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ABSTRACT In this article, we address the super edge-antimagic total labeling of the hexagonal lattice
HTTm,n and two non-isomorphic forms of prismatic lattice PTTm,n. The aforementioned classes are sym-
metric lattices involving the finite chain of tripartite networks. Our article further closes with the summary,
3D- graphical illustrations and a practical example of our findings.

INDEX TERMS Super (a, 0) edge-antimagic total labeling, star Sn, tripartite network, lattice.

I. INTRODUCTION
The antimagic labeling on networks is designed due to its
vast applications in different branches of sciences, such as
security plans, networking projects, robotics and interference
free signal processing. The article in hands deals with the
super (a, 0) edge-antimagic labeling of the lattice networks
involving finite chain of tripartite networks. Once we design
the aforesaid labeling on the lattice networks, these label-
ings will serve as test ready for their usage in any security,
industrial or networking project where the connection scheme
being designed is similar. Recently in 2020, in [1], Kumar and
Amit have discussed the prominent applications of antimagic
network labeling in the mega industry of the crystallography.

A. DEFINITIONS AND PRELIMINARIES
Some useful definitions and preliminary results in the context
of this article shall be discussed in this subsection. We will
also mention some relevant study previously done in this
field.

We define an ordered 2-tuple G = (V (0),E(0)) as a
network with V (0) as its vertex set and E(0) ⊆ V (0)×V (0)
as its edge set. When we take the number of vertices in
0 = |V (0)| = p and number of edges in 0 = |E(0)| = q,
respectively, the network 0 is referred as a (p, q)-network.
Throughout our discussion, we will consider simple and con-
nected (p, q)-networks. We refer to [2] for further insight into
the network related terminologies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen Chen .

A function or a correspondence is called labeling if it takes
non-zero positive integers onto the components (vertices,
edges or both) of 0 under particular constraints. If both sets
of vertices and edges are included within the domain of the
labeling function, it takes the terminology of total labeling.
If the vertex set V (0) or the edge set E(0) covered within
the domain merely, the labeling is termed as vertex or edge
labeling respectively. The antimagic labeling is very promi-
nent among various types of labelings. As per the definition,
the distinct edge or vertex weights in a network point towards
the antimagic type of labeling.
Definition 1: A bijection δ form V (0) ∪ E(0) onto
{1, 2, . . . , p + q} is termed as (a, d) edge-antimagic total
labeling on 0 under an attribute that the edge-weights δ(α)+
δ(αβ) + δ(β), for each edge αβ within the network 0, gen-
erates a sequence of positive integers which are consecutive.
Where a is minimum among all the edge-weights and d is
the common difference. Further, when such a labeling exists
for a network 0, it is termed as (a, d) edge-antimagic total
network.
Definition 2: When minimum positive labels 1, 2, . . . , p

are allocated to the vertices of the network 0, the (a, d)
edge-antimagic total labeling becomes a super (a, d) edge-
antimagic total labeling. Whereas, 0 in this case is termed as
a super (a, d) edge-antimagic total network.

In the definitions 1 & 2, at d = 0, the minimum edge
weight a acts as a constant, denoted by c, ∀ edges αβ ∈ 0.
This constant c is termed to be the magic constant or magic
sum for the network 0.

Onwards in the article, the following abbreviations given
in Table 1 shall be used.
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TABLE 1. Abbreviations to be used onwards in this article.

Sadlácek, in 1963 [3], identified the notion of magic
labeling, Motivated from the idea of magic squares in dis-
crete mathematics. In [4], Hartsfield postulated the idea of
antimagic labeling, as distinct vertex-sums for each ver-
tex of the network 0. In 1966 [5], Stewart further pointed
out if vertex-sums constitute a set of consecutive integers,
then magic labeling is referred as super magic. In the mid
nineties, Ringel and A. Llado [6] established the concept of
(a, 0)−EAMT labeling. The study of particularly (a, 0) edge-
antimagic total labeling of a network 0 was brought into the
light by A. Kotzig and A. Rosa [7] who gave it the terminol-
ogy of magic valuation. Hikoe Enomoto et al., [8] designated
the minimum positive labels to the vertices and called an
(a, 0) − EAMT labeling as S − (a, 0) − EAMT labeling.
R. Simanjantuk et al., later in the year 2000, identified the
notion of (a, d)− EAMT labeling [9].
The realm of S − (a, 0) − EAMT labeling on trees (con-

nected and acyclic networks) covers the following useful
conjectures.
Conjecture 1: There exists an (a, 0) − EAMT labeling ∀

