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ABSTRACT Mayfly algorithm is a new intelligent optimization algorithm with unique optimization capa-
bilities recently proposed. It has strong research value, but there are also insufficient explorations, and it is
easy to fall into the problem of local optimization. This paper aims to improve the optimization performance
of the mayfly algorithm and explore its application value in practical engineering optimization problems.
An improved mayfly algorithm based on the median position of the group is proposed. In its velocity
update, the median position of the group is introduced with emphasis, and a non-linear gravity coefficient is
introduced at the same time. Through the benchmark test function, its superiority in exploitation, convergence
speed and accuracy and the improvement of exploration are verified. At the same time, the simulation model
of the hydro-turbine governor using MATLAB/Simulink is established, and 10% frequency disturbance
experiments of this model are carried out separately in two typical working conditions. The experiments
results show that the optimal ITAE index value of the system obtained by the improved mayfly algorithm is
smaller, and 16.5 and 18.1 iterations to complete on average. In addition, the experiments results reveal that
the PID parameters optimized by the improved mayfly algorithm can make the dynamic performance of the
regulation system better than other popular swarm intelligence algorithms, where the overshoot decreased
by more than 3.1%, and the adjustment time also decreased in different degrees. The proposal of the median
position of the group provides a new idea for the improvement of the swarm intelligence optimization
algorithm. Meanwhile, a new effective method for optimizing the PID parameters of the hydro-turbine
governor has been found.

INDEX TERMS Mayfly algorithm, swarm intelligence optimization algorithm, median position, group
diversity, hydro-turbine governor, PID parameters.
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I. INTRODUCTION
With the rapid development of the economy and technology,
a large number of optimization problems have appeared in
scientific research and actual industrial production, such as
the transportation field [1], [2], the power field [3], [4], the
material field [5], [6], the communication field [7], [8],
the mechanical field [9], [10] and e-commerce field [11],
[12], and etc. These problems are usually inferior in nature,
that is, non-differentiable, non-linear, etc. Therefore, tradi-
tional numerical optimization methods are difficult to solve
these problems, but swarm intelligence optimization algo-
rithms show strong effectiveness in solving these problems.
Swarm intelligence algorithm has become one of hot spots
in the fields of artificial intelligence and intelligent com-
puting due to its strong versatility, high solving efficiency,
and it is easy to understand and master, etc. Besides, it has
also become one of the important solutions for solving
optimization problems in actual production. In addition,
in the past few decades, many swarm intelligence algo-
rithms based on various biological groups have been pro-
posed. Among them, the most famous swarm intelligence
algorithms are ant colony algorithm [13] and particle swarm
algorithm [14]. There are also many swarm intelligence algo-
rithms based on bionics, such as bacteria foraging algo-
rithm [15], Artificial fish swarm algorithm [16], artificial bee
colony algorithm [17], cat colony algorithm [18], firefly algo-
rithm [19], cuckoo search algorithm [20], bat algorithm [21],
krill swarm algorithm [22], gray wolf algorithm [23], whale
algorithm [24], antlion algorithm [25], moth fighting fire
algorithm [26], dragonfly algorithm [27], harris hawk opti-
mization [28], locust algorithm [29], satin blue gardener bird
algorithm [30], black tern optimization algorithm [31], seag-
ull optimization algorithm [32], sailfish optimization algo-
rithm [33], sparrow algorithm [34], etc. In addition, there are
some algorithms based on swarm intelligence theory, such as
differential evolution algorithm [35], firework algorithm [36],
acoustic search algorithm [37], brainstorming optimization
algorithm [38], etc. The openness of the swarm intelligence
optimization algorithm allows various optimization algo-
rithms to complement each other to optimize the performance
of the algorithm, so that the algorithm has stronger adapt-
ability and flexibility when dealing with different problems.
However, the convergence, search efficiency and parameter
settings of the algorithm in specific applications still need to
be developed and improved by researchers.

Mayfly optimization algorithm is a new intelligent opti-
mization algorithm proposed by Zervoudakis and Tsafarakis
in 2020 [39]. And the algorithm is inspired by mayfly
flight behavior and mating process, including mayfly cross-
ing, mutation, group gathering, wedding dance, and random
walking. Besides, the algorithm combines the main advan-
tages of swarm intelligence and evolutionary algorithms.
Mayfly optimization algorithm has attracted more and more
attention because of its special advantages in convergence
accuracy, speed and exploitation. However, like other algo-
rithms, MA also suffers from some disadvantages, i.e. weak

