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ABSTRACT As we have been seriously hit by the COVID-19 pandemic, wearing a facial mask is a
crucial action that we can take for our protection. This paper reports a comprehensive study on the
recognition of masked faces. By using facial landmarks, we synthesize the facial mask for each face in
several benchmark databases with different challenging factors. The IJB-B and IJB-C databases are selected
for evaluating the performance against the variation across pose, illumination and expression (PIE). The
FG-Net database is selected for evaluating the performance across age. The SCface is chosen for evaluating
the performance on low-resolution images. The MS-1MV2 is exploited as the base training set. We use
the ResNet-100 as the feature embedding network connected to state-of-the-art loss functions designed
for tackling face recognition. The loss functions considered include the Center Loss, the Marginal Loss,
the Angular Softmax Loss, the Large Margin Cosine Loss and the Additive Angular Margin Loss. Both
verification and identification are conducted in our evaluation. The performances for recognizing faces with
and without the synthetic masks are all evaluated for a complete comparison. The network with the best loss
function for recognizing synthetic masked faces is then assessed on a real masked face database, the cleaned
RMFRD (c-RMFRD) dataset. Compared with a human user test on the c-RMFRD, the network trained on
the synthetic masked faces outperforms human vision for a large gap. Our contributions are fourfold. The
first is a comprehensive study for tackling masked face recognition by using state-of-the-art loss functions
against various compounding factors. For comparison purpose, the second is another comprehensive study
on the recognition of faces without masks by using the same loss functions against the same challenging
factors. The third is the verification of the network trained on synthetic masked faces for tackling the real
masked face recognition with performance better than human inspectors. The fourth is the highlight on the
challenges of masked face recognition and the directions for future research. Our code, trained models and
dataset are available via the project GitHub site.

INDEX TERMS Face recognition, face database, facial mask, COVID-19.

I. INTRODUCTION
One of the core topics in the fields of computer vision is face
recognition. Due to the success of deep learning approaches,
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face recognition has been substantially improved in recent
years, and the improvements will continue as more challeng-
ing tasks and advanced approaches are emerging. Recogni-
tion of masked faces is a challenging task. The importance
of this problem cannot be overemphasized, especially at the
current time as the COVID-19 pandemic has changed our
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daily lives. The global and local economies have been seri-
ously hit by the COVID-19 pandemic. Many countries imple-
ment social distancing, travel restrictions and strict lockdown.
Wearing a facial mask in the locations where social distancing
is hard to keep has become a required or mandatory action
in many countries. The Centers for Disease Control (CDC)
issues Your Guide to Masks [1] to recommend wearing
masks. The research reported in this paper transforms the
latest face recognition solutions to the approaches that can
handle masked face recognition. We extensively compare
the state-of-the-art loss functions designed for common face
recognition, i.e., without masks, and evaluate their perfor-
mance for the recognition of synthetic and real masked faces.

A typical deep convolutional neural network (CNN) for
face recognition is composed of feature embedding layers,
fully-connected layers and an output layer with a loss func-
tion. The loss function is a core part that determines how
well the target task is solved. The most common loss function
is the softmax function that computes the cross-entropy loss
for solving a classification problem. The improvements or
modifications to the softmax function is an active research
topic with the goal of finding more effective loss functions.
As the loss function aims to decrease the intra-class variance
and increase the extra-class variance, the effectiveness of
the loss function is generally evaluated by comparing the
similarity scores of the image pairs formed by the intra-class
and extra-class sets.

In recent years, researchers have developed several loss
functions which are mostly advanced from the conventional
softmax loss function. Five state-of-the-art loss functions are
selected in this study, including the Center Loss [2], the
Marginal Loss [3], the Angular Softmax Loss [4], the Large
Margin Cosine Loss [5] and the Additive Angular Margin
Loss [6]. All these loss functions are designed with spe-
cial aspects and features. For example, the Angular Softmax
Loss [4] is defined in an angular feature space instead of the
common Euclidean space so that the angular margin for mea-
suring the inter-class variance can be computed, leading to an
improvement to the recognition performance. The LargeMar-
gin Cosine Loss [5] considers a cosine margin penalty to the
target logit, resulting in a better performance than the Angular
Softmax Loss. The Additive Angular Margin Loss [6] further
introduces the additive angular margin penalty between the
normalized features and weights, achieving a better perfor-
mance than the Large Margin Cosine Loss.

The performance of the selected loss functions has been
reported on a few databases, including the Labeled Faces
in the Wild (LFW) [7], the IARPA Janus Benchmark–A
(IJB-A) [8], the YouTube Faces Database (YTF) [9], and
the MegaFace [9]. Although these databases offer a range
of variation in pose, illumination, expression (PIE) good for
performance assessment, the following issues require our
attention:
• The databases used in the previous evaluations are
mostly with PIE variation and inappropriate for evaluat-
ing the performance against other factors, for example,

age and resolution. The databases with these specific
factors must be evaluated to better identify more chal-
lenging factors.Moreover, a few latest benchmarks, such
as IJB-B and IJB-C, which are more challenging than
previous databases must be tested to update the perfor-
mance against the PIE variation.

• Recognition of masked faces is a required study as
facial masks are accepted as a common safety protection
means during and after the COVID-19 pandemic. To bet-
ter evaluate the loss functions for recognizing masked
faces, the aforementioned factors must be considered
as well so that the performance on the compounding
effects, for example, low-resolution masked faces, can
be studied.

• The collection of a large number of masked faces can
be difficult, not to mention the masked faces with the
aforementioned compounding effects. It is necessary to
develop an approach to transform the (no-mask) faces
in the existing face databases to masked faces to facili-
tate the study on masked face recognition. The solution
developed based on the transformed masked faces needs
to be validated on real-life masked faces.

To address the above issues, we choose several bench-
mark databases with specific challenging factors, propose
a landmark-based technique for making a synthetic facial
mask to each face in the databases, and evaluate the perfor-
mance of the state-of-the-art loss functions that were orig-
inally designed for generic face recognition, but are now
trained and tested on the databases with synthetic masked
faces added in. This study does not just focus on the masked
face recognition, but also on the recognition against three
compounding factors: age, resolution and PIE variation.
For comparison purpose, we also conduct the same experi-
ments on the original databases without the synthetic masked
faces.