trees [7].
Conjecture 2: There exists an S − (a, d) − EAMT label-

ing ∀ trees [8].
Many classes of trees have been discussed by researchers

to support the conjecture 2. A verification for trees having at
most 17 vertices was provided by Lee and Shah [10] with
the help of computer programming. The results found for
stars, subdivided stars [11]–[15],W - trees [16]–[18], caterpil-
lars [19], banana trees [20], subdivided caterpillars [21] and
disjoint combination of books and trees [22] are noteworthy.
Further related study can be seen in [23], [24] and [25]. In [8]
Enomoto et al. proved Km,n to be S − (a, 0) − EAMT if and
only if m or n is 1. K1,m ∪ K1,n is proven to be S − (a, 0) −
EAMT if either m = κ1(n + 1) or n = κ2(m + 1) [26].
H. Enomoto et al. [8] proved that Cn is S−(a, 0)−EAMT ⇔
n is odd. In [27], it is proven thatC3∪Cn is S−(a, 0)−EAMT
if and only if n ≥ 6 and n is even (also see [28]). In [29]
Figueroa-Centeno et al. revealed that the prism, studied as
cartesian product ofCı and P , is S−(a, 0)−EAMT for every
odd integer ı and for all positive integers  . The following two
lemmas are quite useful in the premises of S−(a, 0)−EAMT
networks.
Lemma 1 [29]: A (℘,=)-network 0 is S − (a, 0)− EAMT
⇔ ∃ a bijection δ : V (0) → {1, 2, · · · , ℘} such that the
set M consisting of edge-sums, for all edges in the network,
constitutes = consecutive integers. As a result, δ extends to
an S − (a, 0) − EAMT labeling of the network 0 admitting

magic constant < = ℘ + = + m. Where m is the minimum
element of the set M .
Lemma 2 [30]: If a (℘,=)-network0 is S−(a, d)−EAMT ,

then it is S − (a− =+ 1, 2)− EAMT always.

B. RESEARCH METHODOLOGY
•While proving our results, we will proceed as follows.

1) Label the vertices of the (p, q)-network only with the
help of the labeling function δ : V (0)→ {1, 2, · · · , p}.

2) Ensure that the edge-sums δ(α)+ δ(β) are consecutive
integers, ∀αβ ∈ E(0).

3) For m = min{δ(α) + δ(β)}, δ extends to an S −
(a, 0) − EAMT labeling of the network 0 admitting
magic constant a = p + q + m, (with reference to
Lemma 1).

4) The function δ also extends to an S − (a′, 2)− EAMT
labeling of the network 0 admitting the minimum edge
weight a′ = a− q+ 1 (with reference to Lemma 2).

• Our choice in this article are lattice networks containing
chain of tripartite networks. These lattical chains have not
been discussed in the literature before. Therefore, discussion
on their antimagic labeling makes a novel contribution in the
area of networking and discrete mathematics.

C. APPLICATIONS OF NETWORK LABELING IN SCIENCES
1) SOFTWARE ENGINEERING
The role of antimagic labeling on networks in the field of
software engineering has continuously been revolutionary.
A few examples include making the repeated labels in data
mining negligible, saving precious data from hackers attacks
by designing security codes with the assistance of coding of
data. Further, configurations in the development of latest ver-
sions of various softwares have considerably been enhanced
by test ready and reference labels. To label the connected
component in binary graphics to produce the raster form of
a picture, the antimagic labeling based two-scan algorithms
are also getting attention. Its use make the graphics look even
clearer [31]. Furthermore, Optimization and functioning of
the networks are crucial in network engineering that requires
hardcore planning and network management from the core.
Networking is primarily done in two forms i.e., wired and
wireless. Although the wireless network is progressively tak-
ing a toll in the networking strata, but wired network is still
very useful. On the other hand, the apparent increase in the
use of the wireless networking is hard to deny and demands
the application of robust tools, for instance antimagic or
magic labeling of networks, to obtain more accuracy in the
network engineering [32].

2) NETWORKING
We are living in an era where satellite communication,
radio transmission, and use of mobile towers are com-
mon. However, each of these networks keep facing inter-
ferences that make the channel assignment a hard task to
be fulfilled [33]. The unconstrained simultaneous network
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FIGURE 1. (A) Edge antimagic labeling of wheel W6; (B) Edge antimagic
labeling of Helm H6; (C) (29, 0)-Edge antimagic total labeling of the
Prism D5.

transmission largely affects the quality of a voice call and cre-
ate a background noise, even when highly sensitive commu-
nication equipment is used. The real reason of this unwanted
interruption are the constrained free concurrent transmissions
that admit same instance appearances [34]. This interruption
is avoided by assigning different weights to distinct trans-
missions with the help of antimagic labeling, as this labeling
produces distinct weights for all edges. In [36] and [37], the
authors have discussed further applications of various label-
ings, including antimagic labeling, in the field of networking.