exploration, stagnation in local optima with a low conver-
gence accuracy, and lack of proper balance between explo-
ration and exploitation. At present, a few researchers have
carried out in-depth research on the improvement of the
MA and its application. Generally, there are two methods to
enhance the performance of MA in the literatures. The first
way is that some researchers try to combine MA with other
optimization theories and methods. For instance, to solve
the global optimization problems, Gupta et al. [40] pro-
posed a new improved mayfly optimization algorithm by
combining chaos theory and mayfly algorithm. Similarly,
Shaheen et al. [41] proposed a newly developed optimiza-
tion method ‘‘Chaotic Mayfly optimization algorithm’’ for
obtaining the proton exchange membrane fuel cell parame-
ters. Moreover, Adnan et al. [42] proposed a new improved
mayfly optimization algorithm by combining the simulated
annealing algorithm with the mayfly optimization algorithm
to determine the optimal hyper-parameters of support vec-
tor regression to overcome the exploration weakness of the
mayfly optimization algorithmmethod. From the above it can
be concluded that combining multiple algorithms can make
up for the shortcomings of a single algorithm to a certain
extent and improve the performance of the algorithm, but
there are also some shortcomings. For example, the hybrid
algorithm will increase the computational cost and increase
the complexity due to the number of parameters involved.
Therefore, if the computational cost of the hybrid algorithm
could be effectively reduced, combining two or more other
algorithms into one algorithm will be one of the effective
ways to improve the performance of the algorithm. The
other way toward the improvement of MA performance is
to add some operators into the standard MA. For example,
Wei et al. [43] used a new policy for updating the position
that is derived from the bubble-net searching mechanism in
the whale optimization algorithm. Besides, Liu et al. [44]
proposed a multi-objective version of the improved MA by
adding an archive mechanism, non-dominated sorting strat-
egy, and roulette wheel selection. It can be observed that
designing some improved MA is feasible and the above-
mentioned implementation is also a good indication of this
ability. However, these improved MA seem to be difficult
to promote the capability of the algorithm in simultaneously
attaining the balance between exploration and exploitation.
Therefore, the mayfly algorithm still has a large space for
exploration, which is also the main motivation of this paper
to study it and introduce engineering applications.

The hydro-turbine governor is the most important part of
the turbine regulating system, and it is also a significant con-
trol device to ensure the stable operation of hydropower gen-
erating units [45], [46]. The stable operation and regulation
quality of the turbine regulating system are directly affected
by the parameters of the hydro-turbine governor, which in
turn affects the electric energy quality. At present, the PID
control method is adopted by most hydropower stations.
Therefore, it is critical to select the three parameters of the
governor (Kp, Ki and Kd) correctly, which makes the turbine
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regulating system have superior dynamic quality, and which
guarantees the safe operation of the units and the electric
energy quality. In recent years, many experts and scholars
have successively introduced different swarm intelligence
optimization algorithms into the PID parameter optimization
of the governor and conducted a lot of extensive and in-depth
research, such as particle swarm algorithm [47], [48], bac-
terial foraging algorithm [49], moth-killing algorithm [50],
fruit fly algorithm [51], beetle search algorithm [52] and
cuckoo search algorithm [53], etc. Furthermore, these meth-
ods have their advantages, but there are also common prob-
lems such as long calculation time, easy to fall into the local
optimum, and premature convergence, which are especially
obvious in large-scale and complex problems. Therefore, it is
necessary to introduce an optimization algorithm with better
performance into the turbine regulating system.

In light of the fact mentioned above, in this study,
an improved mayfly optimization algorithm is proposed and
applied to the PID parameter optimization of the hydro-
turbine governor. The key contribution of this paper is out-
lined below:

1) A concept of the median position of the group is pro-
posed and introduced into the speed update of the basic
mayfly optimization algorithm to form a new improved
mayfly optimization algorithm. The introduced median
position of the group enables eachmayfly tomakemore
use of group information to decide its own behavior,
which ensures the diversity of the group, thereby pro-
moting the balance between exploration and exploita-
tion stages and the search efficiency of the algorithm.

2) Through the tests of three sets of benchmark func-
tions, it is verified that the improved mayfly algorithm
has superior performance in exploitation, convergence
speed and accuracy. At the same time, the exploration
of the algorithm is also improved.

3) The improvedmayfly optimization algorithm is applied
to an example of the PID parameter optimization of
a hydro-turbine governor, and the results are com-
paredwith other swarm intelligence algorithms through
digital simulation, which proves its superiority in
the application of the PID parameter optimization of
hydro-turbine governor.

The rest of this paper is organized as follows:
Section 2 briefly describes the basic mayfly algorithm,
an improved mayfly algorithm based on the median position
is proposed, and the benchmark functions, test program and
performance comparison results are listed. In section 3, a typ-
ical turbine governing system is described, and the simulation
calculation steps and test results are shown. Section 4 gives
the conclusion.

