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ABSTRACT Object detection can locate objects in an image using bounding boxes, which can facilitate
classification and image understanding, resulting in a wide range of applications. Knowing how to mine
useful features from images and detect objects of different scales have become the focus for object-detection
research. In this paper, considering the importance of foreground features in the process of object detection,
a foreground feature extraction module, based on deformable convolution, is proposed, and the attention
mechanism is integrated to suppress the interference from the background. To learn effective features,
considering that different layers in a convolutional neural network have different contributions, we propose
methods to learn the weights for feature fusion. Experiments on the VOC datasets and COCO datasets show
that the proposed algorithm can effectively improve the object detection accuracy, which is 12.1% higher than
Faster R-CNN, 1.5% higher than RefineDet, and 2.3% higher than the Hierarchical Shot Detector (HSD).

INDEX TERMS Object detection, multi-scale, feature fusion, foreground features.

I. INTRODUCTION
Nowadays, due to the rapid development of computer vision
technology and its applications to various industries, it has
become possible to provide early warning of abnormal con-
ditions in a timely manner in production and manufactur-
ing processes. In some particular industrial applications,
if anomalies are not discovered and handled in time, it may
have a great impact on the production and safety of work-
ers. A feasible way is to employ more anomaly inspectors
to monitor anomalies in the whole environment, but this
requires a lot of labor costs, and the monitoring of anomalies
is affected by different subjective factors. With the rapid
development and applications of artificial intelligence, object
detection algorithms have become more feasible and reliable
for anomaly detection.

The purpose of object detection is to detect targeted objects
in a video stream. The objects need to be accurately located,
so that analysis can be performed more efficiently and a
timely warning can be provided when anomalies occur.
An object detection algorithm needs to ensure the robustness
of the deep model used, i.e., the detector can detect and
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locate objects stably and accurately in different environments.
In addition, the detector also needs to predict objects under
occlusion and to detect small objects, as well as multiple
objects.

Traditional object detection algorithms mainly use the
sliding-window method to generate bounding-box candi-
dates, and then extract handcrafted features, such as His-
togram of Oriented Gradients (HOG) [1], Haar [2], Scale
Invariant Feature Transform (SIFT) [3], etc. These traditional
machine learning algorithms are computationally intensive
and generate too many bounding-box candidates, resulting
in a long detection time. In addition, handcrafted features
have limited generalization power and are not optimal for
complex and diverse environments, especially for objects
with multiple scales.

With the development of deep learning, deep neural net-
works have been used for feature learning and extrac-
tion. The deep learning-based object detectors can be
mainly divided into two categories, single-stage object
detector and two-stage object detector. The two-stage
object detection methods, including R-CNN [4], [5], Fast
R-CNN, Faster R-CNN [6], and their variants, etc., first
generate region proposals and then, classify each region
proposal.
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FIGURE 1. Results of the YOLOv5 algorithm and our proposed algorithm in real multi-scale object
detection.

The two-stage detectors use Region Proposal Network
(RPN) [6] for region proposals and classification. For the
imbalance issue, data augmentation and specific loss func-
tions are used. As the regions of interest are extracted in
advance, the detection is performed by regression.

The single-stage object detection algorithms include Sin-
gle Shot MultiBox Detector (SSD) [7], [8], [26], You Only
Look Once (YOLO) [9]–[12], and their variants. The struc-
ture of these deep models is designed as an end-to-end net-
work, composed of two parts. These algorithms consider
detection as a regression task, so it predicts the offset of
the actual object location relative to the anchor box. In this
process, regression and classification are performed at the
same time, so these algorithms are faster. However, their
accuracy is usually lower than the two-stage algorithms.

In this paper, we focus on the multi-scale problem in multi-
object detection. If bounding boxes with a certain number of
scales are set in advance, the preset boxes cannot accurately
represent the actual shape of the objects, when the objects
overlap. Furthermore, for the same object, it may appear
with different scales when viewed at different angles and dis-
tances, and its shapemay also be changed. For practical object
detection, it is of utmost importance to solve the multi-scale
problem. Fig. 1 shows the results of YOLOV5s algorithm and
our proposed algorithm in real detection tasks.