3) TELECOMMUNICATION
In the present era, the most successful commercial applica-
tion of antimagic labeling can be seen in telecommunication
engineering. In a cellular network, a service coverage area is
divided into smaller quadrilateral or hexagonal areas, consid-
ered as a cell. Here each cell is working as a distinct station.
The base cell has the ability to communicate with mobile sta-
tions such as cellular telephones, using its radio transceiver.
Mobile switching center connects with another base station
with the help of public switched telephone. To avoid a block-
ing, the challenge concerning channel assignment is to give
maximum channel re-use without violating the constraints.
In such type of cases, one can assign antimagic labels to
each user, designated as vertex and their communication links
designated by edges receiving distinct labels.

4) URBAN PLANNING
Let us consider a framework of urban planning as per the
schemes shown in Figure 1. In this figure, the antimagic
labelings on the networks wheel W6, helm H6 and prism D5
can be observed (see [39], [40]).

In these graphical representations, rooms are represented
by vertices and the weighted edges represent passages or
routes to approach these rooms, where routes defined towards
these rooms are the only legitimate ones. A complete dis-
ruption will occur with the violation of just a single route in
the whole antimagic network. This disruption will work as
an alarm for the concerned security to react instantly. Thus
such antimagic networks, either vertex-antimagic or edge-
antimagic, can serve as a specimen for the security design
of any sensitive area of a building. In other words, these
antimagic networks play their part as surveillance or security
model for dissimilar types of buildings as well [41].

Further, for the assignment or earmarking of the resources
and persons under certain constraints, the bipartite networks
with antimagic labeling can be used. As another application,
the antimagic bipartite trees provide us a straightforward
interconnection of demand and supply of different quantities
to build a business scheme between retailers and buyers [38].
The same kind of applications can be considered in the pro-
duction factories and some modern restaurants where accu-
rate robotic components play a very major role.

II. MAIN RESULTS
This section speaks about our main derivations. In subsec-
tion II-A, we define an S − (a, 0)− EAMT labeling on latti-
cally symmetric networks namely hexagonal lattice HTTm,n
and prismatic lattice PTTm,n. Whereas, in Subsection II-B,
we shall provide illustrative examples of the aforesaid net-
works. The Subsection II-C contains discussion on our find-
ings which will lead us to the conclusion.

A. HEXAGONAL LATTICE HTTm,n & PRISMATIC
LATTICE PTTm,n

In this subsection, we define two simple networks termed as
hexagonal lattice, denoted by HTTm,n and prismatic lattice,
denoted by PTTm,n.
Definition 3: We define a tripartite network 0n as follows

for odd n ≥ 3.

V (0n) = {xi : 1 ≤ i ≤ n} ∪ {c}. (1)

E(0n) = {cxi : 1 ≤ i ≤ n}

∪ {xix n+1
2
: 1 ≤ i ≤ n and i 6=

n+ 1
2
}. (2)

Both HTTm,n and PTTm,n contain m copies of the tripartite
network 0n.
Definition 4: The hexagonal lattice HTTm,n is a simple

network of order m(n + 1) and size 2m(n + 1) − 3, having
vertex and edge sets for 3 ≤ n ≡ 1 (mod 2) and for all m as
follows:
• For n ≡ 1 (mod 4) & n ≥ 5: (3) and (4), as shown at the

bottom of the next page.
Figure 2 shows the formation of the hexagonal lattice

HTTm,n.
• For n ≡ 3 (mod 4) & n ≥ 3: (5) and (6), as shown at the

bottom of the page 5.
Theorem 1: The hexagonal lattice HTTm,n admits an S −

(3m(n+ 1), 0)− EAMT labeling for every positive integer m
and odd n.

Proof: The order and size of the network HTTm,n are
p = m(n+ 1) and q = 2m(n+ 1)− 3, respectively.
• For n ≡ 1 (mod 4):
The labeling f : V (HTTm,n) → {1, 2, . . . ,m(n+ 1)}

defined as (7)–(9), shown at the bottom of the page 7.
f extends to an S − (a, 0) − EAMT labeling of HTTm,n

(using Lemma 1) with magic sum a = 3m(n + 1), where
edge- sums being constituted as per the given scheme produce
a consecutive sequence of integers 3, 4, 5, . . . , 2m(n+1)−1.
• For n ≡ 3 (mod 4):
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FIGURE 2. The hexagonal lattice HTTm,n.