II. IMPROVED MAYFLY OPTIMIZATION ALGORITHM
BASED ON MEDIAN POSITION
A. MAYFLY ALGORITHM
Mayfly algorithm, as a new type of intelligent optimiza-
tion algorithm, has the characteristics of strong optimization

ability and strong research value. Besides, it is inspired by
the social behavior of mayfly, especially their mating pro-
cess. The mayfly is assumed to be an adult after hatching
from the egg, and the most suitable mayfly will survive.
Moreover, the position of each mayfly in the search space
represents a potential solution to the problem. The working
principle of the algorithm is as follows: initially, two groups
of mayfly were randomly generated, representing male and
female populations. Each mayfly is randomly placed in the
problem space as a candidate solution x = (x1, . . . . . . , xd )
represented by a d-dimensional vector, and its performance
is evaluated according to a predetermined objective func-
tion f (x). Furthermore, the velocity of the mayfly v =
(v1, . . . . . . , vd ) is defined as the change of its position.
The flight direction of each mayfly is the dynamic interac-
tion between the individual and the social flight experience.
Finally, each mayfly will continuously adjust its trajectory to
the personal best position (pbest) so far and the best position
obtained by all mayfly in the group (gbest) so far.

1) MOVEMENT OF MALE MAYFLY
Male mayflies gather in groups, and their positions are
adjusted based on the experience of themselves and their
neighbors. Assuming that x ti is the current position of the
mayfly i in the search space at the time step t , the position
update is the sum of the t + 1th iteration velocity plus the
tth iteration position, and its position expression is:

x t+1i = x ti + v
t+1
i (1)

Considering that male mayflies always dance a few meters
above the water, suppose they cannot have a fast speed, and
they will move constantly. Thus, the velocity of the male
mayfly is updated to:

vt+1ij = vtij + a1e
−βr2p (pbestij − x tij)+ a2e

−βr2g (gbestj − x tij)

(2)

where vtij is the velocity of the mayfly i in dimension j at time
step t . x tij is the position of the mayfly i in dimension j at time
step t . a1 and a2 are the positive attraction constants. pbesti
is the best position in the history of mayfly i. gbest is the best
mayfly position at time step t .β is a fixed visibility coefficient
of the mayfly, which controls the visibility of the mayfly. rp is
the cartesian distance between the current position and pbesti.
rg is the Cartesian distance between the current position and
gbest . The distance is calculated as follows:

‖xi − Xi‖ =
√∑n

j=1
(xij − Xij)2 (3)

where xij is the jth element of mayfly i and Xi corresponds to
pbesti or gbest .

The best mayfly in the group must continue to perform
their unique up and down dance. Thus, the best mayfly must
constantly change their speed. The velocity is updated as
follows:

vt+1ij = vtij + d · r (4)
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where d is the nuptial dance coefficient and r is a random
value in the range [−1, 1].

2) MOVEMENT OF FEMALE MAYFLY
Unlike male mayfly, there is no gathering phenomenon for
female mayflywhich will fly to the male groups to reproduce.
Suppose yti is the position of mayfly i at time step t , and its
position is updated by increasing the speed. Therefore, the
calculation is as follows:

yt+1i = yti + v
t+1
i (5)

According to the principle that the best females should
be attracted to the best males, and the second-best females
should be attracted to the second-best males, and so on, the
issue of minimization should be considered at the same time.
Therefore, the velocity is calculated as follows:

vt+1ij =

{
vtij + a2e

−βr2mf (x tij − y
t
ij), if f (yi) > f (xi)

vtij + fl · r, if f (yi) ≤ f (xi)
(6)

where vtij is the velocity of female mayfly i in dimension j
at the time step t , ytij is the position of female mayfly i in
dimension j at the time step t . fl is a random walk coefficient
that works when the female is not attacked by the male. r is
a random value in the range [−1, 1]. rmf is the cartesian dis-
tance between female and male mayflies. rmf was calculated
by using equation (3).

3) MAYFLY MATING
The female and male mayfly select pairs for mating based
on the fitness function. Moreover, the male mayfly and the
female mayfly which are both with the best fitness value get
mating, and so on. Besides, the result of mating is to produce
two offspring, and the formula is as follows:

offspring 1 = L · male+ (1− L) · female (7)

offspring 2 = L · female+ (1− L) · male (8)

where L is a random value within a specific range, and the
initial velocities of the offspring are set to be zero.