The main contributions and advancements of our proposed
object detection framework are as follows:

• A new feature fusion network structure. By analyz-
ing some existing object detection algorithms and their
variants, we design a new feature fusion network and a
fusion approach for the development of feature fusion
networks.

• Effective feature fusion. Instead of simply concatenat-
ing feature maps, we fully consider the importance of
the different layers in a convolutional neural network
(CNN). Therefore, we propose learnable weight param-
eters for weighted fusion. Bidirectional aggregation is
used for feature top-down and bottom-up fusion, and
skip connections are used to solve the problem of feature
reduction in propagation.

• Feature extraction focus on the foreground. Based
on the research on the inaccuracy of object loca-
tion in previous algorithms, we design a deformable
convolution module with a constant output dimen-
sion. The module extracts foreground information
by stacking continuous deformable convolutions and
keeps the output dimension unchanged through dimen-
sion transformation. This makes the module easy to
insert into different feature extraction locations in the
network.

• Several variants based on the proposed structure.
Using different ways for feature weighted fusion,
we propose three variants based on our framework.
Extensive experiments have been conducted on several
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benchmarks to show the good performance of our pro-
posed models.

II. RELATED WORK
In the past few decades, multi-scale object detection has
made great progress, and the detection performance has
been improving. The improvement of the multi-scale object
detection methods is mainly due to the fusion of features
of different scales, so that the objects’ boundaries can be
better located, even though the objects are of different sizes
or scales. Current object detection algorithms, such as Fully
Convolutional One-Stage Object Detection (FCOS) [40], use
the Feature Pyramid Network (FPN) [18] for feature fusion.
This method can output feature images of different sizes,
which can be used for multi-scale object detection. However,
this method cannot fully integrate the deep features and shal-
low features. The YOLOV5 algorithm adopts the Path Aggre-
gation Network (PANet) [20], which performs a bottom-up
feature fusion after a top-down feature fusion. The structure
can fuse the deep and shallow features, which are information
of different scales, more effectively. However, the PANet
structure only splices the features in the channel dimensions,
ignoring the different contributions of the different layers.
In this paper, we focus on effective fusion of features from the
different layers. A learnable weight is trained for each layer,
and a convolutional layer is used to unify the number and size
of the feature maps before fusing the features from different
layers. After that, the feature maps of the different layers
are fused based on the learned weights, and a normalization
operation is carried out to improve the convergence of the
model training. Finally, a deformable convolution module is
added before feature fusion, so that the convolution kernel
for feature extraction has an adaptive receptive field, thereby
effectively extracting more foreground features.

A. ANCHOR-BASED OBJECT DETECTION MODELS
Deep-learning-based object detection is usually modeled as
a problem of classification and regression for candidate
regions. The anchors are rectangular windows of different
scales and different aspect ratios, and are fine-tuned to fit the
actual object by regression.

He et al. [13] proposed the Mask R-CNN algorithm. Based
on Faster R-CNN, a new mask branch is added, and the
Region of Interest (RoI) align layer replaces the RoI Pool-
ing layer to improve the detection accuracy. However, this
increases the amount of computation, which leads to a long
inference time. Aiming at selecting the Intersection-over-
Union (IoU) threshold, Cai et al. [14] proposed a cascade
detector, namely Cascade R-CNN, which takes the output of
the previous detector as the input of the next-stage detector.
Although this method improves the detection accuracy, the
cascade of multiple detection sub-networks increases the run-
time during detection. By selecting anchors of different sizes
at different levels, SSD can find the best anchor that matches
the ground truth for training, thus making the whole structure
achieve more accurate performance. However, the accuracy

of SSD for small objects is poor. This is because small-sized
objects are usually detected based on the shallow layers, but
the features have limited semantics. The YOLOV5 model,
proposed by used adaptive anchor boxes, which adaptively
calculates the optimal anchor box size in different training
datasets during training. This method can make the shape of
the anchor box predicted by the network conform to the actual
object’s aspect ratio as much as possible, so as to complete the
task of multi-scale object detection.

The anchor-based algorithms use anchors to generate dense
anchor boxes, which enable the network to classify objects
and regress the coordinates of the bounding boxes directly.
A prior is added to the algorithm tomake it more stable during
training. In addition, this method can effectively improve
the object recall rate of the network, in particular for small
objects.