We define a labeling g : V (HTTm,n) → {1, 2, . . . ,
m(n + 1)} as (10)–(14), shown at the bottom of the page 8.
This labeling g extends to an S − (a, 0) − EAMT label-
ing of HTTm,n applying Lemma 1 with magic sum a =
3m(n + 1), where edge- sums being constituted as per the
given scheme produce a consecutive sequence of integers
3, 4, 5, . . . , 2m(n+ 1)− 1.
Definition 5: The prismatic lattice PTTm,n is a simple net-

work of order m(n+ 5)− 4 and size 2m(n+ 5)− 11, having
vertex and edge sets for 3 ≤ n ≡ 1 (mod 2) and for all m as
follows:
• For n ≡ 1 (mod 4) & n ≥ 5: (15) and (16), as shown at

the bottom of the page 8.
See the formation of the prismatic lattice PTTm,n in

Figure 3.

• For n ≡ 3 (mod 4) & n ≥ 3: (17) and (18), as shown at
the bottom of the page 9.
Theorem 2: The prismatic lattice PTTm,n admits an S −

(3m(n+5)−12, 0)−EAMT labeling for every positive integer
m and odd n.

Proof: The order and size of the network PTTm,n are p =
m(n+ 5)− 4 and q = 2m(n+ 5)− 11, respectively.
• For n ≡ 1 (mod 4):
We define a labeling f : V (PTTm,n) → {1, 2, . . . ,

m(n + 5) − 4} defined as (19)–(23), shown at the bottom of
the page 10. This labeling f extends to an S− (a, 0)−EAMT
labeling of PTTm,n (using Lemma 1) with magic sum a =
3m(n + 5) − 12, where edge- sums being constituted as per
the given scheme produce a consecutive sequence of integers
3, 4, 5, . . . , 2m(n+ 5)− 9.

V (HTTm,n) = {x li : 1 ≤ i ≤ 2m, 1 ≤ l ≤
n− 1
4
}

∪ {c
n+3
4

i : 1 ≤ i ≤ 2m}

∪ {yli : 1 ≤ i ≤ 2m,
n+ 7
4
≤ l ≤

n+ 1
2
} (3)

E(HTTm,n) = {c
n+3
4

i yli+1 : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2),
n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2),
n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli−1 : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2),
n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2),
n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i x li+1 : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2), 1 ≤ l ≤
n− 1
4
}

∪ {c
n+3
4

i x li : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2), 1 ≤ l ≤
n− 1
4
}

∪ {c
n+3
4

i x li−1 : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2), 1 ≤ l ≤
n− 1
4
}

∪ {c
n+3
4

i x li : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2), 1 ≤ l ≤
n− 1
4
}

∪ {x
n−1
4

i x
n−1
4

i+1 , y
n+7
4

i y
n+7
4

i+1 : 2 ≤ i ≤ 2(m− 1), i ≡ 0 (mod 2)}

∪ {c
n+3
4

i c
n+3
4

i+1 : 1 ≤ i ≤ 2m− 1} (4)
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• For n ≡ 3 (mod 4):
We define a bijection g : V (PTTm,n) → {1, 2, . . . ,

m(n + 5) − 4} defined as (24)–(30), shown at the bottom of
the page 10. This labeling g extends to an S− (a, 0)−EAMT
labeling of PTTm,n by Lemma 1, having magic sum a =
3m(n + 5) − 12, where edge- sums being constituted as per
the given scheme produce a consecutive sequence of integers
3, 4, 5, . . . , 2m(n+ 5)− 9.
We now define another form of PTTm,n, non-isomorphic to

the network’s from given in Definition 5. To avoid ambiguity,
we denote this form of the prismatic lattice by 3m,n. In Def-
inition 6, V (PTTm,n) and E(PTTm,n) will denote the vertex
and edge sets respectively given in Definition 5.
Definition 6: The prismatic lattice 3m,n is a simple net-

work of order m(n+ 5)− 4 and size 2m(n+ 5)− 11, having
vertex and edge sets for 3 ≤ n ≡ 1 (mod 2) and for all m as
follows:
• For n ≡ 1 (mod 4) & n ≥ 5: (31) and (32), as shown at

the top of the page 11.
See Figure 4 for the formation of the prismatic lattice3m,n.
• For n ≡ 3 (mod 4) & n ≥ 3: (33) and (34), as shown at

the top of the page 11.
Theorem 3: The prismatic lattice 3m,n (non- isomorphic

to PTTm,n given in Definition 5) admits an S − (3m(n +
5)−12, 0)−EAMT labeling for every positive integer m and
odd n.

