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ABSTRACT The problem of the robust neural network-based model matching control is considered for
a large class of uncertain immune systems. In order to achieve the purpose of therapeutic enhancement,
it is essential to deal simultaneously with the effects of plant uncertainties, time-varying perturbations,
and continuing environmental pathogens. Neural network control algorithm, robust H∞ control theory and
VSC technique are combined to construct the hybrid adaptive/robust tracking control scheme such that the
controlled immune system achieves a satisfactory model matching control performance. An adaptive neural
network system is constructed to learn the behavior of the immune system dynamics. Moreover, an algebraic
Riccati-like inequality must be solved to achieve a desiredH∞ control performance. Consequently, the robust
control scheme developed here can be analytically computed and easily implemented. Simulation results are
presented to demonstrate the effectiveness of the proposed control scheme.

INDEX TERMS Immune systems, model matching, intelligent control scheme, disturbance attenuation,
neural network system.

I. INTRODUCTION
The dynamic response of immune systems has received a
significant research attention in past few decades [1]–[8]. The
immune system is a rather complicated uncertain nonlinear
system that may include a lot of uncertain infectious microor-
ganisms (e.g., viruses, bacteria and parasites) and external
environmental disturbances (e.g., continuing introduction of
external pathogens). Themain purpose of the immune control
system is to effectively kill the invading microorganisms
effectively, neutralize their response, provide the healing care
for the affected organs, and protect the host against microbial
infections. The mammalian immune system can be catego-
rized into both the innate immune component and adaptive
immune component. Medzhitov [9] proposed the recognition
of microorganisms and activation of the immune response.
His finding fully demonstrated two facts. First, the innate
immune system consisted of functionally distinct modules
that evolved to provide different forms of protection against
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pathogens. Second, the adaptive immune system could pro-
vide strategic response to invading microbe and yield protec-
tive cells.

For clinical treatment of infection, many models of
immune response to infection have been proposed [10]–[13].
Furthermore, some control therapeutic methods of the
immune response have been developed [3], [5], [14]–[22].
Hoshino et al. [3] investigated the immune response and
biological behavior of quantum dots in vitro and in vivo,
and concluded that all nanotechnology researchers should
confirm the biological responses of their nanoscale products.
Stengel et al. [5] presented a simple model for the response of
the innate immune system and introduced a significant exten-
sion to the optimal control of enhancing immune response.
Chang and Astolfi [14] proposed a control method of drug
scheduling to enhance the response of immune system in an
HIV model. Chien et al. [15] proposed a novel feedback lin-
earization and almost disturbance decoupling method for the
control of cancer immunotherapy on eliciting an immune sys-
tem response against the tumor. Jiao et al. [16] proposed an
adaptive control method for uncertain cancer-tumor-immune
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systems to track and stop the growth of cancer as well as
maintain cancer and immune cells at an acceptable level.
Maryam et al. [17] proposed an adaptive robust control for
a second order nonlinear model of the interaction between
cancer and immune cells of the body in order to control
cancer growth and maintain the number of immune cells in an
appropriate level. Dai and Liu [18] addressed an optimal con-
trol problem of a general reaction–diffusion tumor–immune
system with chemotherapy to minimize the tumor burden and
side effects as well as treatment costs in which the existence,
uniqueness and some estimates of strong solution to the state
system were obtained by making use of the semigroup theory
and truncation method. Wong and Germain [19] addressed a
robust control for the adaptive immune system which con-
tinually faced unpredictable circumstances yet reproducibly
counteracted invading pathogens while limiting damage to
self. The layered control schemes were employed to both
buffers for exploiting different facets of cellular variation.
McDaniel et al. [20] addressed the communication problem
of a bi-directional flow of information between the innate
immune system and adaptive immune system. They focused
on how signals, first from pathogens and then from primed
effector andmemory T cells, were integrated bymyeloid cells
and its consequences for protective immunity or systemic
inflammation. Abaricia et al. [21] reviewed the control of
innate immune response by biomaterial surface topography,
energy, and stiffness. They also highlighted recent advances
of the role of innate immunity in response to implantable
biomaterials as well as key mechanobiological findings in
innate immune cells. Heiran et al. [22] developed a nonlinear
adaptive control method to adjust the drug dose in renal trans-
plant recipients with HCMV-infection. By using Lyapunov
stability theorem the asymptotic stability of the closed-loop
immune system was proved to guarantee the convergence of
the system output to the desired scenario in the presence of
different uncertainty levels.

In recent years, neural network systems have been suc-
cessfully applied worldwide to universally approximate
the mathematical models of dynamic systems [23], [24].
Chen et al. [24] proposed a RBF neural-network-based adap-
tive robust control design for nonlinear bilateral teleop-
eration manipulators with the communication time delay,
various nonlinearities, and uncertainties. The slave environ-
mental dynamics was modeled by a general RBF neural
network, and its parameters were estimated and then trans-
mitted for the environmental torque reconstruction in the
master side. The trajectory creators in both of master and
slave sides were applied to generate the desired trajectories,
and the RBF-neural-network-based adaptive robust controller
was proved to guarantee the global stability of bilateral
teleoperation manipulators under time delay, and the good
transparency performance was also achieved simultaneously.
Several neural network- based control schemes were devel-
oped to treat the robust control of uncertain immune systems
with various performance [25]–[28]. Moghtadaei et al. [25]
proposed a variable structure fuzzy neural network model

of squamous dysplasia and esophageal squamous cell car-
cinoma based on a global chaotic optimization algorithm.
Khodaei-Mehr et al. [26] developed an intelligent optimal
adaptive neuro-fuzzy controller to control the hepatitis C
infection. In this population, a genetic algorithm was inte-
grated to train the data that was utilized to build and train
the Takagi-Sugeno fuzzy structure of the adaptive neuro-
fuzzy inference system. The approximation error or external
disturbance in these previous robust, adaptive or optimal
control schemes [14]–[22], [25], [26] are assumed to be
bounded. However, the external disturbance may be of
finite-energy only, but not bounded. In this situation, the
incorporation of an optimal H∞ control scheme that pos-
sesses the capability of disturbance attenuation is neces-
sary. Chen et al. [27] proposed a robust H∞ model matching
control of immune response for therapeutic enhancement
to match a prescribed immune response. Chen et al. [28]
proposed a robust H∞ observer-based tracking control of
stochastic immune response for a class of immune systems.
By using the fuzzy approximation method, both the robust
H∞ model matching control and observer-based tracking
control of immune systems could be solved via the linear
matrix inequality technique. Here, in order to solve the min-
imax control and the worst-case disturbance for the fuzzy
dynamic game problem in [27] and [28], a complicated set
of the Riccati-like inequalities must be solved. However, it is
difficult to obtain a closed-form solution.

This paper addresses the problem of designing robust
model matching controls for a large class of uncertain
immune systems. A novel adaptive neural network-based
model matching control design incorporated with a variable
structure control (VSC) algorithm and a nonlinearH∞ control
algorithm is proposed. The results developed here possess the
following enhancements:

1. This class of immune systems can be perturbed simul-
taneously by plant uncertainties, time-varying pertur-
bations, and external environmental pathogens. Since
measurement errors, modeling errors and process
noises, etc. may appear in the practical immune system,
the model of infectious disease described in this study
exactly covers a very wide class of immune systems.