B. FEATURE EXTRACTION MODULE
Although there are different object detection algorithms, their
first step is to use a convolutional neural network to process
the input image to generate a deep feature map. It is useful to
obtain object features for different scales through an effective
feature extraction module, and then splices the features to
different sizes to obtain better multi-scale features for object
detection.

Woo et al. [15] proposed a simple and effective feedfor-
ward CNN module CBAM. Given an intermediate feature
map, thismodule sequentially infers attentionmaps along two
separate dimensions, channel and spatial, then the attention
maps are multiplied to the input feature map for adaptive
feature refinement. [16] proposed a Selective Kernel (SK)
module that performs attention for convolution kernels. This
module uses different kernels for different images, i.e., it can
dynamically generate convolution kernels for images contain-
ing objects of different scales. However, the module brings
a large amount of additional parameters and calculations.
Wang et al. [17] proposed a channel concern module, namely
the ECA module, which adopts a local cross-channel inter-
action strategy without dimensionality reduction, and can
adaptively select the size of the one-dimensional convolution
kernel. However, spatial attention is not used in this module,
so there is still room for optimization.

C. FEATURE FUSION STRUCTURES
Fusing features of different scales, while retaining their useful
characteristics, is an important process to improve object-
detection performance. The low-level features have higher
resolution and contain better spatial and detailed informa-
tion. However, they are shallow features, which contain
less semantics and more noise. The high-level features have
stronger semantic information, but they are of small res-
olution and contain less details. How to effectively inte-
grate the detailed information from low-level features and
the high-semantic information from high-level features, and
retain their advantages and discard their disadvantages, is the
key to improving the performance of object detection models.
The fusion process can be divided into early fusion and late
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fusion. Early fusion is to fuse multi-layer features first, and
then train the predictor on the fused features. This kind of
methods is also called skip connection, which adopts the
concatenation and addition operations. Late fusion combines
detection results from different layers to improve the detec-
tion performance. Before the final fusion is performed, the
detection is started on some fused layers, and there will be
multilayer detection.

Lin et al. [18] proposed the feature pyramid network,
FPN, to solve the small-object detection problem. Through
top-down feature fusion and skip connections, the shallow
features can be directly transmitted to the deep layers with-
out going through multi-layer convolution, thus ensuring the
extraction of effective information for small objects. How-
ever, this method only carries out top-down feature fusion,
so the performance of deep feature fusion is not satisfac-
tory. [19] used near-end strategy optimization to train rein-
forcement learning agents by searching the optimal FPN
structure in space and using the most accurate feedback from
the searched model in the search space. Finally, the agent
searches out a special network Neural Architecture Search
Feature Pyramid Network (NAS-FPN) to improve the accu-
racy of the FPN network. However, the network searched by
this method is much more complex, and the inference speed
of the model is slow. Liu et al. [20] proposed PANet, which
adds bottom-up feature fusion on the basis of FPN, shortens
the information transmission path between shallow and deep
features, and promotes the flow of information. However,
this approach ignores the different contributions of different
layers, and the deep features and shallow features are only
integrated through the splicing of dimensions.

D. MULTI-SCALE OBJECT DETECTION
For small objects, shallow features contain useful detailed
information. With the deepening of layers, the geometric
detailed information in the extracted features may disappear
completely, so it becomes very difficult to detect small objects
through deep features. For large objects, their semantic infor-
mation mainly appears in deeper features. In order to obtain
accurate detection methods for both large and small objects,
multi-scale object detection can be adopted.

The idea of MST (Multi Scale Training) is to use randomly
sampled multi-resolution images to make the detector scale-
invariant. Each image has several different resolutions, and
each object has several different sizes during training, so there
is always one size within the specified size range. However,
the detection performance of large objects and very small
objects is not satisfactory in MST. To solve this problem, [51]
proposed SNIP, which only returns losses to the objects of the
size within a specified range. In other words, the training pro-
cess only targets specific objects, which reduces the impact
of domain- shift.