Proof: The labeling scheme is similar as designed in
Theorem 2.
• The following results from Theorems 1, 2 and 3 are direct

consequences of Lemma 2.
Theorem 4: The hexagonal lattice HTTm,n admits an S −

(m(n+ 1)+ 4, 2)−EAMT labeling for every positive integer
m and odd n.
Theorem 5: The prismatic lattice networks PTTm,n and

3m,n admit an S − (m(n+ 5), 2)− EAMT labeling for every
positive integer m and odd n.

B. ILLUSTRATION THROUGH EXAMPLES
An S − (210, 0) − EAMT labeling of the network HTTm,n
is being presented in Figure 5, corresponding to the param-
eters m = 5 and n = 13. Further, Figure 6 presents an
S − (300, 0) − EAMT labeling of HTTm,n corresponding to
m = 5 and n = 19. Here, it can be observed that the value
of the magic constant is perfectly as per our depiction in
Theorem 1.

C. DISCUSSION
• In this article, we have discussed the S − (a, 0) − EAMT
and S − (a′, 2) − EAMT labelings of the hexagonal lattice
HTTm,n and two non-isomorphic forms of the prismatic lat-
tice network PTTm,n. Following is Table 2 that briefs about
the numerical results of our findings corresponding to the

V (HTTm,n) = {x li : 1 ≤ i ≤ 2m, 2 ≤ l ≤
n+ 1
4
} ∪ {c

n+5
4

i : 1 ≤ i ≤ 2m}

∪ {yli : 1 ≤ i ≤ 2m,
n+ 9
4
≤ l ≤

n+ 1
2
} ∪ {u1i , v

n+3
2

i : 1 ≤ i ≤ m} (5)

E(HTTm,n) = {c
n+5
4

i yli+1 : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2),
n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2),
n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli−1 : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2),
n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2),
n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i x li+1 : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2), 2 ≤ l ≤
n+ 1
4
}

∪ {c
n+5
4

i x li : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2), 2 ≤ l ≤
n+ 1
4
}

∪ {c
n+5
4

i x li−1 : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2), 2 ≤ l ≤
n+ 1
4
}

∪ {c
n+5
4

i x li : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2), 2 ≤ l ≤
n+ 1
4
}

∪ {x
n+1
4

i x
n+1
4

i+1 , y
n+9
4

i y
n+9
4

i+1 : 2 ≤ i ≤ 2(m− 1), i ≡ 0 (mod 2)}

∪ {c
n+5
4

i c
n+5
4

i+1 : 1 ≤ i ≤ 2m− 1}

∪ {c
n+5
4

i u1i+1
2
, c

n+5
4

i v
n+3
2

i+1
2
: 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2)}

∪ {c
n+5
4

i u1i
2
, c

n+5
4

i v
n+3
2
i
2
: 2 ≤ i ≤ 2m, i ≡ 0 (mod 2)} (6)
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FIGURE 3. The prismatic lattice PTTm,n.

FIGURE 4. The prismatic lattice 3m,n.

FIGURE 5. An S − (210, 0) − EAMT labeling of the network HTT5,13.

FIGURE 6. An S − (300, 0) − EAMT labeling of the network HTT5,19.

FIGURE 7. An S − (252, 0) − EAMT labeling of the network PTT4,17.

VOLUME 10, 2022 32399



H. U. Afzal et al.: Computing Antimagic Labeling of Lattically Designed Symmetric Networks

FIGURE 8. An S − (276, 0) − EAMT labeling of the network PTT4,19.

FIGURE 9. An S − (252, 0) − EAMT labeling of the network 34,17.

FIGURE 10. An S − (276, 0) − EAMT labeling of the network 34,19.

parameters m and n. Here a represents the magic constant
and a′ represents the minimum edge weight of the labelings,
as per standard notation.

Figures 7 and 8 illustrate Theorem 2 by providing S −
(252, 0) − EAMT and S − (276, 0) − EAMT labeling of the
prismatic lattice.

Similarly, Figures 9 and 10 are the illustrative examples of
Theorem 3.

Graphically, the comparison of the magic constants and
minimum edge weights of all three discussed lattices can be
observed in Figure 11. Note that the lattices PTTm,n and3m,n
have same graphical trends.

f (x li ) =


1
2
(4(l − 1)+ i(n+ 1)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and 1 ≤ l ≤

n− 1
4

1
2
(4l − n− 1+ i(n+ 1)) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and 1 ≤ l ≤

n− 1
4

(7)

f (yli) =


1
2
(2(2l − n− 2)+ i(n+ 1)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and

n+ 7
4
≤ l ≤

n+ 1
2

1
2
(n− 4l + 3+ i(n+ 1)) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and

n+ 7
4
≤ l ≤

n+ 1
2

(8)

f (c
n+3
4

i ) =


1
2
(i(n+ 1)− n+ 1) : 1 ≤ i ≤ 2m− 1 and i ≡ 1 (mod 2)