To study the effects made by the compounding factors, the
IJB-B [10] and IJB-C [11] are selected for evaluating the per-
formance against the generic PIE variation (pose, illumina-
tion and expression). The FG-Net Aging Database (FG-Net)
[12] is selected for evaluating the cross-age recognition. The
Surveillance Cameras Face Database (SCface) [13] is chosen
for evaluating the performance for low resolution images.
We select the MS-1MV2 dataset [6], which is a cleaned
version of theMS-Celeb-1M [14] dataset, as the base training
set used throughout this study.

We exploit the ResNet-100 [15] as the feature embedding
network, replace the default softmax loss function by the five
latest loss functions, and evaluate the performance on the
aforementioned four databases with and without the synthetic
masks added on. Figure 1 shows the system configuration.
The best loss function determined from the study on the syn-
thetic masked faces is then experimented on the Real-world
Masked Face Recognition Dataset (RMFRD) [16]. As the
RMFRD has many mislabeled data, we manually cleaned
the dataset and redefine a cleaned RMFRD (c-RMFRD),
on which we conduct our experiments.
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FIGURE 1. The network is composed of the ResNet-100 feature
embedding layers and one of the five selected loss functions. For training,
we use the MS-1MV2 dataset with and without synthetic masks added
on. For testing, we use the SCFace for low-resolution images, the FG-Net
for cross -age performance, the IJB-B and IJB-C for PIE variation and the
RMFRD for the real masked faces. Both scenarios with and without masks
are experimented.

The contributions of this study are summarized as
follows:
• A comprehensive study on the masked face recognition
by evaluating 5 state-of-the-art loss functions against
4 challenging factors is offered. This can be one of the
most in-depth studies for masked face recognition.

• A comprehensive study on the recognition of faces
without masks by evaluating the same 5 loss functions
against the same 4 factors is also offered for compar-
ison purpose. Differences from previous work are the
databases and protocols that specify the performance
against the 4 factors: 1) General PIE variation, 2) Facial
age, 3) Partial occlusion and 4) Low resolution.

• It is verified that our model trained on synthetic masked
faces offers an effective solution for the recognition of
real masked faces.

• The experiments on the c-RMFRD dataset reveal the
challenges when recognizingmasked faces, highlighting
the directions for future research.

This work is a substantial extension of our preliminary
study reported in a recent CVPR workshop paper [17],
where we only presented some part of the evaluation against
the challenging factors on normal no-mask faces. The syn-
thesis of facial masks, the recognition of masked faces
and the performance against the amalgam of the facial
masks and the three challenging factors are reported only
in this paper, with extended experiments. Our code, trained
models and dataset are available via https://github.com/
AvLab-CV/Face_Mask_Generator. The rest of the paper is
organized as follows: We first review recent works in Sec. II,
followed by another review on the selected loss functions in
Sec. III. The making of synthetic masks given is presented
in Sec. IV. The experimental setup and results are given in
Sec. V, with a conclusion to this study in Sec. VI.

II. RELATED WORK
Several approaches have been proposed recently. Zheng et al.
propose a weakly supervised meta-learning approach to learn
from the images collected from the web without manual
annotation along with limited fully annotated datasets [18].
They capitalize on readily-available web images with noisy
annotations to learn a robust representation for masked faces.
Both the spatial and frequency domain features extracted
from the unoccluded facial parts are considered. Li et al.
propose a framework composed of a de-occlusion network
and a distillation network [19]. The former uses a generative
adversarial network to recover the facial region under the
mask. The latter takes a pretrained face recognition model
as a teacher to train the former as a student for improving
the performance of de-occlusion. The knowledge to train
the student is represented in structural relations and serves
as a posterior regularization to enable the adaptation. The
FocusFace [20] consists of two components, one for mask
detection and the other for the contrastive learning of masked
and unmasked faces. The MS-1MV2 with synthetic masks
was used for training, and the performance was evaluated
on the real masked faces in the IJCB-MFR-2021 competi-
tion [21]. However, the IJCB-MFR-2021 evaluation dataset is
not released to the public. The approach proposed by Li et al.
integrates a cropping-based approach with a convolutional
block attention module that focuses on the region around the
eyes [22]. Two training and testing scenarios are considered
and mutually improve the performance of each other. Using
facial landmarks, Anwar and Raychowdhury make an open-
source tool, MaskTheFace, to synthesize masks for trans-
forming general faces to masked faces [23]. The performance
of training on synthesizedmasked faces is verified on a small-
sized customized dataset, the MFR2. We also consider the
MFR2 in our experiments. See Sec.V for details.

III. SELECTED LOSS FUNCTIONS
The loss functions selected for our study include the Cen-
ter Loss [2], the Marginal Loss [3], the Angular Softmax
Loss [4], the Large Margin Cosine Loss [5] and the Additive
Angular Margin Loss [6]. As these loss functions consider
the Softmax Loss as a core reference, we introduce the Soft-
max Loss first and the others follow.

The Softmax Loss function can be written as follows:

Ls = −
1
Nb

Nb∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
W T
j xi+bj

(1)

where xi ∈ Rd denotes the d−dim deep feature of the i-th
sample, belonging to the yi-th class, yi ∈ [1, 2, . . . , n]. Wj ∈

Rd denotes the j-th column of the weight W ∈ Rd×n and
bj ∈ Rn is the bias term. Nb and n are the batch size and
the class number, respectively. The softmax loss is widely
used in deep face recognition [24]. However, the softmax loss
function does not optimize the feature embedding to enhance
the similarity between intra-class samples and the diversity
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between inter-class samples. This motivates the development
of other loss functions.