4) MAYFLY VARIATION
In order to deal with the possible premature convergence that
the optimal value is the local optimal rather than the global
optimal, a normal distribution random number is added to the
selected progeny mayfly for mutation. The progeny mayfly
mutation formula is as follows:

offspringn = offspringn + σ · N (0, 1) (9)

where σ is the standard deviation of the normal distribution.
N (0, 1) is a standard normal distribution with an average
value of zero and a variance of one. The number of mutant
individuals is round (0.05 times the number of male mayfly).
The wedding dance coefficient and random flight coefficient

will also be decreased with the number of iterations, and the
formula is as follows:

dt = d0 · d tdamp (10)
flt = fl0 · fl tdamp (11)

where dt and flt are the wedding dance coefficient and
random flight coefficient at time t separately; ddamp and
fldamp are the wedding dance coefficient and the attenuation
parameter of random flight respectively.

B. PROPOSED MMY ALGORITHM
Compared with other swarm intelligence algorithms, the
basic mayfly optimization algorithm has better good con-
vergence speed and accuracy. However, there are also local
optimum and lag phenomena in the search process of the solu-
tion. In order to improve the overall search performance and
accuracy of the algorithm, an improved method is proposed
below in this paper.

1) A NON-LINEAR GRAVITY COEFFICIENT
The gravity coefficient of the mayfly algorithm is similar to
the gravity coefficient of PSO, it helps to achieve a balance
between exploitation and exploration [39]. Thus, a non-linear
gravity coefficient is used in this paper to make the gravity
coefficient slowly decrease at the beginning of the iteration,
so that it has better exploration, which could avoid falling
into the local optimum, and it could achieve a certain conver-
gence accuracy faster. In the later stages of the iteration, the
gravity coefficient is accelerated reduced, thereby improving
exploitation to find the optimal solution. Furthermore, the
introduction of a non-linear gravity coefficient can better
balance exploration and exploitation. The formula of the
non-linear gravity coefficient is:

g(t) = 0.5×
√
1− (t/Maxt)2 + 0.4 (12)

where, t is the number of iterations, andMaxt is themaximum
number of iterations. Introducing this non-linear gravity coef-
ficient into the mayfly algorithm, the formula for the velocity
update of the male mayfly is:

vt+1ij =g(t)v
t
ij+a1e

−βr2p (pbestij−x tij)+a2e
−βr2g (gbestij−x tij)

(13)

The formula for the velocity update of the male mayfly is:

vt+1ij =

{
g(t)vtij + a2e

−βr2mf (x tij − y
t
ij), if f (yi) > f (xi)

g(t)vtij + fl · r, if f (yi) ≤ f (xi)
(14)

2) THE INTRODUCTION OF THE MEDIAN POSITION
OF THE GROUP
From the basic principles of the above mayfly algorithm,
it is not difficult to recognize that the mayfly algorithm can
be regarded as an improvement of the particle swarm opti-
mization algorithm, which combines the advantages of the
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particle swarm algorithm (PSO), genetic algorithm (GA) and
firefly algorithm (FA). Besides, the mayfly algorithm has
many similarities with the particle swarm algorithm in the
position and velocity update of the mayfly. Therefore, the
adjustment of the mayfly movement in the mayfly algorithm
is also based on the social sharing of the same biological
information to form an evolutionary advantage. This infor-
mation mainly includes individual memory and overall cog-
nition. Individual memory can get the best position of each
individual, and overall cognition can get the best position of
the entire group, which is the best solution.

From the update formula of the male mayfly algorithm
velocity, it can be found that the new velocity is determined
by three parts. The first part is the velocity vtij of the mayfly i
in the previous iteration; The second part is the distance
(pbestij−x tij) between the current position of the mayfly i and
the individual’s optimal position, which is the ‘perception’
part, which indicates that the individual thinks about itself;
The third part is the distance (gbestij − x tij) between the
current position of the mayfly i and the best position of the
group, which is the ‘social’ part, which represents the sharing
and cooperation of the mayfly with the group information,
and which guides the mayfly to the best position the group
passed. Therefore, it can be recognized that the flight process
of the mayfly is not only influenced by the best position it
has experienced, but also by other individuals in the group.
However, the information transmission and sharing between
the populations is realized only through gbest and pbest , and
there is no other way to exchange information between the
mayflies. Hence, this leads to a single source of information
and a small amount of information exchange among the
mayflies. Moreover, the diversity of the population is easy
to lose during the movement. Besides, because the mayfly
clusters rapidly, premature convergence occurs, which often
results in the group being trapped in a local optimum. Thus,
if only the best individual in the whole is emphasized in
the process of group optimization, it is easy to overlook
some important information. Furthermore, it is not enough
to rely solely on the information of gbest and pbest . Every
member of the group, whether good or bad, can contribute its
information to influence the overall movement. In addition to
gbest and pbest , the information of other individuals should
also be considered and used in the search process. And the
search space of the group should not be limited to the area
defined by the above two points.