1
2
(i(n+ 1)) : 2 ≤ i ≤ 2m and i ≡ 0 (mod 2)

(9)
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• In 2020, Xinqiang Ma et al., have exhibited that stacked
book graphs admit antimagic labeling [42]. These networks
contain the chain of C4, which is bipartite. Similarly in [43],
Agustin et al., exhibit antimagic labeling of ladder and ladder

related networks, all such network classes again contain
chain of bipartite network C4. Here, we have presented
three non-isomorphic forms of networks, thrice of them
are antimagic and contain the chain of tripartite networks

g(x li ) =


1
2
(2(3− 2l)+ i(n+ 1)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and 2 ≤ l ≤

n+ 1
4

1
2
(4l − n− 3+ i(n+ 1)) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and 2 ≤ l ≤

n+ 1
4

(10)

g(yli) =


1
2
(2(2l − n− 3)+ i(n+ 1)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and

n+ 9
4
≤ l ≤

n+ 1
2

1
2
(n− 4l + 5+ i(n+ 1)) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and

n+ 9
4
≤ l ≤

n+ 1
2

(11)

g(c
n+5
4

i ) =


1
2
(i(n+ 1)− n+ 1) : 1 ≤ i ≤ 2m− 1 and i ≡ 1 (mod 2)

1
2
(i(n+ 1)) : 2 ≤ i ≤ 2m and i ≡ 0 (mod 2)

(12)

g(u1i ) =
1
2
(2i(n+ 1)− n+ 1) : 1 ≤ i ≤ m (13)

g(v
n+3
2

i ) =
1
2
(2i(n+ 1)− n− 1) : 1 ≤ i ≤ m (14)

V (PTTm,n) = {x li : 1 ≤ i ≤ 2m, 1 ≤ l ≤
n− 1
4
} ∪ {c

n+3
4

i : 1 ≤ i ≤ 2(2m− 1)}

∪ {yli : 1 ≤ i ≤ 2m,
n+ 7
4
≤ l ≤

n+ 1
2
} ∪ {u

n−1
4

i , v
n+7
4

i : 1 ≤ i ≤ m− 1} (15)

E(PTTm,n) = {c
n+3
4

i yli+2
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4),

n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4),

n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli+1
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4),

n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i yli+3
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4),

n+ 7
4
≤ l ≤

n+ 1
2
}

∪ {c
n+3
4

i x li+2
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4), 1 ≤ l ≤

n− 1
4
}

∪ {c
n+3
4

i x li
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4), 1 ≤ l ≤

n− 1
4
}

∪ {c
n+3
4

i x li+1
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4), 1 ≤ l ≤

n− 1
4
}

∪ {c
n+3
4

i x li+3
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4), 1 ≤ l ≤

n− 1
4
}

∪ {c
n+3
4

i c
n+3
4

i+1 : 2 ≤ i ≤ 4(m− 1), i ≡ 0 (mod 4) & i ≡ 2 (mod 4)}

∪ {x
n−1
4

i u
n−1
4
i
2
, y

n+7
4

i v
n+7
4
i
2
: 2 ≤ i ≤ 2(m− 1), i ≡ 0 (mod 2)}

∪ {c
n+3
4

i c
n+3
4

i+1 : 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4)}

∪ {u
n−1
4

i x
n−1
4

2i+1, v
n+7
4

i y
n+7
4

2i+1 : 1 ≤ i ≤ m− 1}

∪ {u
n−1
4

i c
n+3
4

4i−1, v
n+7
4

i c
n+3
4

4i−1 : 1 ≤ i ≤ m− 1}

∪ {u
n−1
4

i c
n+3
4

4i , v
n+7
4

i c
n+3
4

4i : 1 ≤ i ≤ m− 1}

∪ {u
n−1
4

i v
n+7
4

i : 1 ≤ i ≤ m− 1} (16)
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TABLE 2. The networks HTTm,n, PTTm,n, 3m,n and the computed magic
constants and minimum edge weights of their edge-antimagic total
labelings.

given in Definition 3. Hence, we have taken a step forward
from antimagic bipartite chains to antimagic tripartite chains.
Thus, we encourage the researchers to work towards the
antimagic labeling of multipartite chains, as the scope of
working on them is vast.
• To have a glance on the applications of our findings.