A. CENTER LOSS
The Center Loss [2] was proposed to improve the softmax
loss for face verification. It learns a center for the features of
each class while trying to pull the deep features of the same
class close to the corresponding center. Given the deep feature
xi in a batch, the center loss can be computed as:

Lce =
1
2

Nb∑
i=1

∥∥xi − cyi∥∥22 (2)

where cyi ∈ Rd is the center of class yi. During train-
ing, the center loss encourages the instances of the same
classes to be closer to a learnable class center. However,
since the class centers are updated at each iteration based
on a mini-batch instead of the whole dataset, the learning
process can be unstable. It has to be under the joint super-
vision of the softmax loss during training. Therefore, the
following combined loss is considered when applying center
loss:

Lc = Ls + λLce

= −

Nb∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
W T
j xi+bj

+
λ

2

Nb∑
i=1

∥∥xi − cyi∥∥22 (3)

where Ls is the softmax loss (1) and λ is a hyper-parameter
that balances the two losses.

B. MARGINAL LOSS
The Marginal Loss function [3] was proposed to simulta-
neously maximize the inter-class distances and minimize
the intra-class variations. The Margin Loss function
focuses on the marginal samples and is computed as
follows:

Lma =
1

N 2
b − Nb

Nb∑
i,j,i6=j

(
ξ − yij

(
θ −

∥∥∥ xi
‖xi‖
−

xj
‖xj‖

∥∥∥2
2

))
(4)

The term yij ∈ {±1} indicates whether the faces xi and xj
are from the same class or not, θ is the distance threshold to
distinguish whether the faces are from the same person/class,
and ξ is the error margin besides the classification hyper-
plane [3]. Similar to the center loss prone to be unstable in
training, the Marginal Loss will also be unstable at training
because of the batch normalization. It is thus computed with
the joint supervision with the Softmax loss Ls, as given
below:

Lm = Ls + λLma (5)

The hyper-parameter λ balances the two losses. The coupling
with the cross-entropy loss provides separable features and
prevents the loss from degrading to zero [3].

C. ANGULAR SOFTMAX LOSS
The Angular Softmax Loss function [4] was proposed by Liu
et al. to improve the issues with the bias bj = 0 and the layer
weight vector

∥∥Wj
∥∥ = 1. The issue of the bias bj = 0 is han-

dled by transforming the logit as W T
j xi =

∥∥Wj
∥∥ ‖xi‖ cos θj,

where θj is the angle between the layer weightWj and the fea-
ture xi [25]. The issue with the individual weight

∥∥Wj
∥∥ = 1 is

handled by taking the l2 normalization to make the prediction
only depend on the angle between the feature vector and the
weight vector.

To make it discriminative, Liu et al. generalize it to
the following Angular Softmax (called A-Softmax in short)
Loss LAS , and name their solution ‘‘SphereFace.’’

Las = −
1
Nb

Nb∑
i=1

log
e‖xi‖ cos(mθyi )

e‖xi‖ cos(mθyi ) +
∑n

j=1,j6=yi e
‖xi‖ cos θj

.

(6)

where θyi ∈ [0, πm ] and m is a hyperparameter. A-Softmax
loss has stronger requirements for a correct classification
whenm≥2, which generates an angular classification margin
between the learned features of different classes. A-Softmax
loss imposes a discriminative power to the learned features
via angular margin, equivalent to learning features that are
discriminative on a hypersphere manifold, while Euclidean
margin losses learn features in Euclidean space.

D. LARGE MARGIN COSINE LOSS
The Large Margin Cosine Loss function [5] was proposed
by Wang et al. to solve the issues with the above A-Softmax
loss. The decision boundary of the A-Softmax loss is defined
over the angular space by cos(mθ1) = cos(θ2), which can
be difficult to optimize due to the non-monotonicity of the
cosine function. To overcome this difficulty, the LargeMargin
Cosine Loss takes the normalized features as input to learn the
highly discriminative features by maximizing the inter-class
cosine margin. Wang et al. define a hyper-parameter m such
that the decision boundary is given by cos(θ1)−m = cos(θ2),
where θi is the angle between the feature vector and weight
vector of the class i. They reformulate the softmax loss as
a cosine loss by applying the l2 normalization on both the
feature and weight vectors to remove radial variations, based
onwhich a cosinemargin termm is introduced to furthermax-
imize the decision margin in the angular space. Wang et al.
call their solution ‘‘CosFace’’ [5]. The large margin Cosine
loss Lco is computed as follows:

Lco = −
1
Nb

Nb∑
i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑n

j=1,j6=yi e
s cos θj

(7)

where s = ‖xi‖.

E. ADDITIVE ANGULAR MARGIN LOSS
The Additive Angular Margin Loss [6] was proposed by
Deng et al. to further improve the discriminative power of
the loss function considered in a classification model and to
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FIGURE 2. Mislabeled samples in RMFRD [16]. According to the official
labels, each row denotes the same subject and the left one is the
corresponding masked face. Many unmasked faces are distorted in the
aspect ratio to some extent.

stabilize the training process. Following the work in [4], [5],
the authors further normalize the feature and weight vectors,
and coin their solution ‘‘ArcFace.’’ The difference is that they
add an additive angular margin penalty m between xi andWyi
to simultaneously enhance the intra-class compactness and
inter-class discrepancy. The Additive Angular Margin Loss
Laa is computed as follows:

Laa = −
1
Nb

Nb∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j6=yi e
s cos θj

.

(8)

Despite the formulation similarity between the ArcFace
and previous works, the proposed additive angular margin
has a better geometric attribute as the angular margin has the
exact correspondence to the geodesic distance. It is shown
in [6] that the ArcFace has a constant linear angular margin
throughout the decision boundaries when handling binary
classification; however, the SphereFace and CosFace yield
nonlinear angular margins.

IV. REAL AND SYNTHETIC MASKED FACE DATASET
Facialmask is a special form of occlusion.We need a database
made of masked faces for our study. The Real-world Masked
Face Recognition Dataset (RMFRD) [16] is one of the very
few databases available to date. However, the RMFRD suffers
from the following issues:

• Mislabeling and distortion: A significant portion of the
data is mislabeled, and many images are distorted in the
aspect ratio to some extent. A few cases are shown in
Figure 2.