Dilated convolution [52] can control the receptive field
to different sizes. Generally, the larger the dilation rate
is designed, the larger the receptive field is. The tradi-
tional multi-scale detection algorithms mostly rely on image

pyramids and feature pyramids. Different from the above
algorithms, Li et al. [53] conducted an in-depth analysis of
the receptive field, and used the convolution as a sharp tool to
construct a simple three-branch network, namely TridentNet,
which can significantly improve the accuracy of multi-scale
object detection. As there are no prior labels to select different
branches, only one branch is retained for forward calculation,
and this forward method has only a small loss of accuracy.

FPN uses nearest neighbor interpolation combined with
lateral connections, to achieve the function of gradu-
ally spreading high-level semantic information to lower
level features, making the scale smoother. It can also
be regarded as a lightweight decoder structure. However,
rough nearest-neighbor interpolation is used in up-sampling,
so high-level semantic information may not be propagated
effectively. Although FPN propagates strong semantic infor-
mation to other layers, the features at different scales have
different representation abilities.

To shorten the information path and enhance the feature
pyramid with low-level accurate positioning information,
PANet created a bottom-up path enhancement based on FPN.
It is used to shorten the information path and improve the
feature pyramid structure by using the accurate positioning
signals contained in low-level features. Although PANet can
achieve themulti-scale task well, the fusion of different scales
is not enough for the multi-scale output.

III. DEFORMABLE WEIGHTED AGGREGATION NETWORK
The above-mentioned deep models contain different stages
for object detection. However, in real-world applications,
we need to consider the foreground features more for accurate
object detection. For example, if we perform people detec-
tion, the object detection network should pay more attention
to people rather than the backgrounds, so that the detection of
the targeted objects will be less distracted by the background
information. Furthermore, an object’s size and shape may
vary, when viewed at different orientations and distances.
Thus, the multi-scale problem should also be tackled. In addi-
tion, when an object is moving, the object’s bounding box
may also be changing. In other words, it is necessary for the
detection model to use an adaptive receptive fields to extract
and fuse features.

The deformable convolutional network [21], proposed by
Dai et al., uses an additional convolutional layer to calcu-
late the offset of the convolution kernel sampling points,
so that the model can obtain an adaptive receptive field
and focus more on the objects, so as to improve the detec-
tion accuracy. On this basis, we combine channel attention
and spatial attention mechanisms, and propose a foreground
feature-extraction module, namely DCONV, which is based
on deformable convolution. On the one hand, the model can
effectively extract the shape or edge features of the targeted
objects, so the object localization can be estimated accurately.
On the other hand, the adaptive receptive field makes the
convolutional sampling points focus more on the targeted
objects, which can extract features from regions of interest.

VOLUME 10, 2022 30719



J. Hu et al.: DWANet: Focus on Foreground Features for More Accurate Location

FIGURE 2. Overall architecture of the proposed Deformable Weighted Aggregation Network (DWANet) (a) The backbone network. (b) DWANet is divided
into top-down feature fusion and bottom-up feature fusion. (c) The multi-scale output.

However, using only feature extraction cannot accurately
perform the object-detection task. Feature fusion is an impor-
tant process to enhance the representational and discriminant
power of the features. The features of different layers make
different contributions to detecting objects of different scales.
Shallow features may be more useful for some tasks. How-
ever, if we want to carry out accurate detection, deep features
may be more useful. Therefore, we propose to learn a weight
for each feature fusion layer. When two features are fused,
they are not concatenated, like PANET, but fused according
to the weights. This scheme fully considers the contribution
of the different layers in the fusion process, so that it can carry
out multi-scale object detection. Fig. 2 shows the architecture
of our proposed Deformable Weighted Aggregation Network
(DWANet). The Focus module acquires a pixel value every
other pixel in a picture so that it can get four pictures. These
four pictures complement each other. Although the overall
information is similar, but this operation can prevent the loss
of information. Through this operation, the information onW
and H is concentrated in the channel, which expands the input
channel of the network by four times. Finally, the new image
is convoluted, and the feature map without information loss
is obtained.

The network produces three output feature maps. The sizes
of the three featuremaps are 1/8, 1/16, and 1/32 of the original
input size, and they are used to predict small, medium, and
large objects, respectively. For each grid, the x and y coor-
dinates, width, and height, as well as the confidence of the
bounding box, are predicted.