As an important feature of the group, the diversity of
the group is closely related to the early convergence in the
evolution process, the slow speed in the later evolution and the
poor convergence performance. Therefore, group diversity is
crucial to the global convergence of the algorithm. In addi-
tion, there is no doubt that the diversity of the group could be
increased through increasing the personal experience infor-
mation and the sharing of group information. Based on the
above, a group average position based on gbest and pbest
is added in this paper. In statistics, the median and average
are often used to reflect the overall average level, where the

average is easily affected by extreme values. Nevertheless,
in the swarm intelligence algorithm, in the initial stage of
spatial search, the distribution of individuals in the group is
relatively scattered, and there are a small number of individ-
uals whose positions are extremely poor. Hence, taking the
average as the group average position may not accurately
reflect the overall average position. Therefore, the concept
of the median position of the group based on the median
concept is brought up in this paper, which sorts all the mayfly
individuals according to their objective function value, and
which takes the median position of the mayfly as the median
position of the group. The specific expression is:

pm =

{
x(n+1)/2, if n is odd
(xn/2 + xn/2+1)/2, if n is even

(15)

where, n is the number of groups. Themedian position is used
as the average position of the group into the velocity update
formula of the male mayfly, and the expression is:

vt+1ij = g(t)vtij + a1e
−βr2p (pbestij − x tij)

+ a2e
−βr2g (gbestij − x tij)+ a4e

−βr2m (pmij − x tij)

(16)

where a4 is the positive attraction coefficient of social effects,
and rm is the distance between the current position and the
median position. rm was calculated by using equation (3).

C. VALIDATION AND COMPARISON
Matlab is a very powerful mathematical software, which
is widely used in data analysis, image processing, control
systems and other fields. To verify the effectiveness of the
proposed mayfly optimization algorithm based on the median
position, Matlab is used to optimize and calculate a certain
number of selected benchmark functions in this paper, and the
test results of several popular swarm intelligence optimiza-
tion algorithms on the benchmark functions are compared
and analyzed, all the simulations have been carried out on
an AMD Ryzen eight core processor, 3.40 GHz desktop
computer with 8 GB of RAM.

1) BENCHMARK FUNCTION
The selection of the benchmark function is very important for
the performance test and comparison of the tested optimiza-
tion algorithm. Besides, according to the actual needs of this
paper, three types of functions were selected from the classic
benchmark functions which include 5 unimodal functions,
4 multimodal functions, and 9 low-dimensional multimodal
functions, totaling 18 functions. Furthermore, unimodal func-
tions are mostly used to examine the convergence speed,
convergence accuracy and exploitation of algorithms in high-
dimensional situations; Multimodal functions have multiple
local optimums, which can effectively test the explorations
of the algorithm; Low-dimensional multimodal functions are
used to check the effectiveness of the algorithm in a specific
low-dimensional state. And the 18 benchmark functions of
these three categories are listed in Tables 1, 2 and 3.
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TABLE 1. Unimodal test functions.

TABLE 2. Multimodal test functions.

TABLE 3. Low-dimension multimodal test functions.

2) COMPARISON WITH OTHER ALGORITHMS
To test the superiority of MMA, it is compared with selected
several popular swarm intelligence algorithms including par-
ticle swarm optimization (PSO), salvia swarm algorithm
(SSA), whale optimization algorithm (WOA) and basic
mayfly algorithm(MA), and the selected parameters of each
algorithm are shown in Table 4.

3) EXPERIMENTAL RESULTS AND ANALYSIS
The test calculation of all algorithms is limited to the speci-
fied maximum number of function evaluations (FEs) accord-
ing to the convergence speed, where the FEs of F1-F10 are
105, F11 is 104, F12-F15 are 103, and the remaining functions
are 2000. Besides, each algorithm was independently run

30 times with each benchmark function. Therefore, the exper-
imental results are based on the analysis of these performance
indicators of 30 independent runs, including the average
value, the median position value, the standard deviation (std),
the best value and the worst value of the best function value
for 30 independent runs, as shown in Tables 5, 6 and 7. At the
same time, the convergence curve of each algorithm in the
optimization calculation of different functions is obtained,
as shown in Figs 1, 2 and 3.

a: ASSESSMENT OF EXPLOITATION
Table 5 shows that MMA has reached the optimal value in F5,
and the average value in F1, F2 and F3 are very close to
the optimal value. Moreover, the test results for 4 out of
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TABLE 4. Parameter values used in MMA, MA, PSO, SSA and WOA.