• Difficult for verification: Some data can hardly be
verified by human inspectors, and the causes include
extreme pose, insufficient observable facial region, poor
image quality and the above combined.

FIGURE 3. The mask for a frontal face is made by the region enclosed by
the landmarks indexed the 2nd to 16th and 29th, and that for a profile
face is made by those indexed 8th to 16th and 29th to 31th, shown in
blue. The red landmarks are not used for making the masks. The indices
follow those defined by the FAN [26].

• Mixed factors: The data vary in pose, illumination, res-
olution, image quality and level of distortion. It can
be difficult to know which factors affect more on the
performance than others from the experimental results.

To settle the first two issues, we manually clean the dataset
by removing the imageswhich are difficult to verify, andwind
up with a cleaned version of the RMFRD, or the c-RMFRD in
short. The c-RMFRD has 831 masked faces of 248 subjects
and 3,627 images of the same 248 subjects without masks.
The c-RMFRD suffers from data insufficiency and mixed
factors. In order to have a better understanding toward the
masked face recognition with different compounding factors,
we conduct an extensive study by using the synthetic masked
faces. We find the best solution for the recognition of the
synthetic masked faces, and then verify the performance on
the c-RMFRD. In summary, we only use the c-RMFRD for
performance validation and not for training because of the
aforementioned data quantity and quality issues.

The synthetic masked faces are made by exploiting the
facial landmarks. We exploit the Face Alignment Net-
work (FAN) proposed by Bulat and Tzimiropoulos [26] for
locating the facial landmarks. The FAN is constructed on a
stack of four HourGlass (HG) networks [27] for successive
pooling and upsampling to improve the landmark localiza-
tion. Instead of using the bottleneck block as the building
block for the HG (as in [27]), the FAN employs the residual
block [15] for better accuracy. The FAN is trained on the
300W-LP-2D and 300W-LP-3D [28] for localizing the 2D
and 3D facial landmarks, respectively. We only exploit the
2D facial landmarks for making the synthetic facial masks.

Given a face, the FAN detects 68 facial landmarks for
the pose within [−45◦ ∼ 45◦] in yaw (i.e., the so-called
frontal pose range) and 39 for the pose beyond this range
(the profile pose range). For each frontal face, we select the
landmarks along the outside of the cheek to the chin area, and
one on the nose, and make a patch enclosed by the selected
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FIGURE 4. Samples with synthetic masks added on. Rows 1 and 2 are
from the MS-1MV2 [6], Rows 3 and 4 are from the IJB-C [11], Rows 5 and
6 are from the FG-Net [12], Rows 7 and 8 are from the SCFace [13].

landmarks to form the synthetic mask. In terms of the FAN
landmark indices, those selected for a frontal face are from the
2nd to 16th and the 29th, as shown in Figure 3. For each profile
face, we select the landmarks along the outside of the cheek
to the chin area (indexed 8th to 16th), and three on the nose
(indexed 29th to 31st ) to form the synthetic mask. Figure 3
shows the landmarks used formaking the facial marks in blue,
and the remaining landmarks in red.

Figure 4 shows some sample faces from the databases
used in our experiments, with the synthetic masks on.
Rows 1 and 2 are taken from the masked MS-1MV2
[6], Rows 3 and 4 are taken from the masked IJB-C
[11], Rows 5 and 6 are taken from the masked FG-Net
[12], Rows 7 and 8 are taken from the masked SCFace [13].
It can be seen that the nose and mouth regions of each face
are well covered by the synthetic mask regardless of the
pose, illumination and expression. For low resolution images
in the SCFace, we applied a blurring filter on the synthetic
mask so that the entire image can reveal low-resolution
quality.

In additions,We refer to [16] to obtain the width and height
of the mask, and then use the dlib [29] and affine transform
method to synthesize real facial mask. Figure 4 Rows 5,
6, 7 and 8 show some sample from the FG-Net [12] and
SCFace [13] with and without real mask.

V. EXPERIMENTS
The ResNet-100 [15] is exploited as the feature embedding
network. The ResNet, which is the winning architecture in
the ILSVRC 2015 classification competition [15], introduces
the identity shortcut connection for tackling the vanishing
gradient issuewhen increasing the network depth. The default
loss function in the ResNet-100 is a softmax function. In our
experiments, the softmax function is replaced by the selected
loss functions, then the network is re-trained, and then the
facial feature vector is extracted. When matching two faces,
the similarity score is computed by the cosine distance
between the pair of the associated facial features. The system
configuration is shown in Figure 1, and the experiments are
designed for the following inspections:

1) The performance of the state-of-the-art loss functions
on the recognition of synthetic masked faces under
three challenging factors.

2) Same settings as in 1), but on the faces without masks,
for comparison purpose.

3) The performance of the best loss function determined
from 1) for recognizing the real masked faces in the
c-RMFRD dataset.

The MS-1MV2 database [6] is selected for training.
We also explore an augmented MS-1MV2 with all faces in
the database are duplicated with the masks added on, i.e.,
the training set is double the size of the original MS-1MV2
and each face has a mask-on counterpart. A few samples are
illustrated in Figure 4. We compare the performance of using
only the original MS-1MV2 without the synthetic masks
for training and the double-sized version with the synthetic
masks added on. Additionally, we also consider the training
set further augmented with low-resolution copies of each
face, with and without the synthetic mask. The details of the
training and testing databases are given in Sec. V-A. Due
to the different characteristics of each testing database, our
experiments are carried out as follows:
• The IJB-B and IJB-C are tested with and without the
synthetic masks added on.

• The FG-Net is tested with and without the synthetic
masks added on.

• The SCFace is also tested with and without the synthetic
masks added on. However, for comparison purpose,
we also augment the training set with low-resolution
images. Each 112 × 112 face in the MS-1MV2 is first
processed by a Gaussian filter and downsized to 56 ×
56 and 28 × 28 pixels to handle the 70 × 70 and 40 ×
40 faces in the SCFace.