To perform weighted fusion in the aggregation network,
three different fusion methods are proposed, namely infi-
nite fusion, normalized fusion and sigmoid fusion. They are
defined as follows:

Normalized fusion : out =
∑

i

wi · Ii
ε +

∑
j wj

(1)

Infinite fusion : out =
∑

i
wi · Ii (2)

Sigmoid fusion : out =
∑

i

1
1+ e−(wi·Ii)

(3)

where Ii represents the input vector, wi represents the learn-
able vector of weights, and ε is a small number, which is used
to ensure that the denominator is not zero.

A. WEIGHTED FUSION CONVOLUTION MODULE
Fig. 3 shows the structure of PANet. The original PANet
adopts concatenation for feature fusion. Although this
method is simple, it ignores an important factor, that is, the
different contributions of different layers to the feature fusion
process. Therefore, we choose to use the weighted fusion
method to improve it.

FIGURE 3. The structure of PANet: (a) The FPN network. (b) Bottom-up
path aggregation. (c) Output layer.

In the original PANet network, the feature fusion module
uses the CONCAT module, whose function is to carry out
concatenation of the feature maps from two layers. After
passing through the front backbone network, the size of the
feature maps becomes 20× 20× 1024, and then a 1× 1 con-
volution layer is used to compress the number of feature-map
channels into 512. After up-sampling, it is restored to the
same size as the previous feature map of the same depth layer.
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This process can be expressed as follows:

out = fuse (upsample (Xd ) ,Xs) (4)

where Xd represents a deeper feature map, and Xs repre-
sents a shallow feature map. We use bilinear interpolation
for up-sampling, with input ∈ RC×Hin×Win and output ∈
RC×Hout×Wout , where Hout = s × Hin and Wout = s × Win.
s denotes the scaling factor, which is set at 2. Hin denotes
the input height, Hout denotes the output height. Win denotes
the input width,Wout denotes the output width. C denotes the
number of channels.

In our method, the upsampled deep feature Xd and the
shallow feature Xs are multiplied by their respective weights,
and then normalized by dividing by the sum of the weights
for normalization. After that, the normalized feature is fed to
a convolutional layer, followed by batch normalization and
the Rectified Linear Unit(RelU) [29] activation function. The
all four convolutional layers use 3 × 3 convolution kernel
and the stride is 1, and the number of output channels is
1024,512,512,1024 in turn. The structure of the weighted
fusion convolution module is as follows:

The fusion module generates the weighted average of the
two feature vectors to be fused, as follows:

fuse (X1,X2) =
W1 · X1 +W2 · X2
ε +W1 +W2

(5)

where Xi represents an input vector,Wi represents the weight,
and ε is a small number.
Compared with the original fusion method, although this

method requires the weights as additional network param-
eters, the weighted fusion fully considers the contribution
of the different layers, which can more effectively fuse the
features form the deep and shallow layers. Especially for
multi-scale problems, this method can pay more attention to
edge information, so the detection accuracy for the multi-
scale problems is better.

B. FOREGROUND FEATURE EXTRACTION MODULE
For object detection, foreground features provide much
more useful information than global features. For example,
to locate a person, we only need the approximate edge infor-
mation of the person, rather than focusing on the whole input,
especially the irrelevant backgrounds. Therefore, we propose
a foreground feature extraction module based on deformable
convolution.

Fig. 4 shows the receptive fields of conventional convolu-
tion and deformable convolution. We can see that the recep-
tive field of conventional convolution is regular and fixed, and
usually square. The receptive field of deformable convolution
has an adaptive size, which uses a parallel convolutional layer
to learn the offset migration. This shifts the sampling points
on a feature map when computing the output with a convo-
lution kernel. This model can better extract the foreground
features, and the sampling points will focus more on the
object regions, i.e., the background interference is filtered

FIGURE 4. The receptive field. (a) Conventional convolution.
(b) Deformable convolution.

out. Fig. 5 shows the feature maps of deformable convolution
module in different layers.