TABLE 5. Comparison of different methods in solving the unimodal test functions in Table 1 at 30 dimensions.

the 5 functions show that performance indicators such as
the best value, average value, worst value or std are signif-
icantly better than other algorithms, which proves that MMA
has better exploitation.

b: ASSESSMENT OF EXPLORATION
Multimodal functions are widely applied to test the explo-
rations of optimization algorithms. Table 6 and Figure 2 show
that in the four multimodal function tests of MMA, three
test results are better than other algorithms in terms of per-
formance indicators such as the best value, average value,
worst value or std, but one test result is weaker than theWOA
algorithm. Among them, the best value and average value in
F5 and F7 are theoretical optimal values, which proves its

good stability and can effectively jump out of the local opti-
mum. Thus, it is proved that MMA has good exploration in
the optimization calculation of high-dimensional multimodal
function, and its overall performance is the best. Additionally,
it can be seen from Table 7 that MMA is overall better than
other algorithms in the low-dimensional multimodal function
test. At the same time, within the specified FEs range, the rate
of MMA converging to the optimal value is much higher than
other algorithms, and the specific convergence rate is shown
in Figure 4. Therefore, it can be seen that after the improve-
ment of the basic MA, the convergence of MMA has been
substantially promoted, especially for the low-dimensional
multi-peak test function. On the one hand, it is because
the basic mayfly algorithm promotes explorations through
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TABLE 6. Comparison of different methods in solving the multimodal test functions in Table 2 at 30 dimensions.

FIGURE 1. Convergence characteristic curves for MMA, MA, PSO, HAS, SSA and WOA in solving the unimodal test functions in Table 1 at
30 dimensions.

mating and selecting better offspring to replace the parents.
More importantly, the median position of group is introduced
intoMMA, which enhances the sharing of group information,
increases the group diversity, and to a certain extent improves
the situation where the original algorithm is easy to fall into
the local optimum.

c: ASSESSMENT OF CONVERGENCE SPEED AND ACCURACY
The convergence curve of the algorithm can reflect its conver-
gence speed and accuracy intuitively. Figs 1 and 2 indicates
that among the test results of 9 test functions of MMA,
7 test results show that its convergence speed and conver-
gence accuracy are significantly better than other algorithms.
Furthermore, in Fig 3, for low-dimensional multimodal func-
tions, the performance of MMA is more prominent in terms
of convergence speed, in the 9 low-dimensional multimodal

test functions, the convergence speed ofMMA ismuch higher
than other algorithms, which is manifested in the faster con-
vergence speed of the algorithm in the early stage and higher
search accuracy.

III. APPLICATION OF MMA IN THE OPTIMIZATION OF
PID PARAMETERS OF HYDRO-TURBINE GOVERNOR
The turbine regulating system is composed of the controlled
object and the regulating system. The controlled objects
include a turbine system and a generator system. The gover-
nor of the regulating system mainly includes a regulator and
an electro-hydraulic servo system, and the governor generally
adopts the parallel PID form [54], [55], [56]. The composition
of the turbine regulating system is shown in Fig 5.

Where c is turbine speed relative deviation set point, ce
is the speed deviation, u is the control signal output by the
regulator, mt is turbine torque relative deviation, mg0 is the
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TABLE 7. Comparison of different methods in solving the low-dimension multimodal test functions in Table 3.

load torque relative deviation, and x is turbine speed relative
deviation.

Figure 5 shows that when the system frequency is dis-
turbed, the turbine regulating system adjusts according to
the speed deviation ce formed by the given speed signal c
and the actual speed x of the hydroelectric generating unit.
Specifically, the PID control law is formed by the PID regu-
lator controlling the PID parameters (Kp, Ki and Kd), which

converts the speed deviation ce into the adjustment signal u.
And then electro-hydraulic servo system converts the adjust-
ment signal u into the hydraulic signal to operate the hydraulic
device which can adjust the opening of the guide vane and
change turbine torque relative deviation mt . Thus, the new
unit speed x is generated by the change of the difference
between turbine torque relative deviation mt and the system
load.
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FIGURE 2. Convergence characteristic curves for MMA, MA, PSO, HAS, SSA and WOA in solving the multimodal
test functions in Table 2 at 30 dimensions.

FIGURE 3. Convergence characteristic curves for MMA, MA, PSO, HAS, SSA and WOA in solving the Low-dimension multimodal test functions
in Table 3.

A. TRANSFER FUNCTIONS OF HYDRO-TURBINE
GOVERNOR SYSTEM
The transfer function of water turbine speed governor PID
controller is:

Gr (s) = (Kp + Ki/s+ Kd s)/(1+ Tns) (17)

where Kp is the proportional gain; Ki the integral gain; Kd the
derivative gain; s is the Laplace operator; and Tn is the deriva-
tive filter time constant, in seconds; the transfer function of
electro-hydraulic servo system is:

Gy(s) = 1/(1+ Tys) (18)

where Ty is the wicket gate servomotor response time.