2. The neural network approximation system equipped
with parameter updated law is designed to learn the
behavior of the unknown dynamic functions. In turn an
adaptive neural network-based dynamic feedback con-
troller is developed such that all the states and signals
of the closed-loop immune system are bounded and the
model matching error can be made as small as possible.

3. The input weighting gains in all the pathogen killer’s
agent, immune cell enhancer, antibody enhancer, and
organ health enhancer can be perturbed by small per-
turbations. In order to compensate the effects of these
small perturbations, a modified algebraic Riccati- like
inequality is solved to achieve the desired H∞ control
performance from the external disturbance to themodel
matching error. Therefore, the developed robust control
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scheme not only can handle a large class of uncertain
immune systems, but also achieve the aim of enhancing
the stability performance.

4. A simple design procedure of the controller is sum-
marized. Furthermore, a simple and explicit solution
of the Riccati-like inequality can be exactly computed.
Therefore, the intelligent robust control scheme devel-
oped here possesses the properties of computational
simplicity and easy implementation from the viewpoint
of practical applications.

This paper is organized as follows. In Section II, model
descriptions are presented. Section III develops the intelli-
gent adaptive/robust control scheme. Simulations are made
in Section IV, and conclusions are given in Section V.
In what follows, let x : [0,∞) → Rn be in L2[0,∞) if∫
∞

0 xT (t)x(t) dt < ∞, and x be in L∞[0,∞) if ‖x(t)‖ <
∞. Let ‖A‖ denote the induced 2-norm of matrix A. Let
A = diag{a1, · · · , an} be the diagonal matrix with diagonal
elements ai. Let �θ̂ be a preassigned constrained region of
the estimated parameter 2̂(t), and let Proj[2̂, fθ ] denote the
standard projection algorithm [23], [29].

II. MODEL DESCRIPTION AND PROBLEM FORMULATION
A. DESCRIPTION OF IMMUNE SYSTEMS
The dynamic model of infectious disease that is introduced
to describe the change rates of pathogen, immune cell and
antibody concentrations, and an indicator of organic health
can be given by [5], [6], [27], [28]:

ẋ1 = (a11 − a12x3)x1 + b1u1 + d1w1

ẋ2 = a21(x4)a22x1x3 − a23(x2 − x∗2 )+ b2u2 + d2w2

ẋ3 = a31x2 − (a32 + a33x1)x3 + b3u3 + d3w3

ẋ4 = a41x1 − a42x4 + b4u4 + d4w4

a21(x4) =

{
cos(πx4), 0 ≤ x4 ≤ 1/2
0, 1/2 ≤ x4

(1)

where x1, x2 and x3 are concentrations of a pathogen, immune
cells and antibodies; x4 is characteristic of damaged organ;
u1 is pathogen killer’s agent; u2, u3 and u4 are enhancers
of immune cell, antibody and organ health; w1 is rate of
continuing introduction;w2,w3,w4 are environmental distur-
bances; a21(x4) is the mediation of immune cell generated
by the damaged cell organ; b1, b2, b3, b4 are control input
gains; and d1, d2, d3, d4 are coupling gains of environmental
disturbances. The structural relationship of system variables
is depicted in Fig. 1 [5], [6], [27], [28]. The mathematical
model described in (1) is an idealization of a generic humoral
immune response that subsumes many details into aggre-
gated effects [30]. That is, the model presented in [30] does
not account for any treatment. In contrast, the model in (1)
has added idealized active and passive immunotherapeutic
control agents u1, · · · , u4 as well as an exogenous input
w1, · · · ,w4 into the model. Active immunotherapy strength-
ens natural immune response, as by enhancing plasma
cell and antibody production, while passive immunotherapy

addresses the effects of infection directly, as in killing the
pathogen or healing the infected organ [5], [6], [27], [28].

The dynamic immune response in (1) can be rewritten as
in the following compact form:

ẋ(t) = f (x(t))+ Bu(t)+ Dw(t) (2)

where

x = [x1, x2, x3, x4]T , u = [u1, u2, u3, u4]T ,

w = [w1,w2,w3,w4]T , B = diag{b1, b2, b3, b4},

D = diag{d1, d2, d3, d4},

f (x) =


f1(x)
f2(x)
f3(x)
f4(x)

 =


(a11 − a12x3)x1
a21(x4)a22x1x3 − a23(x2 − x∗2 )

a31x2 − (a32 + a33x1)x3
a41x1 − a42x4

 .
From the viewpoint of practical applications, the immune

system may be involved with a lot of uncertain perturbations
and continuing introduction of external pathogens. Here,
in order to coincide with the practical situation and achieve
the purpose of therapeutic enhancement, the nonlinear func-
tion f (x) is assumed to be completed unknown and the input
gains b1, b2, b3, b4 are assumed to be perturbed by time-
varying uncertainties.

FIGURE 1. Innate and enhanced immune responses to a pathogenic
attack by exogenous pathogens (w1) involving with environmental
disturbances (w2, w3, w4), pathogen killer’s agent (u1) and control input
enhancers (w2, w3, w4).

B. PROBLEM FORMULATION
Give a desired reference model

ẋr (t) = Arxr (t)+ r(t) (3)

where xr (t) is reference state vector, Ar is asymptotically
stable matrix, and r(t) is desired reference signal. Define the
matching error e(t) = x(t)− xr (t).

The objective of this paper is to construct intelligent adap-
tive model matching control scheme for the immune system
described in (1) that may be simultaneously involved with
the effects of plant uncertainties, time-varying perturbations,
and continuing environmental pathogens, such that the states
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and signals of the closed-loop controlled immune system
remain bounded, the model matching control performance
is achieved, and the effect due to the external disturbance
on the matching error can be attenuated to any prescribed
level, i.e. for a given desired attenuation ρ > 0 and a matrix
Q = QT > 0, the following H∞ criterion is achieved:∫ T

0
eT (t)Qe(t) dt ≤ U0 + ρ

2
∫ T

0
wT (t)w(t)dt (4)

where U0 is a positive constant depending on the initial
conditions.

C. DESCRIPTION OF NEURAL NETWORK SYSTEMS
Neural network systems possess the advantages of perfor-
mance enhancement and learning capability by using parallel
distributed processing. A simple two-layer neural network
model shown in Fig. 2 is constructed in this study to learn
the behavior of the unknown function fi(x), i = 1, · · · , 4
whose basic configuration is implemented by using massive
connections among processing units. The four inputs to this
model are the concentrations of pathogen x1, immune cells
x2, and antibodies x3, and characteristic of damaged organ
x4. The output yi(·), i = 1, · · · , 4 can be given by [23]

yi(x, 2̂i) =
mi∑
l=1

θilyil(
4∑
j=1

ωijlxj + bil), i = 1, · · · , 4 (5)

where mi, i = 1, · · · , 4 is the number of hidden neurons,
yil(·), i = 1, · · · , 4, l = 1, · · · ,mi denotes the activation
function, ωijl, i, j = 1, · · · , 4, l = 1, · · · ,mi is the first-to-
second layer interconnection weights, bil, i = 1, · · · , 4, l =
1, · · · ,mi is the biases, and θil, i = 1, · · · , 4, l = 1, · · · ,mi
is the second-to-output interconnection weights.