Define R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}. The
convolutional computes the output as follows:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn) (6)

where pn is an enumeration of all positions in R and p0 is the
original position. For deformable convolution, an offset1p is
added to each sampling point, and this offset is predicted by
a convolutional layer. The deformable convolution computes
the output as follows:

y(p0) =
∑
pnεR

w(pn) · x(p0 + pn +1p) (7)

This shows that deformable convolution takes the predicted
sampling-point offset into account, so an adaptive receptive
field for the convolution kernel is obtained, and the object’s
edge information can also better taken into account in the
extraction of object features. As a result, the performance
of multi-scale object detection is improved. Since the output
value of 1p is generally a real number, bilinear interpolation
is used to calculate the value x(p0 + pn + 1p) at offset
positions.

Fig.6 shows structure of the feature fusion network. In
order to further enhance the feature extraction module on
extracting foreground feature, we add spatial attention and
channel attention after the stacked deformable convolution
module. The input is divided into two paths. After three
deformable convolution layers, the deep foreground features
are extracted through channel attention and spatial attention,
and the shallow features are retained on the other path. Then,
the two paths are superimposed to form the output of the
network. Fig. 7 shows the structure of DCONV.

The output of the deformable convolution module contains
the shallow feature from the original input, the object edge
features, and the overall feature extracted using the adaptive
receptive field. It can be integrated with the network, so as to
improve the detection performance.
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FIGURE 5. Feature maps of some layers. (a) Input image. (b) DCONV layer feature maps. (c) Weighted fusion layer feature maps. (d) Output
layer feature maps.

C. LOSS FUNCTION
In order to comprehensively consider the classification and
location losses, the overall loss contains three terms, namely,
the objectness score Lossobj, the classification score Losscls
and the bounding-box loss Lossbbox , and is shown as follows:

Loss = Lossobj + Losscls + Lossbbox (8)

The binary cross-entropy loss [23] is used for Lossobj
and Losscls. This loss function combines the binary cross-
entropy loss and sigmoid functions, mainly used for the
binary classification problems and multi-label classification

problems. The formula is as follows:

Loss=−[ yn · log (σ (xn))+(1− yn) · log (1−σ (xn))] (9)

where:

σ (x) =
1

1+ e−x
(10)

σ (x) is the sigmoid function, which maps x to between
0 and 1. In order to solve the problem of imbalance between
positive and negative samples and make the model achieve
better classification performance, the focal loss [22] is
employed as follow:

focal loss = (1− p)γ (−log(p)) (11)
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FIGURE 6. Structure of the feature fusion network: (a) The model is a bottom-up module for feature extraction, which is built by BottleNeckCSP [24] and
convolution layers. (b) For the module for top-down feature fusion, the deformable convolution module is used to extract features before fusion, then
convolution is used to reduce the dimension, and finally up-sampling is performed to make the two inputs have the same size. (c) Fusion module. Two
feature inputs are fused according to their respective weights.

For the bounding-box loss Lossbbox , the CIOU loss [25] is
employed, which is defined as follows:

LossCIoU = 1− IoU +
ρ2
(
b, bgt

)
c2

+ αv (12)

where α is a trade-off value computed as follows:

α =
v

(1− IoU)+ v
(13)

where v is a parameter used to judge whether the aspect ratio
is consistent, and is defined as follows:

v =
4
π2

(
arctan

(
wgt

hgt

)
−arctan

(w
h

))2

(14)

IoU is the intersection over union, which is a way to mea-
sure the distance in the field of object detection. Therefore,
the overall loss function used to train our model is given as
follows:

Loss = Lossobj + Losscls + Lossbbox

=

∑
pi∈pobj

(1− pi)γ (− log (pi))

+

∑
pi∈pcls

(1− pi)γ (− log (pi))

+

∑
1−IoU+

ρ2
(
b, bgt

)
c2

+
v

(1− IoU)+v
v (15)

IV. EXPERIMENTAL RESULTS
To evaluate the performance of our proposed model, we con-
ducted experiments on some bench-mark datasets for object
detection, and compare our method with state-of-the-art
methods.