Let us consider a software based automatic security design

FIGURE 11. (A) Relative comparison of the magic constants of the
networks HTTm,n, PTTm,n and 3m,n (B) Relative comparison of the
minimum edge weights of the networks HTTm,n, PTTm,n and 3m,n.

which is installed in the sensitive area of a building X .
Also consider that this area of the building X is designed
in the similar manner as the hexagonal lattice HTT2,13
network. This area within the building is further divided
into two parts B1 and B2. A legitimate passage has been

V (PTTm,n) = {x li : 1 ≤ i ≤ 2m, 2 ≤ l ≤
n+ 1
4
} ∪ {c

n+5
4

i : 1 ≤ i ≤ 2(2m− 1)}

∪ {x1i , y
n+3
2

i : 1 ≤ i ≤ m} ∪ {u
n+1
4

i , v
n+9
4

i : 1 ≤ i ≤ m− 1}

∪ {yli : 1 ≤ i ≤ 2m,
n+ 9
4
≤ l ≤

n+ 1
2
} (17)

E(PTTm,n) = {c
n+5
4

i yli+2
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4),

n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4),

n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli+1
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4),

n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i yli+3
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4),

n+ 9
4
≤ l ≤

n+ 1
2
}

∪ {c
n+5
4

i x li+2
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4), 2 ≤ l ≤

n+ 1
4
}

∪ {c
n+5
4

i x li
2
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4), 2 ≤ l ≤

n+ 1
4
}

∪ {c
n+5
4

i x li+1
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4), 2 ≤ l ≤

n+ 1
4
}

∪ {c
n+5
4

i x li+3
2
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4), 2 ≤ l ≤

n+ 1
4
}

∪ {c
n+5
4

i c
n+5
4

i+1 : 2 ≤ i ≤ 4(m− 1), i ≡ 0 (mod 4) & i ≡ 2 (mod 4)}

∪ {c
n+5
4

i c
n+5
4

i+1 : 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4)}

∪ {x
n+1
4

i u
n+1
4
i
2
, y

n+9
4

i v
n+9
4
i
2
: 2 ≤ i ≤ 2(m− 1), i ≡ 0 (mod 2)}

∪ {u
n+1
4

i x
n+1
4

2i+1, v
n+9
4

i y
n+9
4

2i+1 : 1 ≤ i ≤ m− 1}

∪ {u
n+1
4

i c
n+5
4

4i−1, v
n+9
4

i c
n+5
4

4i−1 : 1 ≤ i ≤ m− 1}

∪ {u
n+1
4

i c
n+5
4

4i , v
n+9
4

i c
n+5
4

4i : 1 ≤ i ≤ m− 1} ∪ {u
n+1
4

i v
n+9
4

i : 1 ≤ i ≤ m− 1}

∪ {c
n+5
4

i x1i+3
4
, c

n+5
4

i y
n+3
2

i+3
4
: 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4)}

∪ {c
n+5
4

i x1i+2
4
, c

n+5
4

i y
n+3
2

i+2
4
: 2 ≤ i ≤ 2(2m− 1), i ≡ 2 (mod 4)} (18)
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allotted by the building security in order to reach from
the entrance E1 to the highly secured room R6 and then
to the exit E2. In order to ensure certain checks on the
entering person, the legitimate passage assigned here is
{E1 → R1 → R2 → R3 → R4 → R5 → R6 →
E2} (indicated by green vertices and edges in Figure 12).
This task can be achieved by using our test ready labels.
Note that the corresponding particular network HTT2,13 is

S − (84, 0)− EAMT . The magic constants corresponding to
the legitimate passage is obtained as per the labels sequence
{1+ 76+ 7, 7+ 63+ 14, 14+ 57+ 13, 13+ 54+ 17, 17+
52+ 15, 15+ 42+ 27, 27+ 29+ 28}. As long as the
entering person follow the legitimate passage protocol,
no disruption will occur. And for instance, from R2 he
moves towards S4, which is illegitimate, the allotted
sequence will get totally disrupted. As it will become

f (x li ) =


1
2
(i(n+ 5)− 4l) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and 1 ≤ l ≤

n− 1
4

1
2
(i(n+ 5)+ 4l − n− 9) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and 1 ≤ l ≤

n− 1
4

(19)

f (yli) =


1
2
(i(n+ 5)+ 2(2l − n− 4)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and

n+ 7
4
≤ l ≤

n+ 1
2

1
2
(i(n+ 5)+ n− 4l − 5) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and

n+ 7
4
≤ l ≤

n+ 1
2

(20)

f (c
n+3
4

i ) =



1
4
(i(n+ 5)− n− 1) : 1 ≤ i ≤ 4m− 3 and i ≡ 1 (mod 4)

1
4
(i(n+ 5)+ 2(n− 3)) : 2 ≤ i ≤ 4m− 2 and i ≡ 2 (mod 4)