• The best loss function determined from the above studies
is validated on the c-RMFRD dataset.
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In the following, we first give the details of the aforemen-
tioned databases and the system settings in Sec.V-A, and the
experimental results in Sec.V-B with a discussion.

A. DATABASES AND HW/SW SETTINGS
1) DATASET FOR TRAINING

MS-1MV2 The MS-1MV2 dataset, which is a cleaned
version of the MS-Celeb-1M database, offers 5.8M images
of 85K celebrities [6]. The MS-Celeb-1M is one of the
largest face datasets to date, and contains about 10M images
for 100K celebrities [14]. The data in the MS-Celeb-1M
cover a very broad scope of factors/variables, including pose,
illumination, expression (PIE), occlusion, image resolution
and others. However, it suffers from mislabeling noises.
Deng et al. [6] hired ethnicity-specific annotators for clean-
ing the MS-Celeb-1M as the celebrities in the database are
with multi-ethnic backgrounds. The ethnicity-specific anno-
tators can better verify the faces of the same ethnic groups.
The cleaned version is coined the MS-1MV2 dataset.

Depending on whether the synthetic masks are added
on and whether the low-resolution copies are included,
we design four different training sets:

1) The original MS-1MV2 without the synthetic masks
(5.8M images);

2) The mask-augmented MS-1MV2 (11.6M images);
3) The low-resolution-augmented MS-1MV2 (11.6M

images);
4) The mask- and low-resolution-augmented MS-1MV2

(23.2M images).

The experimental results are reported with different training
sets. The above training sets 1) and 2) are used for all testing
databases, and 3) and 4) only used for testing on the SCface
for the investigation on the low-resolution images with or
without masks.

2) DATASETS FOR PERFORMANCE EVALUATION
IJB-B and IJB-C: The IARPA Janus Benchmark–B (IJB-B)
[10] contains 76.8K face images of 1,845 individuals, offer-
ing 12,115 templates with 10,270 genuine matches (intra
pairs) and 8M impostor matches (extra pairs). The IARPA
Janus Benchmark–C (IJB-C) [11] has 148.8K face images of
3,531 individuals, offering 23,124 templates with 19,557 gen-
uine matches and 15,639K impostor matches. Both datasets
contain still images and image frames taken off videos, with
different image conditions regardless of subject conditions
(pose, expression, occlusion) or acquisition conditions (illu-
mination, standoff, etc.). We evaluated the performance on
the mixed-media (frames and stills) 1:1 verification protocol
and open-set 1:N identification protocol using the mixed
media (frames, stills) as the probe set. When experimenting
onmasks, one face in each verification pair must wear amask;
and all faces in the probe set were with masks on and those
in the gallery without masks.

FG-Net: The FG-Net Aging Database contains
1002 images of 82 subjects with ages ranging from newborns

TABLE 1. Verification rates (in TAR%, AUC% ) for the loss functions tested
on the IJB-B original (top 5 rows) and the masked IJB-B (bottom 10 rows).
Top 10 rows are trained on 1) the original MS-1MV2. The bottom 5 rows
with subscript mask are trained on 2) the mask-augmented MS-1MV2.

to 69 years [12]. Each subject has 6-18 face images at
different ages. To conduct the cross-age 1:1 verification,
we randomly formed 490,545 pairs, including 5,693 genuine
pairs and 484,852 impostor pairs. The genuine pairs were
formed by faces of the same subjects with different ages.
The impostor pairs were formed by faces of different subjects
with the same or different ages. To conduct the cross-age 1:N
identification, we selected a face image that was closest to the
age of 20 from each subject to form the gallery set. The rest
of images were all used as the probe set. For the experiments
with facial masks, the similar settings as implemented in
the tests on the IJB-B and IJB-C were undertaken. For
verification, one face in each test pair must wear a mask. For
identification, the faces in the probe set woremasks, and those
in the gallery set without masks.

SCface: The Surveillance Cameras Face Database offers
4,160 face images of 130 subjects captured in an uncon-
trolled indoor environment by using five video surveillance
cameras of various qualities [13]. We follow the protocols
defined by the authors with the testing dataset formed by
688 images of 43 subjects taken at three distances, 4.20 m
(d1), 2.60 m (d2), and 1.00 m (d3), with average face size
40 × 40, 70 × 70 and 110 × 110, respectively. There are
688 genuine pairs and 27,090 impostor pairs for conducting
1:1 verification. For conducting face identification, we run a
5-fold cross validation with 26 subjects enrolled to the gallery
set by their mugshot images at each fold, and all images
taken by the surveillance cameras form the probe set. For
the cross-resolution face identification, we follow the testing
protocol conducted in the previous works [30]–[32]. We ran-
domly select 80 subjects to test, frontal mugshot images are
employed as gallery images and images taken by surveillance
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cameras at three distances are used as the probe images. For
the experiments with facial masks, the similar settings as
conducted in the experiments on the IJB-B, IJB-C and FG-
Net were implemented.

c-RMFRD: In [16], the authors claim that the original
RMFRD (Real-world Masked Face Recognition Dataset)
offers 5,000 images of 525 subjects wearing masks, and
90,000 images of the same 525 subjects without masks. How-
ever, the downloaded version only contains 2,203 imageswith
masks and a large number of mislabeled images and subjects,
as several samples shown in Figure 2. We manually cleaned
the dataset by removing the mislabeled images, and ended up
with a cleaned version, the c-RMFRD. The c-RMFRD offers
831 masked face images of 248 subjects, and 3627 images of
the same 248 subjects without masks. We form 9263 genuine
pairs and 158508 impostor pairs for conducting the 1:1 ver-
ification. For conducting the face identification, the images
without masks form the gallery set, and the images with
masks form the probe set.