Universal approximation theorem [23]: the neural network
system in the form of (5) is proven to be an universal approxi-
mator, i.e., for any given real continuous function fi(x) on the
compact set�x , there exists a neural network system yi(x, 2̂i)
in the form of (5) such that it can uniformly approximate fi(x)
over �x to arbitrary accuracy.

III. DESIGN OF ROBUST THERAPEUTIC CONTROLLER
Taking into account the state equation (2) and the reference
model (3), the dynamic equation of the matching error e(t) =
x(t)− xr (t) can be computed as

ė(t) = Are(t)+ f (x(t))+ Bu(t)+ Dw(t)− Arx(t)− r(t)

(6)

In the practical immune system, the input weighting
gains b1, b2, b3, b4 may have uncertain variations around
their nominal values because of receiving unpredictable
time-varying interference from the environment, etc. Here,
in order to coincide with practical applications, these gains
can be split into a known nominal part plus an unknown
perturbation, i.e. bi = bi0 + 1bi(t), i = 1, · · · , 4. Let B0 =
diag{b10, · · · , b40} and 1B(t) = diag{1b1, · · · ,1b4}.
We make the following assumption.

FIGURE 2. Basic configuration of the two-layer neural network system
f̂i (x, 2̂i ), i = 1, 2, 3, 4 that is designed to learn the behavior of the
unknown function fi (x), i = 1, 2, 3, 4.

A1: There is a positive function 0 ≤ κb(t) < 1 such that∥∥∥B−10 1B
∥∥∥ ≤ κb(t). �

Moreover, an adaptive neural network approximation sys-
tem f̂ (x, 2̂) with input vector x ∈ �x for some compact
set �x and the tunable approximation parameter vector 2̂,
is proposed here to approximate the behavior of the uncertain
function f (x). Let

f̂ (x, 2̂) = [f̂1(x, 2̂1), f̂2(x, 2̂2), f̂3(x, 2̂3), f̂4(x, 2̂4)]T (7)

where f̂i(x, 2̂i), i = 1, 2, 3, 4 is designed to learn the
ith component fi(x) of f (x). As in many previous stud-
ies [23], [24], [27], [29], the linearly parametrized model is
employed in the approximation procedure and so f̂i(x, 2̂i) can
be expressed as

f̂i(x, 2̂i) = Y Ti (x)2̂i (8)

where 2̂i ≡ [θi1, · · · , θimi ]
T and Yi(x) ≡ [yi1, · · · , yimi ]

T for
some mi > 0 is a regressive vector with the regressor

yil(x) =
eσil (x) − eσil (x)

eσil (x) + eσil (x)
(9)

for i = 1, · · · , 4 and l = 1, · · · ,mi.
Consequently, the total approximation system f̂ (x, 2̂) can

be expressed as

f̂ (x, 2̂) = Y (x)2̂ (10)

where Y (x) = diag{Y T1 (x), Y
T
2 (x), Y

T
3 (x), Y

T
4 (x)} denotes

a basis matrix and 2̂ ≡ [2̂T
1 , · · · , 2̂

T
4 ]
T . According to the

universal approximation theorem [23], there is an optimal
approximation parameter2∗ such that f̂ (x,2∗) can approxi-
mate f (x) as best as possible. Therefore, the unknown dynam-
ics f (x) can be expressed as

f (x) = Y (x)2∗ +1f (x) (11)

where 1f (x) denotes the optimal approximation error. The
following assumption is made.
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A2: There is a positive function κf (x) ≥ 0 such that
‖1f (x)‖ ≤ κf (x). �
Choose the control input

u = B−10 (−Y (x)2̂+ Arx + r)+ unew (12)

for some new control input unew. By taking into account (11),
(12) and assumption A1, (6) can be expressed as:

ė(t) = Are+ Y 2̃+1fe(xe, t)

+B0(I + B
−1
0 1B)unew + Dw (13)

where 1fe(·) = 1f +1BB
−1
0 (−Y 2̂+ Arx + r), 2̃ = 2∗ −

2̂, and xe = [xT , 2̂T , rT ]T . Note that the uncertain term
1fe(·) is yielded due to the small perturbation,1B(t), and the
approximation error, 1f (x), and so this term can be omitted
when these two terms are equal to zero. A VSC algorithm is
employed to override the effect of uncertain term 1fe(xe, t).
According to the assumptions A1 and A2, there is a positive
function Ms(xe, t) > 0 such that ‖1fe(xe, t)‖ ≤ Ms(xe, t).
Theorem 1: Consider the uncertain immune systems (1).

Suppose assumptions A1 and A2 hold. Then, if there exists
a matrix P = PT ≥ 0 satisfying the following Riccati-like
inequality

1
2
(PAr + ATr P)+

1
4ρ2

PDDTP

−PB0
1− κb
rh

BT0 P+ Q ≤ 0 (14)

for some H∞ control gain rh > 0, the robust-adaptive neural
network-based model matching control law

u(t) = B−10 (−Y (x)2̂+ Arx + r)+ uh(t)+ us(t) (15)

uh(t) = −
1
rh
BT0 Pe (16)

us(t) = −B
−1
0
Ms(xe, t)
1− κb(t)

Ms(xe, t)BT0 Pe∥∥Ms(xe, t)BT0 Pe
∥∥+ εe−ν t (17)

˙̂
2 = γ Proj [2̂,Y T (x)Pe] (18)

where ε > 0, ν > 0 are constants and γ > 0 is the adaptive
gain, guarantees that

(i) if w ∈ L2[0,∞), then the followingH∞ performance is
achieved:∫ T

0
eT (t)Qe(t) dt ≤

1
2
eT (0)Pe(0)+

1
2γ
2̃T (0)2̃(0)

+ ρ2
∫ T

0
wT (t)w(t)dt +

ε

ν
(1− e−ν T ) (19)

(ii) if w ∈ L∞[0,∞), then the matching error can be made
as small as possible; and (iii) all the states and signals are
bounded.