Water and penstock are taken to be incompressible, if pen-
stock is short or medium in length, therefore, inelastic water
hammer effect is considered. From Fig.5, the transfer func-
tion of turbine and water diversion system is:

Gt (s) = (ey − eTws)/(1+ eqhTws) (19)

e = eqyeh − eqhey (20)

where Tw is the water inertia time, in seconds; ey, eqy, eh, eqh
are partial derivatives of water turbine; the transfer function
of generator and load is:

Gg(s) = 1/(Tas+ en) (21)

where Ta is the generator unit mechanical time, in seconds
and en is the load self-regulation factor.
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FIGURE 4. Convergence rate to the optimal value for MMA, MA, PSO, SSA
and WOA in solving the low-dimension multimodal test functions
in Table 3.

B. ALGORITHM FLOW OF MMA IN THE OPTIMIZATION OF
PID PARAMETERS OF HYDRO-TURBINE GOVERNOR
According to the optimization process of MMA described
above, the algorithm flow ofMMA in the optimization of PID
parameters of hydro-turbine governor is shown in Fig 6, and
the specific steps are as follows:
Step 1: Set the number of male mayflies, female mayflies,

and the number of offspring, and set the learning
factor, visibility coefficient and dance coefficient,
and other parameters at the same time; Based on
the parameters set above, initialize the positions and
velocities of the population. Use the integrated time
and absolute error (ITAE) index of the speed devia-
tion of the hydropower unit as the fitness function of
the optimization algorithm.

Step 2: Establish a simulation model of the turbine reg-
ulating system with the Simulink tool in Matlab,
as shown in Fig 7. Then start to enter the itera-
tion, and calculate the fitness function value of each
mayfly, then the values are sorted. And while gbest ,
pbest and pm are calculated.

Step 3: Update the speed and position of themale and female
mayfly with the formulas, and male and female
mayfly mating.

Step 4: Calculate the fitness function values of the offspring
and variants, update the individual fitness which is
compared with the global fitness, then update the
global optimum.

Step 5: If the number of iterations reaches the maximum,
end the algorithm and output the result. If not, return
to step 2 for another iteration.

The expression of ITAE index is:

JITAE =
∫ Ts

0
t |e(t)|dt (22)

where e(t) is the system deviation, and Ts is the adjustment
time.

C. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the effectiveness of MMA in the parameter opti-
mization of the turbine regulating system, a PID parameter
optimization simulation test of the governor is carried out in

FIGURE 5. Composition diagram of hydraulic turbine regulating system.

FIGURE 6. Flow chart of MMA.

this paper. In the simulation process, to test the robustness of
the optimization algorithm, two typical working conditions
are selected. Furthermore, 10% frequency disturbance exper-
iments were carried out under the two working conditions
respectively [47], [48]. Besides, Table 8 shows the charac-
teristic parameters of the unit under two specific working
conditions.

In the case of ensuring that the results of parameters opti-
mization are correct, to improve the calculation efficiency, the
boundaries of Kp, Ki and Kd are all set as [0, 5]. And Ts is
20 seconds. Besides, the maximum number of iterations is
set to 50. In addition, the results are based on 35 independent
runs for each algorithm. Furthermore, MMA is compared
withMA, PSO, SSA, andWOA,where the specific parameter
settings of each algorithm are consistent with those in Table 4.

Table 9 shows the experimental results of each algorithm
under 10% frequency disturbance under two working condi-
tions. And it lists the best value, worst value, average value,
median value and std of ITAE index value after 35 indepen-
dent runs. Furthermore, there are also the maximum, mini-
mum, and average number of iterations to the optimal value
(the error is not greater than 0.1%), and the success rate of

VOLUME 10, 2022 36345



G. Lei et al.: Improved Mayfly Optimization Algorithm Based on Median Position and Its Application in Optimization

FIGURE 7. Simulation model of the hydro-turbine governor.

TABLE 8. Parameters of hydro-turbine regulating system.

TABLE 9. Experimental results of 10% frequency disturbance under two working conditions by different algorithms.

converging to the optimal ITAE index value where the error
is not more than 0.1% as the standard.

Shown as in the table 9, the best value and average value
of ITAE for MMA and MA are obviously better than other
algorithms, while MMA is slightly better than MA, which
proves that these two algorithms have good convergence
accuracy. Moreover, the best value, worst value and average
value of ITAE for MMA are almost the same, and the std
value is very small. Besides, the ITAE value obtained in
each run can converge near the best value, indicating that
MMA has better exploration and good stability, it can avoid
falling into the local optimal value. However, there is a certain
degree of falling into the local optimal solution for all of the

other algorithms, which cannot achieve stable optimization.
Therefore, according to the number of iterations converging
to the optimal value, whether it is the minimum number of
iterations or the average number of iterations, the number of
MMA is much smaller than that of other algorithms, which
proves that MMA has an excellent convergence speed.