3) DATA PROCESSING AND EXECUTION
For processing the face images, we followed the procedure
of making the MS-1MV2 dataset reported in [6]. We used the
MTCNN [33] to detect the facial regions and the associated
five landmarks. Given the landmarks, each face in all datasets
was cropped and normalized to 112×112 pixels. In the testing
phase, we followed the best settings for the loss functions
reported in [2]–[5], and computed the cosine distance of the
two feature vectors extracted from the last fully-connected
layer to obtain the similarity score. Our programs were writ-
ten in Python with the MXNet deep learning framework [34].
We used the batch size 64 and trained the networks on a
Ubuntu 18.04with Titan XGPU, and CUDA9.0 with cuDNN
7.6. The learning rate started from 0.1 and was divided by
10 at the 8th, 12th and 16th epochs.

B. RESULTS AND DISCUSSION
1) PERFORMANCE AGAINST PIE
Table 1 shows the verification rates of using the loss functions
for handling the original IJB-B (the top 5 rows, without
masks) and the masked IJB-B (the bottom 10 rows, with
masks on). The bottom 10 rows are further divided into the top
five trained on 1) the original MS-1MV2, and the bottom five
trained on 2) the mask-augmented MS-1MV2. Table 2 shows
the identification rates at FPIR= 0.01, 0.1 and Rank-1, 5, and
the rows are arranged in the same way as those in Table 1.

With the model trained on 1) the original MS-1MV2, the
ROC and CMC curves for testing on the original IJB-B are
shown in Figures 5(a) and 5(b), respectively. Using the model
trained on 2) the mask-augmented MS-1MV2 compared with
the same model but trained on 1) the original MS-1MV2, the
ROC and CMC curves for testing on the masked IJB-B are
shown in Figures 6(a) and 6(b). The same training settings
but tested on the original IJB-C and the masked IJB-C are
shown in Tables 3 and 4 and Figures 7(a), 7(b), 8(a) and 8(b).

TABLE 2. Identification rates at FPIR = 0.01, 0.1 and Rank-1, 5 for the
loss functions tested on IJB-B original (top 5 rows) and the masked IJB-B
(bottom 10 rows). Top 10 rows trained on 1) the original MS-1MV2. The
bottom 5 rows with mask are trained on 2) the mask-augmented
MS-1MV2.

FIGURE 5. The ROC and CMC of using 1) the original MS-1MV2 for
training and testing on original (no-mask) IJB-B.

FIGURE 6. The ROC and CMC of using 1) the original MS-1MV2 and 2) the
mask-augmented MS-1MV2 for training and testing on the synthetic
masked IJB-Bmask .

The performance shown in the above tables and figures can
be summarized as follows:

• Masks substantially degrade the performance of the net-
work trained on the mask-free faces, i.e., the original
MS-1MV2. The best performer ArcFace shows verifica-
tion rates 92.6% on IJB-B and 93.6% on IJB-C @FAR
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TABLE 3. Verification rates (in TAR%, AUC% ) for the loss functions tested
on the IJB-C original (top 5 rows) and the masked IJB-C (bottom 10 rows).
Top 10 rows are trained on 1) the original MS-1MV2. The bottom 5 rows
with subscript mask are trained on 2) the mask-augmented MS-1MV2.

FIGURE 7. The ROC and CMC of using 1) the original MS-1MV2 for
training and testing on original (no-mask) IJB-C.

10−4, but drops to 63.9% and 63.7% on the masked
IJB-B and IJB-C, respectively.

• The degraded performance is worsened for identifica-
tion. At FPIR = 0.01, the ArcFace, trained on the
original MS-1MV2, shows identification rates 76.9% on
IJB-B and 88.9% on IJB-C, but drops to 16.7% and 5.4%
on the masked IJB-B and IJB-C, respectively.

• The training on the mask-augmented MS-1MV2 can
effectively improve the above issues. The ArcFacemask
shows verification rates 88.5% and 90.7% on themasked
IJB-B and IJB-C, respectively; and identification rates
72.6% and 79.1%, respectively.

• In most cases, the ArcFace outperforms all, followed by
the CosFace, then the SphereFace, then theMarginal loss
and then the Center loss. However, when recognizing the
masked faces using the mask-augmented training, the
SphereFace may outperform the CosFace, as shown by
several cases in Tables 1, 2, 3 and 4.

TABLE 4. Identification rates at FPIR = 0.01, 0.1 and Rank-1, 5 for the
loss functions tested on IJB-C original (top 5 rows) and the masked IJB-C
(bottom 10 rows). Top 10 rows trained on 1) the original MS-1MV2. The
bottom 5 rows with mask are trained on 2) the mask-augmented
MS-1MV2.

FIGURE 8. The ROC and CMC of using 1) the original MS-1MV2 and 2) the
mask-augmented MS-1MV2 for training and testing on the synthetic
masked IJB-Cmask .

FIGURE 9. The ROC and CMC of using 1) the original MS-1MV2 for
training and testing on original (no-mask) FG-Net.

2) PERFORMANCE AGAINST AGE
The tables and figures for the evaluations on the FG-Net
are organized in the same way as those for the above IJB-B
and IJB-C. Table 5 shows the verification rates on the
original FG-Net (the top 5 rows, without masks) and the
masked FG-Net (the bottom 10 rows). The bottom 10 rows
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TABLE 5. Verification rates (in TAR%, AUC% ) for the loss functions tested
on the FG-Net original (top 5 rows) and the masked FG-Net (bottom
10 rows). Top 10 rows are trained on 1) the original MS-1MV2. The bottom
5 rows with subscript mask are trained on 2) the mask-augmented
MS-1MV2.