Proof: Choose the Lyapunov function

U (e, 2̃, t) =
1
2
eTPe+

1
2γ
2̃T 2̃ (20)

Taking into account (13), the derivative of U is

U̇ =
1
2
eTPAre+

1
2
eTATr Pe+ e

TP1fe(xe, t)

+ eTPDw+ eTPB0(I + B
−1
0 1B)(uh + us)

+ eTPY (x)2̃−
1
γ

˙̂
2T 2̃ (21)

By completing the squares, we get

eTPDw ≤
1

4ρ2
eTPDDTPe+ ρ2wTw (22)

From assumption A1, we get

eTPB0
1− κb
rh

BT0 Pe ≤ e
TPB0

I + B−10 1B

rh
BT0 Pe (23)

Substituting (16), (22) and (23) into (21) yields

U̇ ≤
1
2
eTPAre+

1
2
eTATr Pe+

1
4ρ2

eTPDDTPe

+ ρ2wTw− eTPB0
1− κb
rh

BT0 Pe

+ eTP1fe(xe, t)+ eTPB0(I + B
−1
0 1B)us

+ eTPY (x)2̃−
1
γ

˙̂
2T 2̃ (24)

Substituting (14) into (24) leads to

U̇ ≤ −eTQe+ ρ2wTw+ eTP1fe(xe, t)

+ eTPB0(I + B
−1
0 1B)us + eTPY (x)2̃

−
1
γ

˙̂
2T 2̃ (25)

From (18) that is a standard projection algorithm [23], [29],
it is clear that 2̂(t) ∈ �

θ̂
for all t ≥ 0, and

eTPY (x)2̃−
1
γ

˙̂
2T 2̃ ≤ 0. (26)

Moreover, from us(t) in (17) and the definition of Ms(·),
we get

eTPB0(I + B
−1
0 1B)us + eTP1fe(xe, t) ≤ εe−ν t (27)

Substituting (26) and (27) into (25) yields

U̇ (e, 2̃, t) ≤ −eTQe+ ρ2wTw+ εe−ν t (28)

(i) Suppose w ∈ L2[0,∞), i.e., there is a Md > 0 such
that

∫
∞

0 ‖w(t)‖
2dt < Md . Integrating the inequality (28)

from 0 to T achieves the H∞ performance in (19). Moreover,
integrating (28) yields U (t) ≤ U (0) + ρ2Md + ε/ν ≡ Umax
for all t ≥ 0. From (20) we can conclude e(t) ∈ {e| eTPe ≤
2Umax} and 2̃(t) ∈ {2̃| 2̃T 2̃ ≤ 2γUmax}. This implies all
the states and signals are bounded.

(ii) Suppose w ∈ L∞[0,∞), i.e., there is an εw > 0 such
that ‖w‖ ≤ εw. From (28), we obtain U̇ ≤ −λq ‖e‖2 + ε∞
where λq denotes the minimum eigenvalue of Q and ε∞ =
ρ2ε2w + ε. If we choose λq > ε∞/µ

2 for some small value
µ > 0, then there is a ξ > 0 such that

U̇ ≤ −ξ ‖e‖2 < 0 (29)

for all ‖e‖ > µ. This implies there is a T > 0 such
that ‖e(t)‖ ≤ µ for all t ≥ T , that is the UUB tracking
performance is achieved [31]. �
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Remark 1: i) The intelligent neural network-based robust
controller structure (14)-(18) is depicted in Fig. 3 that con-
sists of three parts: an adaptive approximation system Y (x)2̂
equipped with (18) is designed to learn the behavior of f (x),
the robust H∞ controller uh is used to achieve the desired
H∞ performance, and the VSC scheme us is used to eliminate
the effect of 1fe(xe, t) Hence, in practice this controller is a
hybrid adaptive-robust controller.

ii) The control design relies on the solution of an algebraic
Riccati-like matrix inequality in (14). A simple solution of
(14) can be computed as follows. Choose the robust H∞
control gain, rh such that

1
4ρ2

DDT − B0
1− κb
rh

BT0 ≤ 0 (30)

and so (14) is reduced to PAr + ATr P + 2Q ≤ 0 that is the
Lyapunov inequality. Since Ar is a Hurwitz matrix, for any
given positive definite symmetric matrix Q,PAr + ATr P +
2Q = 0 has the unique solution

P = 2
∫
∞

0
exp(ATr t)Q exp(Ar t) dt[31].

(iii) A simple design procedure of implementing thematching
controller developed in Theorem 1 is summarized as follows:
Step 1: Give a desired model ẋr (t) = Arxr (t)+ r(t).
Step 2: Construct the adaptive neural network approxima-

tion system f̂ (x, 2̂).
Step 3:Give a desired attenuation level ρ > 0 and a matrix

Q = QT > 0.
Step 4: Choose the H∞ control gain, rh, in (30).
Step 5: Solve the Riccati-like inequality PAr+ATr P+2Q ≤

0 to obtain the matrix P.
Step 6:Construct the adaptive neural network-based model

matching controller (15)-(18). �
The term ε

ν
(1 − e−ν T ) in (19) is yielded owing to the

smoothmodification of us(t) and can be viewed as an external
disturbance. It is clear that the smaller the value ε and the
larger the value ν, the less smooth is the robust controller
us(t) and the smaller is the term ε

ν
(1− e−ν T ). It is noted that

FIGURE 3. Block diagram of the intelligent adaptive neural
network-based model matching control structure for the immune system
developed in Theorem 1. This controller structure consists of three
parts. The first part is an intelligent adaptive approximation system
Y (x)2̂ equipped with update law (18), the second part is the robust H∞

controller uh in (16), and the third part is the VSC scheme us in (17).

the VSC scheme us in (17) is used to eliminate the effect of
1fe(xe, t). If 1fe(xe, t) = 0, then the VSC scheme can be
omitted, and a standard H∞ performance can be concluded.
Corollary 1: Consider the uncertain immune systems (1).

Suppose 1fe(·) = 0. Then, if there exists a matrix P =
PT ≥ 0 satisfying (14), the robust-adaptive neural network-
based model matching control law (15)-(18) with us(t) = 0
guarantees that the following H∞ performance is achieved:∫ T

0
eT (t)Qe(t) dt ≤ U (0)+ ρ2

∫ T

0
wT (t)w(t)dt (31)

Proof: Choose the Lyapunov function as in (20). Taking
the similar procedure of proof in Theorem 1, the derivative of
U can be bounded as

U̇ (e, 2̃, t) ≤ −eTQe+ ρ2wTw (32)

Integrating the inequality (32) from 0 to T yields the H∞
performance (31). �

IV. SIMULATION EXAMPLE
Consider the innate immune system (1) shown in Figure 1.
For the purpose of simulation, the system function in (2) is
given by f (x) = [(1 − x3)x1, 3a21(x4)x1x3 − (x2 − 2), x2 −
(1.5+ x1)x3, 0.5x1 − x4]T ,B0 = diag{−1,−1, 1,−1},D =
diag{1, 1, 1, 1}. The exact parameter values are described in
Table 1. Since time-varying perturbations and disturbances
noises may be yielded due to measurement errors, modeling
errors and process noises [4], the nonlinear function f (x)
is completed unknown, i.e. the coefficients aij for i, j =
1, · · · , 4 are not required in the implementation of control
design. Moreover, the input gains b1, b2, b3, and b4 are per-
turbed by 1b1 = 0.1 sin(t),1b2 = 0.1 cos(t),1b3 =
0.15 sin(0.5t),1b4 = 0.12 cos(0.5t), respectively. The exter-
nal disturbances w1,w2,w3, and w4 are assumed to be zero
mean white noises with standard deviations 0.3. Adopting the
above parameters, the dynamic model of the innate immune
system perturbed by plant uncertainties, time-varying per-
turbations, and external environmental pathogens can be
expressed as