A. EXPERIMENT SETUP
The computer system used in our experiments is the Intel
Core i7 8700k, 16GB memory, NVIDIA RTX2070 8GB
GPU, pytorch1.7.0, cuda10.2. To evaluate the model on
multiple datasets, the VOC datasets and COCO datasets
were used in our experiments. For the VOC datasets, the
performance metrics measured in the experiments include
mAP@0.5, Precision (P), and Recall (R), which are defined
as follows:

Precision,P =
TP

TP+ FP
=

TP
all detections

(16)

Recall,R =
TP

TP+ FN
=

TP
all groundtruths

(17)

In VOC2007, to calculate mAP@0.5, recall is divided into
11 points, i.e., 0, 0.1, 0.2, . . . , 1.0. We use these 11 points to
calculate AP, i.e.,

AP =
1
11
× (APr (0)+ APr (0.1)+ · · · + APr (1.0))

=
1
11

∑
r∈{0.0,...,1.0}

Pinterp(r) (18)

Pinterp (r) = max
r̃≥r

p(r̃) (19)
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FIGURE 7. The structure of the foreground feature extraction module (DCONV).

TABLE 1. Ablation studies on the proposed model.

where p(r̃) is the measured precision at recall r̃ . For the
COCO datasets, we mainly measure mAP with different IoU
thresholds.

In COCO, we measure AP at IoU from 0.50 to 0.95, with a
step size of 0.5. For example, AP50 denotes AP at IoU= 0.50,
and AP75 denotes AP at IoU= 0.75. APS is used to measure
the AP on small objects, in which small-sized objects refer
to those with pixel area smaller than 322. APM is used to
measure the AP on medium-sized objects, in which medium-
sized objects refer to those with pixel area more than 322 and
less than 962. APL is used to measure the AP on large-sized
objects, in which large objects refer to those with pixel area
more than 962.

B. PERFORMANCE ON PROPOSED METHOD WITH
DIFFERENT CONFIGURATION
This experiment used the PASCAL VOC2007 and VOC2012
datasets, which have 20 categories. The VOC2007 trainval
and VOC2012 trainval were used as the training set, with a
total of 16551 images. The VOC2007 test was used as the
test set, with a total of 4952 images.

Table 1 shows the ablation study of the deformable
convolution module, the weighted fusion convolution
module (WFConv), the deformable convolution mod-
ule (DCONV) and the Deformable Weighted Aggregation
Network (DWANet).

The visual performance of our proposed multi-scale object
detection method is shown in Fig. 8. It can be seen that, for
multi-scale object detection, our DWANet algorithm can bet-
ter achieve the task of multi-scale object detection, in terms
of location and the recognition accuracy, especially for the
problem of occlusion and extended regions caused bymotion.

As you can see from Fig. 9, DWANet, using both WFConv
and DConv, achieves the best performance, in terms of both
mAP@0.5, P and R, and reaches 0.853 on mAP@0.5. The
precision-recall curves for the different categories are also
shown.

Table 2 tabulates the AP values for the different object
categories, with the highest AP value for each category high-
lighted in bold. The proposedmethod achieves the highest AP
value in 14 out of 20 categories The AP value of our method
for the Aeroplane, Bicycle, Bus, Car, Horse, and Motorbike
categories is more than 0.9.

Comparative experiments were also carried out on the three
fusion methods, and the results are shown in Table 3. We can
see that the highest mAP@0.5 value and recall rate can be
achieved by our DWANet with infinite fusion, and higher
accuracy can be obtained by using normalized fusion.

Table 4 shows the performance of the DCONV mod-
ule with different configurations. Better results can be
achieved by using the attention mechanism after the stacked
deformable convolution.
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FIGURE 8. The detection results of the DCONV, WFConv, and DWANet algorithms for multi-scale object detection.

FIGURE 9. The P-R curve of different methods. DWANet(infinite) denotes DWANet with infinite fusion, DWANet(norm) denotes DWANet with
normalized fusion. The solid, thick blue line represents the average P-R curve achieved by a method for all categories.

Fig. 10 shows the TP, FP, and FN rates achieved by
DWANet on each category. It can be seen that the TP rate
on aeroplane, cat, dog and train is more than 0.8. Most of
the FN is about 0.03. The FP rate is maintained at about 0.3,
indicating that the accuracy and recall of our model can be
maintained at a high level.

Fig. 11 shows the changing values of DWANet-infinite
during the training process. It can be seen from the figure that
the model converged satisfactorily.