TABLE 6. Identification rates at FPIR = 0.01, 0.1 and Rank-1, 5 for the
loss functions tested on FG-Net original (top 5 rows) and the masked
FG-Net (bottom 10 rows). Top 10 rows trained on 1) the original
MS-1MV2. The bottom 5 rows with mask are trained on 2) the
mask-augmented MS-1MV2.

are further divided into the top five trained on the origi-
nal MS-1MV2, and the bottom five trained on the mask-
augmented MS-1MV2. Table 6 shows the identification rates
at FPIR= 0.01, 0.1 and Rank-1, 5, and the rows are arranged
in the same way as those in Table 5.
Considering the model trained on the original MS-1MV2,

the ROC and CMC curves for testing on the original FG-Net
are shown in Figures 9(a) and 9(b), respectively. Considering

FIGURE 10. The ROC and CMC of using 1) the original MS-1MV2 and 2)
the mask-augmented MS-1MV2 for training and testing on the synthetic
masked FG-Netmask .

the model trained on the mask-augmented MS-1MV2 com-
pared with the same model but trained on the original
Ms-1MV2, the ROC and CMC curves for testing on the
masked FG-Net are shown in Figures 10(a) and 10(b), respec-
tively. The performance shown in these tables and figures can
be summarized as follows:

• The performance degradation of the networks trained
on the original MS-1MV2 (without masks) and tested
on the masked FG-Net is worse than that observed on
the masked IJB-B/IJB-C. The best performer ArcFace,
trained on the original MS-1MV2, shows verification
rate 52.3% on the original FG-Net @FAR 10−3, drops
to 28.9% on the masked FG-Net.

• The degraded performance is worsened for identifica-
tion. At FPIR= 0.01, theArcFace trained on the original
MS-1MV2 shows the identification rate 60.2% on the
FG-Net, drops to 29.8% on the masked FG-Net.

• Similar to the above experiments on the IJB-B/IJB-C,
the training on the mask-augmented MS-1MV2 can
substantially improve the degraded performance. The
ArcFacemask shows the verification rate 45.7% (versus
28.9% without augmented training) and identification
rates 48.1% (versus 29.8% without augmented training)
on the masked FG-Net.

• As shown in Tables 5 and 6, the ArcFace per-
forms the best, followed by the SphereFace, then the
CosFace, then the Marginal loss and then the Cen-
ter loss. Again, this observation that the SphereFace
outperforms the CosFace contradicts the experimen-
tal validation reported in [5] where different face
benchmarks were considered. Together with our results
obtained on the IJB-B/IJB-C, the CosFace can be better
than the SphereFace when dealing with PIE variation.
However, when handling other factors, for example,
occlusion and age, the SphereFace appears a better
option.

• A special observation of this study is that the cross-age
performance is the lowest among the three factors with
a clear margin. This highlights a potential direction for
the future research in this field.
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TABLE 7. Verification rates (in TAR%, AUC% ) for the loss functions tested
on the original SCface (no mask). Top 5 rows are trained on 1) the original
MS-1MV2, the bottom 5 rows with low are trained on 3) the
low-resolution -augmented MS-1MV2.

TABLE 8. Verification rates (in TAR%, AUC% ) for the loss functions tested
on the masked SCface. Top 5 rows are trained on 1) the original
MS-1MV2, middle 5 rows with low are trained on 2) the mask-augmented
MS-1MV2, and the bottom 5 rows with low+mask are trained on 4) the
mask-low-resolution augmented MS-1MV2.

3) PERFORMANCE AGAINST LOW RESOLUTION
Tables 7 and 8 show the verification rates of using the loss
functions on the original SCface and the masked SCface,
respectively. The top 5 rows in Table 7 are trained on the origi-
nalMS-1MV2 (Training Set 1), and the bottomfive trained on
the low-resolution-augmented MS-1MV2 (Training Set 3).
In Table 8, the top 5 rows are trained on the mask-augmented
MS-1MV2 (Training Set 2), and the bottomfive trained on the
low-resolution-mask-augmentedMS-1MV2 (Training Set 4).

Tables 9 and 10 show the identification rates on the original
SCface and the masked SCface, respectively, at three dis-
tances, 4.20m (d1), 2.60m (d2), and 1.00m (d3). The training
sets are arranged the same way as for Tables 7 and 8. As the
identification rates on the SCface are commonly reported for

TABLE 9. Rank-1 identification rates for the loss functions tested on the
original SCface (no mask) subsets of three distances (d1 the farthest). Top
5 rows trained on 1) the original MS-1MV2, the bottom 5 rows with low
trained on 3) the low-resolution-augmented MS-1MV2.

the Rank-1 at three distances, the CMC curves are skipped
and only the ROC curves for verification are shown. The ROC
curves for training on the original MS-1MV2 and testing on
the original SCface are shown in Figure 11(a). The ROC
curves for training on themask-augmentedMS-1MV2 and on
the mask-low-resolution augmented MS-1MV2, and testing
on the masked SCface are shown in Figure 11(b). The perfor-
mance shown in these tables and figures can be summarized
as follows:

• Again, masks substantially degrade the performance of
the networks trained on faces without masks. The best
network, ArcFace, trained on the original MS-1MV2,
gives verification rate 74.3% on the original SCface
@FAR 10−3, but drops to 48.4% on the masked SCface.

• The degraded performance is worsened for identifica-
tion. At the farthest d1, the ArcFace trained on the
original MS-1MV2 gives identification rate 51.1% on
SCface, but drops to 43.3% on the masked SCface.

• The training on the mask-low-resolution augmented
MS-1MV2 can effectively improve the performance.
The ArcFacelow+mask shows verification rate 67.7% and
identification rate 60.7% on the masked SCface.

• For the cases without masks, the training on the low-
resolution-augmented MS-1MV2 improves the perfor-
mance. The ArcFacelow shows verification rate 79.1%
and identification rate 69.1% on SCface, as shown in
Tables 7 and 9.

4) PERFORMANCE ON REAL MASKED FACE DATASET
To better evaluate the performance on real masked faces,
we select the best three loss functions from the previous com-
parisons, and test them on the c-RMFRD dataset. As many
faces in the c-RMFRD are with large poses, we define a sub-
set of the c-RMFRD with facial orientation larger than 60◦ in
yaw removed, and label it as c-RMFRDo. The only difference
between the c-RMFRD and c-RMFRDo is the 165 large-pose
faces removed in the latter. The top 6 rows in Table 11 and
Table 12 show the verification and identification rates on the
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FIGURE 11. Left: ROC of using 1) the original MS-1MV2 for training and
testing on the original SCface. Right: ROC of using 2) the mask-augmented
MS-1MV2 for training and testing on the synthetic masked SCfacemask .