ẋ1 = (1− x3)x1 − (1+ 0.1 sin t)u1 + w1

ẋ2 = 3a21(x4)x1x3 − (x2 − 2)− (1+ 0.1 cos t)u2 + w2

ẋ3 = x2 − (1.5+ x1)x3 + (1+ 0.15 sin 0.5t)u3 + w3

ẋ4 = 0.5x1 − x4 − (1+ 0.12 cos 0.5t)u4 + w4

For the purpose of comparison, the simulation results of
the lethal case of the uncontrolled innate immune response
without the presence of environmental disturbances (i.e., let
ui = 0 and wi = 0, i = 1, · · · , 4) are shown in Fig. 4 with
the initial state x(0) = [3, 3.1, 1, 1]T . The simulations are
performed in the MATLAB environment and the correspond-
ing programs are provided in the Appendix A. One can see
that this uncontrolled response is quite poor. The pathogen
concentration (x1, black, solid line) is increasing rapidly and
causes organ failure (x4, green, dotted line).
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The robust-adaptive neural network-basedmodel matching
controller (15)-(18) with the desired H∞ performance (19)
is employed to treat the model matching control problem.
According the design algorithm in Remark 1-(iii), the imple-
mentation of the matching controller from step 1 to step 6 is
described as follows.
Step 1: Our reference model design objective is that

system matrix Ar and r(t) should be specified before-
hand so that its transient response and steady state of
reference system for innate immune response system
are desired. Here, for the purpose of simulation, let
the desired signal xr = [xr1, xr2, xr3, xr4]T be speci-
fied by Ar = diag{−1.1,−2,−4,−1.5} and r(t) =
[0, 4, 16/3, 0]T ustep(t) where ustep(t) is the unit step
function. The initial condition is set as xr (0) =

[2.9, 3.2, 1.1, 1.05]T . After some manipulations, the
desired reference trajectories are obtained as xr1(t) =
2.9e−1.1t , xr2(t) = 1.2e−2t + 2, xr3(t) = −0.23e−4t + 1.33,
and xr4(t) = 1.05e−1.5t , respectively. The time responses
of xr (t) are depicted in Fig. 5. The corresponding pro-
grams are provided in the Appendix B. These simulation
results show that the desired trajectory xr1(t) of the pathogen
concentration x1(t) exponentially converges to zero with
exponential rate −1.1, the desired trajectory xr2(t) of the
immune cell concentration x2(t) exponentially converges to 2
with exponential rate −2, the desired trajectory xr3(t) of the

TABLE 1. Model parameters of the immune system [5], [6].

FIGURE 4. The uncontrolled immune response in (1) with
u1 = u2 = u3 = u4 = 0, w1 = w2 = w3 = w4 = 0. The initial conditions of
the immune system are x(0) = [3, 3.1, 1, 1] T .

FIGURE 5. The time response of the desired reference model in (3) with
xr (0) = [2.9, 3.2, 1.1, 1.05] T .

antibody concentration x3(t) exponentially converges to 1.33
with exponential rate −4, and the desired trajectory xr4(t)
of the organ characteristic x4(t) exponentially converges to
zero with exponential rate −1.5. The exponential rates are
dependent on the eigenvalues of Ar . If the eigenvalues are
more negative (i.e. more robust stable), the tracking system
will be more robust to environmental disturbances. The expo-
nentially convergent values are dependent on the values of
r(t) and Ar .
Step 2: Choose the activation functions of the adaptive

neural network system f̂ (x, 2̂) as

y1i =
e5(x1−0.5i) − e−5(x1−0.5i)

e5(x1−0.5i) + e−5(x1−0.5i)
, i = 1, 2, 3

y2i =
e5(x2−1−0.5i) − e−5(x2−1−0.5i)

e5(x2−1−0.5i) + e−5(x2−1−0.5i)
, i = 1, 2, 3

y3i =
e5(x3−0.5−0.5i) − e−5(x3−0.5−0.5i)

e5(x3−0.5−0.5i) + e−5(x3−0.5−0.5i)
, i = 1, 2, 3

y4i =
e5(x4−0.5i) − e−5(x4−0.5i)

e5(x4−0.5i) + e−5(x4−0.5i)
, i = 1, 2, 3

VOLUME 10, 2022 31781



Y.-C. Chang et al.: Adaptive Neural Model Matching Control for Uncertain Immune Systems via H∞ Approaches

FIGURE 6. Activation functions of four input variables x1, x2, x3, and x4
in the neural network system. (a) The biases for x1 are selected as 0.5, 1
and 1.5; (b) the biases for x2 are selected as 1.5, 2 and 2.5; (c) the biases
for x3 are selected as 1, 1.5 and 2; (d) the biases for x4 are selected as
0.5, 1 and 1.5.

FIGURE 7. The response of the controlled innate immune system to the
desired reference model by the robust adaptive neural network-based
model matching control scheme with x(0) = [3, 3.1, 1, 1] T .

Define Y1 = Y2 = Y3 = Y4 = [y11, y12, y13, · · · , y41, y42,
y43]. Hence, the neural network approximator f̂ (x, 2̂) =
Y (x)2̂ with Y (x) = diag{Y1(x),Y2(x),Y3(x),Y4(x)}, 2̂ =
[θ̂1, θ̂2, · · · , θ̂47, θ̂48]T . Set the constrained region�θ̂ = R48.
Three basis functions for each input are chosen, and the basis
functions are shown in Fig. 6, respectively. The correspond-
ing programs are provided in the Appendix C. Here, since
the desired trajectory xr1(t) of the pathogen concentration
x1(t) is positive and converges to zero as t → ∞, it is
intuitively evident that the biases of basis functions y1i, i =
1, 2, 3 should be clustered around zero and thus the biases are
selected as 0.5, 1 and 1.5. Similarly, since the desired trajec-
tory xr2(t) of the immune cell concentration x2(t) converges
to 2 as t → ∞, the biases of y2i, i = 1, 2, 3 should be
clustered around 2 and thus the biases are selected as 1.5, 2
and 2.5. Since the desired trajectory xr3(t) of the antibody
concentration x3(t) converges to 1.33 as t →∞, the biases of
y3i, i = 1, 2, 3 should be clustered around 1.33 and thus the
biases are selected as 1, 1.5 and 2. Finally, since the desired
trajectory xr4(t) of the organ characteristic x4(t) is positive
and converges to zero as t →∞, the biases of y4i, i = 1, 2, 3
should be clustered around 0 and thus the biases are selected
as 0.5, 1 and 1.5. In general, the number of basis functions in
the neural network system heavily influences the complexity
of a neural network system. The larger the number, the more
complex is the neural-network system and the higher the
expected performance of the neural-network system.
Step 3: Give the desired attenuation level ρ = 0.25 and

the weighting matrix Q = I4×4. In general, there is a tradeoff
between the attenuation level and the amplitude of the con-
trol signal. The smaller ρ may yield better performance in
attenuating the effect of the external disturbance on the model
matching error, but the control signal during the transient time
may be larger.
Step 4: Since B0 = diag{−1,−1, 1,−1} and D =

diag{1, 1, 1, 1}, from assumption A1 set κb = 0.2. Solve the
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FIGURE 8. (a) The tracking responses of pathogen concentration x1;
(b) immune cell concentration x2; (c) antibody concentration x3; (d) organ
characteristic x4 in the controlled innate immune system with
x(0) = [3, 3.1, 1, 1] T to match the desired reference model with
xr (0) = [2.9, 3.2, 1.1, 1.05] T .