Figure 8 shows the average best fitness convergence curve
for different algorithms under two working conditions with
10% frequency disturbance. As shown in the figure, the opti-
mal solution is quickly found in the early stage by MMA.
Moreover, it is much faster than other algorithms, and its opti-
mal solution accuracy is also better than the others, showing
excellent exploitation.
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TABLE 10. Performance of 10% frequency disturbance under two working conditions by different algorithms.

FIGURE 8. Convergence curves of average best fitness with 10% frequency disturbance under two working
conditions provided by different algorithms.

FIGURE 9. Response curves with 10% frequency disturbance under two working conditions provided by
different algorithms.

Figure 9 shows the response curves with 10% frequency
disturbance under two working conditions provided by dif-
ferent algorithms. Besides, in Table 10, the specific perfor-
mance index values of the speed response curve of the turbine
regulation system under two working conditions with 10%
frequency disturbance are listed, including the overshoot and
the adjustment time. As shown in the Figure 9, the speed
response curve corresponding to the optimization result of
MMA is relatively better than other curves. According to the
performance index values, MMA has the smallest overshoot
and the shortest adjustment time under working condition 1.
And under working condition 2, although the adjustment time
of MMA is slightly longer than SSA and WOA, its overshoot
is also the smallest. However, the overshoot corresponding to
SSA and WOA is too large, which shows that the oscillation
amplitude of the curve is too large in the early transition
process.

Through the frequency disturbance experiment analysis
and comparison of different algorithms under two working
conditions, it is proved that the PID parameters optimized by
the MMA can make the turbine regulating system have better
overall dynamic performance. Furthermore, the optimization
process of MMA under both working conditions can stably
and quickly converge to a better ITAE index value. MMA
not only guarantees its original features of fast convergence
speed and strong exploitation, but also effectively improves

exploration. This is mainly because themedian position of the
group is introduced into the basic mayfly algorithm, where
the problem of insufficient group diversity in the optimization
process has been solved in a better way. In this paper, the
importance of the median position in the group for swarm
intelligence algorithm is described theoretically, where its
effectiveness has been proved through practical application
in engineering. The concept of group median position can
not only be used in the mayfly optimization algorithm but
also can be extended to other similar swarm intelligence algo-
rithms, showing its wide applicability and good application
value.

IV. CONCLUSION
The paper improves the current situation of the basic mayfly
optimization algorithm where the global search ability is
insufficient and the local optimum is easy to fall into. On the
one hand, inspired by the improvement of the inertia weight
factor in the particle swarm algorithm, a decreasing non-
linear inertia weight factor that is slow first and then fast is
introduced. On the other hand, the concept of the median
position of the group is proposed and introduced into the
speed update of the mayfly algorithm. The optimization per-
formance of MMA and the other four swarm intelligence
algorithms is compared and analyzed through three sets of
benchmark functions. And the experimental results show that
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MMA performs better in 16 of the 18 test functions. Besides,
the superior performance of MMA in local search, global
search and convergence speed and accuracy is confirmed
by the experiments. Moreover, MMA is applied to the opti-
mization of PID parameters of hydro-turbine governor, and
the frequency disturbance simulation experiment under two
different working conditions is carried out by constructing a
simulation module, which is compared with several popular
swarm intelligence algorithms. The experimental results indi-
cate that MMA can make the system obtain a smaller ITAE
value, and there are only takes 16.5 and 18.1 iterations to com-
plete on average. Furthermore, compared with other algo-
rithms, the PID parameters optimized by MMA can reduce
the overshoot of the regulation system by more than 3.1%,
and the adjustment time also decrease to varying degrees.
Therefore, the experimental results prove that MMA not only
has faster convergence speed, higher convergence accuracy
and stronger stability in the optimization process but also
has the better balance between exploration and exploitation.
In conclusion, the PID parameters obtained through MMA
can enable the turbine regulating system to have better overall
dynamic performance.

In the future, there are still the following issues to be further
studied:

1) The introduction of the median position of the group
still needs to be further demonstrated mathematically
for its effectiveness on the swarm intelligence algo-
rithm, which will play a vital role in the further pro-
motion and application of the median position in the
swarm intelligence algorithm.

2) The introduction of the median position of the group
can improve exploration of the mayfly algorithm to a
certain extent, but compared with its super exploita-
tion, its exploration still has huge room for improve-
ment. Besides, improving the overall performance of
the algorithm by setting more reasonable parameters
will be one of the important research directions in the
future.

3) The efficiency and effectiveness of the MMA in tack-
ling constrained problems need further investigation.
The MMA should be widely used in other engineering
optimization problems, and it should be compared with
more optimization algorithms to verify its effectiveness
and adaptability.
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