1
4
(i(n+ 5)+ n− 7) : 3 ≤ i ≤ 4m− 5 and i ≡ 3 (mod 4)

1
4
(i(n+ 5)) : 4 ≤ i ≤ 4(m− 1) and i ≡ 0 (mod 4)

(21)

f (u
n−1
4

i ) = i(n+ 5)− 1 : 1 ≤ i ≤ m− 1 (22)

f (v
n+7
4

i ) = i(n+ 5)− 2 : 1 ≤ i ≤ m− 1 (23)

g(x li ) =


1
2
(i(n+ 5)− 2(2l − 1)) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and 2 ≤ l ≤

n+ 1
4

1
2
(i(n+ 5)+ 4l − n− 11) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and 2 ≤ l ≤

n+ 1
4

(24)

g(yli) =


1
2
(i(n+ 5)+ 4l − 2n− 10) : 1 ≤ i ≤ 2m− 1, i ≡ 1 (mod 2) and

n+ 9
4
≤ l ≤

n+ 1
2

1
2
(i(n+ 5)+ n− 4l − 3) : 2 ≤ i ≤ 2m, i ≡ 0 (mod 2) and

n+ 9
4
≤ l ≤

n+ 1
2

(25)

g(c
n+5
4

i ) =



1
4
(i(n+ 5)− n− 1) : 1 ≤ i ≤ 4m− 3 and i ≡ 1 (mod 4)

1
4
(i(n+ 5)+ 2(n− 3)) : 2 ≤ i ≤ 4m− 2 and i ≡ 2 (mod 4)

1
4
(i(n+ 5)+ n− 7) : 3 ≤ i ≤ 4m− 5 and i ≡ 3 (mod 4)

1
4
(i(n+ 5)) : 4 ≤ i ≤ 4(m− 1) and i ≡ 0 (mod 4)

(26)

g(u
n+1
4

i ) = i(n+ 5)− 1 : 1 ≤ i ≤ m− 1 (27)

g(v
n+9
4

i ) = i(n+ 5)− 2 : 1 ≤ i ≤ m− 1 (28)

g(x1i ) =
1
2
(2i(n+ 5)− n− 7) : 1 ≤ i ≤ m (29)

g(y
n+3
2

i ) =
1
2
(2i(n+ 5)− n− 9) : 1 ≤ i ≤ m (30)
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V (3m,n) = V (PTTm,n) (31)

E(3m,n) = E(PTTm,n) ∪ {c
n+3
4

i c
n+3
4

i+1 : 1 ≤ i ≤ 4m− 3}

− {c
n+3
4

i c
n+3
4

i+1 : 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4)}

− {c
n+3
4

i c
n+3
4

i+1 : 2 ≤ i ≤ 4(m− 1), i ≡ 0 (mod 4) & i ≡ 2 (mod 4)}

− {u
n−1
4

i v
n+7
4

i : 1 ≤ i ≤ m− 1} (32)

V (3m,n) = V (PTTm,n) (33)

E(3m,n) = E(PTTm,n) ∪ {c
n+5
4

i c
n+5
4

i+1 : 1 ≤ i ≤ 4m− 3}

− {c
n+5
4

i c
n+5
4

i+1 : 2 ≤ i ≤ 4(m− 1), i ≡ 0 (mod 4) & i ≡ 2 (mod 4)}

− {c
n+5
4

i c
n+5
4

i+1 : 1 ≤ i ≤ 4m− 3, i ≡ 1 (mod 4)} − {u
n−1
4

i v
n+7
4

i : 1 ≤ i ≤ m− 1} (34)

then {1+ 76+ 7, 14+ 58+ 12 ××}. This disturbance will
promptly make the alarm to start ring, indicating the security
breach to the manual and computer based security. This will
promptly shut the concerned gates attached in the network as
well. See Figure 12 below.

FIGURE 12. Antimagic labeling based security plan of a sensitive
building X .

The same application can be used in forming a local area
network or for a productionmachine that make different types

of glass designs at different times. Our test ready labels are
general and are applicable in all such practical situations.

III. CONCLUSION
In the present research article, we have successfully obtained
an S − (a, 0) − EAMT and S − (a′, 2) − EAMT labeling of
symmetric classes of networks termed as hexagonal lattice
HTTm,n and prismatic lattice PTTm,n. Both of these classes
contain chain of tripartite networks. Both the antimagic label-
ing are general and are applicable in many networking related
practical scenarios (as mentioned in the Subsection II-C).
Therefore, we encourage and motivate the researchers to
work towards the antimagic labeling of multipartite chains
for different values of the minimum edge weights, as com-
puter related applicability and the scope of working on such
network families is enormous.
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