FIGURE 9. The control inputs in the controlled innate immune system by
the robust adaptive neural network-based model matching control
scheme.

inequality (1/4ρ2)DDT − ((1 − κb)/rh)B0BT0 ≤ 0 in (30).
Therefore, the sufficient condition of the robust H∞ control
gain is rh ≤ 4ρ2(1− κb) = 0.2. Here, choose rh = 0.2.
Step 5: Solve the inequality PAr + ATr P + 2Q ≤ 0,

and obtain the sufficient condition PAr ≤ −Q. Since
all the eigenvalues of the reference system matrix Ar =
diag{−1.1,−2,−4,−1.5} are less than −1 and the weight-
ing matrix is Q = I4×4, we can simply choose P = I4×4.
Step 6: Construct the model matching controller (15)-(18)

with Ms = 0.1 ‖e‖ , ε = 1, ν = 0.1, and γ = 10.
The response of the controlled innate immune system with

x(0) = [3, 3.1, 1, 1]T and 2̂(0) = 0 is presented in
Fig. 7. The tracking responses of pathogen concentration
x1, immune cell concentration x2, antibody concentration
x3, and organ characteristic x4 are plotted in Figs. 8. The
control inputs are presented in Fig. 9. The corresponding
programs are provided in the Appendix D. Simulation results
indicate that a satisfactorily tracking and convergent perfor-
mance is achieved. Obviously, it can be found that after a
short transient response all the pathogen, immune cell, and
antibody concentrations, and organ characteristic can follow
the desired reference trajectories with a small steady-state
error. Consequently, the effects of the time-varying pertur-
bations, the continuous intrusion of exogenous pathogens
and the corruption of environmental disturbances have been
compensated significantly by the proposed robust therapeutic
control design.

Finally, in order to further demonstrate the effectiveness of
the proposed control scheme, we make the following com-
parative simulations. From the lethal case of the uncontrolled
innate immune response depicted in Fig. 5, it is clear that the
pathogen concentration is increasing rapidly and causes organ
failure. Now, we try to administrate a treatment after a period
of pathogens infection to enhance the immune system. For
the purpose of comparison, we simulate three comparative
cases, that is, we take drugs at three time points 0.5, 1,
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FIGURE 10. The response of the controlled innate immune system to the
desired reference model by the robust adaptive neural network-based
model matching control scheme. (a) The pathogens infect the immune
system a period of time and the drugs are taken at time point 0.5; (b) The
pathogens infect the immune system a period of time and the drugs are
taken at time point 1; (c) The pathogens infect the immune system a
period of time and the drugs are taken at time point 1.5.

and 1.5, respectively. The responses of the controlled innate
immune system are presented in Fig. 10. Simulation results
indicate that the pathogen concentration increases rapidly
and causes organ failure at the beginning of the time period.

Moreover, a satisfactorily tracking and convergent perfor-
mance is achieved after the drugs are taken, showing that
the pathogen concentration converges to zero and the organ
becomes healthy.

V. CONCLUSION
An adaptive neural network-based model matching control
design incorporated with a VSC algorithm and a nonlin-
ear H∞ control algorithm has been proposed and solved
for a large class of uncertain nonlinear immune systems.
All the states and signals of the closed-loop immune system
are bounded and the model matching error can be made as
small as possible. A simple and explicit solution of solv-
ing the modified algebraic Riccati-like inequality can also
be exactly computed. Consequently, the intelligent robust
control scheme developed here possesses the properties of
computational simplicity and easy implementation from the
viewpoint of practical applications. Finally, simulation exam-
ples are presented to demonstrate the effectiveness of the
proposed robust therapeutic control design.

We assume in this study that all the state variables of
immune systems are available for feedback. However, in real-
ity the invading pathogens may migrate or hide in organs
and therefore their concentration in the body is hard to
measure. Moreover, in real biological systems some exact
information of immune systems are not easily measured by
biological monitoring techniques. Consequently, extended
study of solving the adaptive observer-based model match-
ing control without pathogen concentration measurement for
uncertain nonlinear immune systems will be the subject of
future research.

APPENDIX
A. PROGRAM OF SIMULATION FOR FIG 4
% file name: simu0.m
clear
t0=0;tf=8;x0=[3; 3.1; 1; 1];
options=odeset(‘RelTol’,1e-4,‘AbsTol’,1e-5);
[t,x]=ode23(‘simup0’,[t0,tf],x0,options);
plot(t,x(:,1),‘k’,t,x(:,2),‘b–’,t,x(:,3),‘r-.’,t,x(:,4),‘g:’)
axis([0 8 0 10])
% file name: simup0.m
% Subroutine of the program simu0.m
function xdot=simup0(t,x)
w1=0;w2=0;w3=0;w4=0;
u1=0;u2=0;u3=0;u4=0;
if x(4)>1/2;

a21=0;
else

a21=cos(pi∗x(4));
end
xdot1=(1−x(3))∗x(1)−u1+1∗w1;
xdot2=a21∗3∗x(1)∗x(3)−(x(2)−2)−u2+1∗w2;
xdot3=x(2)−(1.5+x(1))∗x(3)+u3+1∗w3;
xdot4=0.5∗x(1)-x(4)-u4+1∗w4;

xdot=[xdot1;xdot2;xdot3;xdot4];

B. PROGRAM OF SIMULATION FOR FIG 5
% file name: xr.m
clear
t0=0;tf=10;x0=[2.9; 3.2; 1.1; 1.05];
options=odeset(‘RelTol’,1e-4,‘AbsTol’,1e-5);
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[t,x]=ode23(‘xrp’,[t0,tf],x0,options);
plot(t,x(:,1),‘k’,t,x(:,2),‘b–’,t,x(:,3),‘r-.’,t,x(:,4),‘g:’)
% file name: xrp.m
% Subroutine of the program xr.m
function xdot=xrp(t,x)
Ar=[−1.1,0,0,0; 0,−2,0,0; 0,0,−4,0; 0,0,0,−1.5];
RR=[0;4;16/3;0];
xdot1=Ar∗[x(1);x(2);x(3);x(4)]+RR;

xdot=xdot1;

C. PROGRAM OF SIMULATION FOR FIG 6
% file name: neural.m
% Program for Fig. 6a.
fplot(‘(exp(5∗(x−0.5))-exp(-5∗(x-0.5)))/(exp(5∗. . .
(x-0.5))+exp(−5∗(x-0.5)))’,[0 4],‘b’);
hold on
fplot(‘(exp(5∗(x−1))-exp(-5∗(x-1)))/(exp(5∗(x−1))+. . .
exp(−5∗(x−1)))’,[0 4],‘g–’);
fplot(‘(exp(5∗(x−1.5))−exp(−5∗(x−1.5)))/(exp(5∗. . .
(x−1.5))+exp(−5∗(x−1.5)))’,[0 4],‘r-.’);
hold off
pause