TABLE 10. Rank-1 identification rates for the loss functions tested on the
masked SCface. Top 5 rows are trained on 1) the original MS-1MV2,
middle 5 rows with low are trained on 2) the mask-augmented MS-1MV2,
and the bottom 5 rows with low+mask are trained on 4) the
mask-low-resolution augmented MS-1MV2

TABLE 11. Verification rates (in TAR%, AUC% ) for the loss functions
tested on the c-RMFRD. Top 6 rows tested on 1) the original c-RMFRD.
The bottom 6 rows tested on 2) the c-RMFRo without large pose.

c-RMFRD, respectively; the bottom 6 rows in Table 11 and
Table 12 show the verification and identification rates on the
c-RMFRDo. The results can be described as follows:

TABLE 12. Identification rates at FPIR = 0.01, 0.1 and Rank-1, 5 for the
loss functions tested on c-RMFRD. Top 6 rows tested on 1) the original
c-RMFRD. The bottom 6 rows tested on 2) the c-RMFRo without large
pose.

• The mask-augmented training, labeled by the subscript
mask , yields a better performance than the training with-
out the synthetic masks. This indicates that the learning
based on synthetic facial masks can assist the masked
face recognition.

• Facial pose is a major challenging factor for masked
face recognition. Table 11 shows that the verification
rate at FAR 0.1% drops from 89.9% on the c-RMFRo to
82.8% on the c-RMFR. The Rank-1 identification rate
drops from 67.8% (c-RMFRDo) to 53.8% (c-RMFRD).
The portion of large-pose data in the c-RMFRD is larger
than those in the IJB-B and IJB-C, indicating that the
MS-1MV2 training set does not have a sufficient portion
of large-pose faces. A few intra-pair samples considered
in the verification test from the c-RMFRD are displayed
in Figure 12. Many masked faces do not just appear in
large pose, but also reveal limited visible facial regions
because of the partial occlusion made by the caps or hair.

• Although the ArcFace still outperforms all, followed
by the SphereFace and then the CosFace, their perfor-
mances are apparently worse than those in the previous
experiments on the synthetic masked faces. Figure 13
and Figure 14 are samples of the intra (genuine) pairs
and extra (imposter) pair, respectively, and all failed
to be verified by using the ArcFace. Visual inspection
of these and other cases shows that the causes for the
failures can be the aforementioned large poses and lim-
ited visible facial regions. Many faces in the c-RMFRD
are wearing caps, but the synthetic masked faces in the
MS-1MV2 training set are clear in the forehead and hair
regions. Moreover, the different races in the training and
testing datasets can also be a cause. The majority of
MS-1MV2, IJB-B and IJB-C are Caucasians, but the
faces in c-RMFRD are all Asians.

Since we found that we had difficulties to manually verify
manymasked faces in the c-RMFRDo, we conducted a human
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FIGURE 12. Intra (genuine) pair samples from the c-RMFRD with masked
faces in large pose, and visible regions affected by caps and hair.

FIGURE 13. Samples of intra (genuine) pairs failed to be verified by
ArcFace, the number is the cosine similarity and threshold is 0.31 for
FAR = 0.1%.

FIGURE 14. Samples of extra (imposter) pairs failed to be verified by
ArcFace, the number is the cosine similarity and threshold is 0.31 for
FAR = 0.1%.

user test to compare human performance with the ArcFace.
For this test five inspectors manually selected their individual
rank-1 faces for the identification test, and verified whether
each test pair were the same subject for the verification test.
The majority of the 5 votes was taken as the legitimate
outcome, and the comparison is shown in Table 13. As the
human FAR for the verification test is close to 0.1%, we take
the corresponding TAR from Table 11 for the comparison.
To our surprise, there is a clear performance gap between the
ArcFace and human; especially for the Rank-1 identification,
the gap is more than 40%. Figure 15 shows a few intra-pair
samples that the inspectors failed but the ArcFace succeeded
to verify. The reason for the large performance gap can be
that the ArcFace model has been trained by the synthetic
masked faces so that it performswell recognizing real masked
faces, but the human inspectors are not used to recognizing
masked faces. It is therefore experimentally verified that the
training on synthetic masked faces helps the real masked face
recognition.

5) COMPARISON WITH RECENT APPROACHES
We compare our best model with the ArcFace loss with sev-
eral recent methods [19], [20], [22], [23] which are reviewed

FIGURE 15. Samples of errors made by human inspectors. Each pair
denotes the same subject in label. The number denotes the cosine
similarity

TABLE 13. Verification and identification rates of ArcFace versus human
test on RMFRD.

TABLE 14. Performance on the AR Face database [35], MFR2
database [23].

in Sec.II. Note that the training and testing protocol consid-
ered in [18] is different from ours, it is excluded from this
comparison. The comparison is shown in Table 14. Ourmodel
outperforms all in both the verification and identification
tasks on the AR and MFR2 datasets.

We offer our code for synthesizing the masks, two trained
models and the c-RMFRD dataset in our project GitHub site,
https://github.com/AvLab-CV/Face_Mask_Generator.

VI. CONCLUSION
As the COVID-19 virus may stay with us for a while, wearing
a mask can be a common or mandatory action to take for
our protection. It is challenging to recognize masked faces
as most facial features are covered, substantially degrad-
ing the human vision which performs exceptionally well
recognizing uncovered faces. This study shows that a deep
learning solution trained on synthetic masked faces can out-
perform human for masked face recognition. We also show
that masked face recognition can be made more challenging
when considering other compounding factors, including age,
image resolution and facial pose. How these factors affect
the generic face recognition, i.e., recognizing faces without
masks, is also studied with extended experiments. Therefore,
how to improve the masked face recognition against the com-
pounding factors will be a potential topic for future research.
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The inspection of the errors in the synthesized masked faces
when tackling each compounding factor can be an impor-
tant step. Additionally, the making of more databases cannot
be overemphasized. The RMFRD is composed of primarily
Asian faces, the datasets of other ethnicities are needed for
the understanding of cross-ethnicity issues. We have been
working on some of these issues, and will report new results
when available.
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