C. EXPERIMENTAL COMPARISON
We also conducted a horizontal comparison with current
state-of-the-art object-detection algorithms. The PASCAL
VOC2007 and VOC2012 datasets, which has 20 cat-
egories, were used in the experiments. The VOC2007
trainval and VOC2012 trainval were selected to form
the training set, with a total of 16551 images, and
VOC2007 test was used as the test set, with a total of
4952 images.
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TABLE 2. Comparison of the AP values of the different categories for
each model.

TABLE 3. Comparison of experimental results of different fusion
methods.

TABLE 4. Comparison of experimental results of different DCONV
structures.

Table 5 shows that, on COCO2017, DWANet can achieve
higher accuracy than the compared state-of-the-art algo-
rithms. In terms of speed, DWANet is slower than YOLOV5S
only, but our speed of 158FPS should be more than suffi-
cient to meet real-time requirements. We also evaluate the
accuracy of the different methods for detecting objects of
different scales, such as small objects, medium objects and
large objects. We can also see that our model achieves the
highest detection accuracy for objects of different scales.

Table 6 shows the experiment results on the small object
dataset, TinyPerson. The results show that our model can
achieve the highest accuracy for the small-object tasks.
Table 8 compares the model size, computational complexity

FIGURE 10. The TP, FP and FN rates of DAWNet for different categories.

FIGURE 11. Changes of parameters in the process of training. The x axis
represents the number of epochs. From top to bottom, from left to right,
box loss, objectness loss, classification loss, accuracy, recall, validation
box loss, validation objectness loss, validation classification loss,
mAP@0.5.

and accuracy of different methods. We can see that the size of
our model is similar to that of YOLOV5S, but we can achieve
much higher accuracy. Compared with other algorithms with
similar accuracy, our model has a smaller model size and
requires less computation.

Table 7 shows the results using the different methods on
the VOC2007 dataset. The accuracy of DWANet in terms
of mAP@0.5 can reach 85.3%, which is 12.1% higher than
Faster R-CNN, 1.5% higher than RefineDet [27], and 2.3%
higher than HSD [28].

We compared our model with other models with a sim-
ilar model size or similar accuracy. The results are shown
in Table 8. It can be seen that our accuracy is improved
compared with the model with a similar number of param-
eters. Compared with the models with similar accuracy, the
parameters of our model are much smaller than those of other
algorithms.

D. ANALYSES
In this paper, the foreground feature extraction module and
the weighted fusion convolution module are used to extract
foreground information, so that the model can obtain better
edge information and thus more accurately located object
regions. The foreground feature extraction module captures
the information of the foreground object and the edge
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TABLE 5. Comparison of the accuracy of state-of-the-art real-time object detection algorithms on the COCO2017 dataset.

TABLE 6. Comparison of object detection algorithms on the TinyPerson [50] dataset.

TABLE 7. Comparison of the accuracy of different object-detection
algorithms on the VOC datasets.

information through the use of an adaptive receptive field,
which can help the network to achieve better recognition
performance. The weighted fusion convolution module fuses
deep features and shallow features adaptively according to
their respective contributions, which can improve our model
for the detection of objects with different scales.

Our proposed DWANet reaches 85.3%, in terms of
mAP@0.5, on the VOC2007 dataset. On the COCO dataset,
our model can achieve excellent performances, in terms of
accuracy and speed. Furthermore, the number of parameters
and the computational requirement of our model are both

TABLE 8. The computation in GFLOPs, number of parameters, and
accuracy of different state-of-the-art models.

much smaller than those of other state-of-the-art algorithms.
Table 5 also shows that our algorithm achieves the highest
accuracy of all the algorithms compared, and the second
highest speed, in terms of FPS. Although the YOLOV5S
model achieves the highest speed, our model can achieve
better performance, in terms of accuracy. In summary, our
model not only achieves real-time speed, but also retains a
high accuracy level.

V. CONCLUSION AND FUTURE WORK
This paper proposes a multi-scale object detection model,
namely DWANet, based on a foreground feature extraction
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module and a weighted fusion convolution module. The
impact of three different weighted fusion methods is also
studied for our network. It is found that DWANet can achieve
a state-of-the-art performance for multi-scale object detection
and overlapping object detection. Our model outperforms
current state-of-the-art object-detection algorithms in terms
of mAP@0.5. In our future research, we will study the use
of better lightweight models so the model can achieve high
accuracy and speed simultaneously.
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