% Program for Fig. 6b.
fplot(‘(exp(5∗(x−1.5))−exp(−5∗(x−1.5)))/(exp(5∗. . .
(x−1.5))+exp(−5∗(x−1.5)))’,[0 4],‘b’);
hold on
fplot(‘(exp(5∗(x−2))−exp(−5∗(x−2)))/(exp(5∗(x−2))+. . .
exp(−5∗(x−2)))’,[0 4],‘g–’);
fplot(‘(exp(5∗(x−2.5))−exp(−5∗(x−2.5)))/(exp(5∗. . .
(x−2.5))+exp(−5∗(x−2.5)))’,[0 4],‘r-.’);
hold off
pause
% Program for Fig. 6c.
fplot(‘(exp(5∗(x−1))−exp(−5∗(x−1)))/(exp(5∗(x−1))+. . .
exp(−5∗(x−1)))’,[0 4],‘b’);
hold on
fplot(‘(exp(5∗(x−1.5))−exp(−5∗(x−1.5)))/(exp(5∗. . .
(x-1.5))+exp(-5∗(x−1.5)))’,[0 4],’g–’);
fplot(‘(exp(5∗(x−2))-exp(−5∗(x−2)))/(exp(5∗(x−2))+. . .
exp(−5∗(x−2)))’,[0 4],‘r-.’);
hold off
pause
% Program for Fig. 6d.
fplot(‘(exp(5∗(x−0.5))−exp(−5∗(x−0.5)))/(exp(5∗. . .
(x−0.5))+exp(−5∗(x−0.5)))’,[0 4],‘b’);
hold on
fplot(‘(exp(5∗(x−1))−exp(−5∗(x−1)))/(exp(5∗(x−1))+. . .
exp(−5∗(x−1)))’,[0 4],‘g–’);
fplot(‘(exp(5∗(x−1.5))−exp(−5∗(x−1.5)))/(exp(5∗. . .
(x−1.5))+exp(−5∗(x−1.5)))’,[0 4],‘r-.’);

hold off

D. PROGRAM OF SIMULATION FOR FIGS 7-9
% file name: simu1.m
clear
t0=0;tf=8;int0=[0;0;0;0;0;0;0;0;0;0;0;0];
x0=[3; 3.1;1;1;2.9;3.2;1.1;1.05;int0;int0;int0;int0];
options=odeset(‘RelTol’,1e−4,‘AbsTol’,1e−5);
[t,x]=ode23(‘simup1’,[t0,tf],x0,options);
simuu1
% Program for Fig. 7.
plot(t,x(:,1),‘k’,t,x(:,2),‘b–’,t,x(:,3),‘r-.’,t,x(:,4),‘g:’)
pause
% Program for Fig. 8a.
plot(t,x(:,1),‘k’,t,x(:,5),‘b–’,t,x(:,1)-x(:,5),‘r-.’)
axis([0,8,-0.5,3.5])
pause
% Program for Fig. 8b.
plot(t,x(:,2),‘k’,t,x(:,6),‘b–’,t,x(:,2)−x(:,6),‘r-.’)
axis([0,8,−0.5,3.5])
pause

% Program for Fig. 8c.
plot(t,x(:,3),‘k’,t,x(:,7),‘b–’,t,x(:,3)−x(:,7),‘r-.’)
axis([0,8,−0.5,1.5])
pause
% Program for Fig. 8d.
plot(t,x(:,4),‘k’,t,x(:,8),‘b–’,t,x(:,4)−x(:,8),‘r-.’)
axis([0,8,−0.5,1.5])
pause
% Program for Fig. 9.
plot(t,u(1,:),‘k’,t,u(2,:),‘b–’,t,u(3,:),‘r-.’,t,u(4,:),‘g:’)
axis([0,8,−0.5,4])
% file name: simup1.m
% Subroutine 1 of the program simu1.m
function xdot=simup1(t,x)
% Regressor matrix
y11=(exp(5∗(x(1)−0.5))−exp(5∗(−x(1)+0.5)))/. . .
(exp(5∗(x(1)−0.5))+exp(5∗(−x(1)+0.5)));
y12=(exp(5∗(x(1)−1))−exp(5∗(−x(1)+1)))/. . .
(exp(5∗(x(1)−1))+exp(5∗(−x(1)+1)));
y13=(exp(5∗(x(1)−1.5))−exp(5∗(−x(1)+1.5)))/. . .
(exp(5∗(x(1)−1.5))+exp(5∗(−x(1)+1.5)));
y21=(exp(5∗(x(2)−1.5))−exp(5∗(−x(2)+1.5)))/. . .
(exp(5∗(x(2)−1.5))+exp(5∗(−x(2)+1.5)));
y22=(exp(5∗(x(2)−2))−exp(5∗(-x(2)+2)))/. . .
(exp(5∗(x(2)−2))+exp(5∗(−x(2)+2)));
y23=(exp(5∗(x(2)−2.5))−exp(5∗(−x(2)+2.5)))/. . .
(exp(5∗(x(2)−2.5))+exp(5∗(−x(2)+2.5)));
y31=(exp(5∗(x(3)−1))−exp(5∗(−x(3)+1)))/. . .
(exp(5∗(x(3)−1))+exp(5∗(−x(3)+1)));
y32=(exp(5∗(x(3)−1.5))−exp(5∗(−x(3)+1.5)))/. . .
(exp(5∗(x(3)−1.5))+exp(5∗(−x(3)+1.5)));
y33=(exp(5∗(x(3)−2))−exp(5∗(−x(3)+2)))/. . .
(exp(5∗(x(3)−2))+exp(5∗(-x(3)+2)));
y41=(exp(5∗(x(4)−0.5))−exp(5∗(−x(4)+0.5)))/. . .
(exp(5∗(x(4)−0.5))+exp(5∗(−x(4)+0.5)));
y42=(exp(5∗(x(4)−1))−exp(5∗(-x(4)+1)))/. . .
(exp(5∗(x(4)−1))+exp(5∗(−x(4)+1)));
y43=(exp(5∗(x(4)−1.5))−exp(5∗(−x(4)+1.5)))/. . .
(exp(5∗(x(4)−1.5))+exp(5∗(−x(4)+1.5)));
Y1=[y11 y12 y13 y21 y22 y23 y31 y32 y33 y41 y42 y43];
Y0=[0 0 0 0 0 0 0 0 0 0 0 0];
YY=[Y1 Y0 Y0 Y0;Y0 Y1 Y0 Y0;Y0 Y0 Y1 Y0;. . .
Y0 Y0 Y0 Y1];
Theta=[x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16). . .
x(17) x(18) x(19) x(20) x(21) x(22) x(23) x(24) x(25). . .
x(26) x(27) x(28) x(29) x(30) x(31) x(32) x(33) x(34). . .
x(35) x(36) x(37) x(38) x(39) x(40) x(41) x(42) x(43). . .
x(44) x(45) x(46) x(47) x(48) x(49) x(50) x(51) x(52). . .
x(53) x(54) x(55) x(56)]’;
% controller
e=[x(1)−x(5);x(2)−x(6);x(3)−x(7);x(4)−x(8)];
B=[−1,0,0,0; 0,−1,0,0; 0,0,1,0; 0,0,0,−1];
Ar=[−1.1,0,0,0; 0,−2,0,0; 0,0,−4,0; 0,0,0,−1.5];
RR=[0;4;16/3;0];
PP=[1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1];
xx=[x(1);x(2);x(3);x(4)];
gamma=10; rgain=1/5;
uada=YY∗Theta;
uh=-1/rgain∗B’∗PP∗e;
Ms=0.1∗sqrt(e’∗e);
us=-B^(−1)∗Ms/(1−0.2)∗(Ms∗B’∗PP∗e)/. . .
(sqrt((Ms∗B’∗PP∗e)’∗(Ms∗B’∗PP∗e))+1∗exp(−0.1∗t));
u=inv(B)∗(Ar∗xx+RR-uada)+uh+us;
% system parameters
w=0.3∗randn(4,1);
w1=w(1);w2=w(2);w3=w(3);w4=w(4);
if x(4)>1/2;

