition, the
influx of outpatients for hospitalization is scarce during the
night. ED patients do not always compete with outpatients
for inpatient beds. Second, time costs for inpatient beds are
indeed less significant than their nominal value, considering
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the number of inpatient beds. The number of inpatient beds
at KUAH is 1,100, and time costs in inpatient beds are
17.9 min for an ED patient when the maximum holding
time of the beds is 240 min. In contrast, the number of ED
beds is 35 and the time saved in the ED is 12.3 min for an
ED patient. The 17.9 min time costs in inpatient beds are
dispersed across 1,100 inpatient beds. Finally, given that the
LOS in inpatient beds is much longer than that in the ED,
the time costs in inpatient beds are less significant than their
nominal values. At KUAH, the average LOS in the ED is
approximately 420min, whereas the average LOS in inpatient
beds is approximately 6.8 days. The time costs in inpatient
beds of 17.9min constitute a very small portion of the average
LOS in inpatient beds. It is concluded that the time saved
in the ED (i.e., 12.3 min for an ED patient) is significant
considering the small number of ED beds and the short
LOS, whereas time costs in inpatient beds (i.e., 17.9 min
for an ED patient) may not be high considering a large
number of inpatient beds and the long LOS of patients in
inpatient beds.

VI. CONCLUSION
This study shows that predictivemodels could provide quality
predictions for hospitalization using primary information on
patients that could be obtained within 20 min of their ED
entrance. XGBoost provides hospitalization predictions with
the best AUC (0.9332). LR, NGBoost, SVM, and DT pre-
dictions generally show good AUC values (0.8754–0.9143).
NGBoost, which is used for the first time to predict
hospitalization, might not be appropriate for predicting a
minor class.

By adjusting the sensitivity of the XGBoost model and the
maximum holding time of beds (administrative policy to be
followed), the time effects of hospitalization predictions are
estimated. The results show that hospitalization predictions
could be utilized to reduce patients’ LOS in the ED. There-
fore, we expect that accurate hospitalization predictions will
alleviate ED overcrowding.

In this study, using a relatively small amount of data
for predictions could be viewed as both a distinction and
limitation. The experiments in this study do not show con-
vergence in AUC values and sensitivity with respect to the
size of the dataset. In particular, sensitivity is significantly
lower than that of other indicators because of the small
number of hospitalized ED patients. We may use more data
in further studies to observe the convergence of AUC and
sensitivity.

This study shows that hospitalization predictions can
reduce patients’ ED length of stay by shortening decision-
making time. These results suggest the possibility of improv-
ing ED overcrowding. Apart from the ED overcrowding
issue, this study can be extended to investigate how the
reduction of the ED length of stay affects the improvement
of the patients’ health conditions. In addition, it is possible to
investigate the effects of shortening the ED length of stay on
the number of days hospitalized in inpatient wards.

APPENDIX A

TABLE 12. Feature importance of XGBoost model according to data size.

APPENDIX B

TABLE 13. Feature importance of NGBoost model according to data size.
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