a21=0;
else

a21=cos(pi∗x(4));
end
b1= −1+0.1∗sin(t); b2= −1+0.1∗cos(t);
b3=1+0.15∗sin(t/2); b4= −1+0.12∗cos(t/2);
u1=u(1);u2=u(2);u3=u(3);u4=u(4);

VOLUME 10, 2022 31785



Y.-C. Chang et al.: Adaptive Neural Model Matching Control for Uncertain Immune Systems via H∞ Approaches

xdot1=(1−x(3))∗x(1)+b1∗u1+1∗w1;
xdot2=a21∗3∗x(1)∗x(3)−(x(2)−2)+b2∗u2+1∗w2;
xdot3=x(2)−(1.5+x(1))∗x(3)+b3∗u3+1∗w3;
xdot4=0.5∗x(1)−x(4)+b4∗u4+1∗w4;
xdot58=Ar∗[x(5);x(6);x(7);x(8)]+RR;
thetadot=gamma∗YY‘∗B’∗PP∗e;
xdot=[xdot1;xdot2;xdot3;xdot4;xdot58;thetadot];
% file name: simuu1.m
% Subroutine 2 of the program simu1.m
for i=1:max(size(t))
y11=(exp(5∗(x(i,1)−0.5))−exp(5∗(−x(i,1)+0.5)))/. . .
(exp(5∗(x(i,1)−0.5))+exp(5∗(−x(i,1)+0.5)));
y12=(exp(5∗(x(i,1)−1))−exp(5∗(−x(i,1)+1)))/. . .
(exp(5∗(x(i,1)−1))+exp(5∗(−x(i,1)+1)));
y13=(exp(5∗(x(i,1)−1.5))−exp(5∗(−x(i,1)+1.5)))/. . .
(exp(5∗(x(i,1)−1.5))+exp(5∗(−x(i,1)+1.5)));
y21=(exp(5∗(x(i,2)−1.5))−exp(5∗(−x(i,2)+1.5)))/. . .
(exp(5∗(x(i,2)−1.5))+exp(5∗(−x(i,2)+1.5)));

y22=(exp(5∗(x(i,2)−2))−exp(5∗(−x(i,2)+2)))/. . .
(exp(5∗(x(i,2)−2))+exp(5∗(−x(i,2)+2)));
y23=(exp(5∗(x(i,2)-2.5))-exp(5∗(−x(i,2)+2.5)))/. . .
(exp(5∗(x(i,2)−2.5))+exp(5∗(−x(i,2)+2.5)));
y31=(exp(5∗(x(i,3)−1))−exp(5∗(−x(i,3)+1)))/. . .
(exp(5∗(x(i,3)−1))+exp(5∗(−x(i,3)+1)));
y32=(exp(5∗(x(i,3)−1.5))−exp(5∗(−x(i,3)+1.5)))/. . .
(exp(5∗(x(i,3)−1.5))+exp(5∗(−x(i,3)+1.5)));
y33=(exp(5∗(x(i,3)−2))−exp(5∗(−x(i,3)+2)))/. . .
(exp(5∗(x(i,3)−2))+exp(5∗(−x(i,3)+2)));
y41=(exp(5∗(x(i,4)−0.5))−exp(5∗(−x(i,4)+0.5)))/. . .
(exp(5∗(x(i,4)-0.5))+exp(5∗(−x(i,4)+0.5)));
y42=(exp(5∗(x(i,4)−1))−exp(5∗(−x(i,4)+1)))/. . .
(exp(5∗(x(i,4)−1))+exp(5∗(−x(i,4)+1)));
y43=(exp(5∗(x(i,4)−1.5))−exp(5∗(−x(i,4)+1.5)))/. . .
(exp(5∗(x(i,4)−1.5))+exp(5∗(−x(i,4)+1.5)));
Y1=[y11 y12 y13 y21 y22 y23 y31 y32 y33 y41 y42 y43];
Y0=[0 0 0 0 0 0 0 0 0 0 0 0];
YY=[Y1 Y0 Y0 Y0;Y0 Y1 Y0 Y0;Y0 Y0 Y1 Y0;. . .
Y0 Y0 Y0 Y1];
Theta=[x(i,9) x(i,10) x(i,11) x(i,12) x(i,13) x(i,14)
x(i,15). . .
x(i,16) x(i,17) x(i,18) x(i,19) x(i,20) x(i,21) x(i,22). . .
x(i,23) x(i,24) x(i,25) x(i,26) x(i,27) x(i,28) x(i,29). . .
x(i,30) x(i,31) x(i,32) x(i,33) x(i,34) x(i,35) x(i,36). . .
x(i,37) x(i,38) x(i,39) x(i,40) x(i,41) x(i,42) x(i,43). . .
x(i,44) x(i,45) x(i,46) x(i,47) x(i,48) x(i,49) x(i,50). . .
x(i,51) x(i,52) x(i,53) x(i,54) x(i,55) x(i,56)]’;
e=[x(i,1)−x(i,5);x(i,2)−x(i,6);x(i,3)−x(i,7);x(i,4)−x(i,8)];
B=[−1,0,0,0; 0,−1,0,0; 0,0,1,0; 0,0,0,−1];
Ar=[−1.1,0,0,0; 0,−2,0,0; 0,0,−4,0; 0,0,0,−1.5];
RR=[0;4;16/3;0];
PP=[1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1];
xx=[x(i,1);x(i,2);x(i,3);x(i,4)];
rgain=1/5;
uada=YY∗Theta;
uh=−1/rgain∗B’∗PP∗e;
Ms=0.1∗sqrt(e’∗e);
us=−B^(−1)∗Ms/(1-0.2)∗(Ms∗B’∗PP∗e)/. . .
(sqrt((Ms∗B’∗PP∗e)‘∗(Ms∗B’∗PP∗e))+1∗exp(−0.1∗i));
u(:,i)=inv(B)∗(Ar∗xx+RR−uada)+uh+us;

end
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