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ABSTRACT The rapid development in the area of information and communication technologies has enabled
the transfer of high-resolution, large-sized videos, and video applications have also evolved according to
data quality levels. Content-based video retrieval (CBVR) is an essential video application because it can be
applied to various domains, such as surveillance, education, sports, and medicine. In this paper, we propose
a CBVR method based on prototypical category approximation (PCA-CBVR), which calculates prototypes
of deep features for each category to predict the user’s query video category without a classifier. We also
undertake fine searching to retrieve the video most similar to the user’s query video from the predicted
category database of videos. The proposed PCA-CBVR approach is efficient in terms of its computational
cost and maintains meaningful information of the videos. It does not need to train a classifier even when
the database is updated and uses all deep features without any dimension reduction step, such as those in
CBVR studies. Moreover, we conduct fine-tuning of the 3D CNN feature extractor based on a few-shot
learning approach for better domain adaptation ability and apply salient frame sampling instead of uniform
frame sampling to improve the performance of the PCA-CBVR method. We demonstrate the performance
capability of the proposed PCA-CBVR approach through experiments on various benchmark video datasets,
in this case the UCF101, HMDB51, and ActivityNet datasets.

INDEX TERMS Video retrieval, deep learning, video analytics, prototypes, cross-domain evaluation,
few-shot learning.

I. INTRODUCTION
In recent years, the rapid developments of information and
communication technologies have enabled faster and easier
access to large volumes of data. In March of 2020, due
to COVID-19, daily uploads and views of videos at home
increased on YouTube by nearly 700% and 210%, respec-
tively, compared to the corresponding levels before the com-
ing of the pandemic [1]. By 2023, the numbers of internet
users and 4K TV connections are predicted to be around
5.3 billion and 891 million, respectively [2], meaning that
the transmitted video traffic and quality levels will also grow.
Therefore, research focusing on with video applications has
been active [3]–[6].

Video contains more complicated information compared
to a single image, combining motion, audio and text.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Mei Zhang .

Accordingly, video application research requires an inte-
grated approach to consider the various types of information.
Content-based video retrieval (CBVR) is one area of video
application research. The aim of CBVR is to search for videos
that are most similar to a query video from a database based
on only the video contents without any additional metadata.
CBVR has been applied in several domains, such as crime
prevention, by identifying suspects throughCCTVvideos [7],
the indexing and retrieving of specific lecture videos for
effective education [8], the retrieval of the sports videos such
as badminton [9], and the retrieval of surgical procedures
similar to an ongoing procedure to ensure an efficient opera-
tion [10], among others.

In general, the CBVR process consists of three steps. The
first step is frame sampling. To process the video efficiently
and enhance the retrieval performance, it is necessary to
sample meaningful frames, as many video frames do not
assist with an understanding of the video. For example, there
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FIGURE 1. The proposed PCA-CBVR is composed of offline (green dashed line) and online
(blue dashed line) steps. During offline processing, PCA-CBVR extracts the deep features of
database videos using 3D CNNs which exclude the last fully connected layer, and calculates
the category prototypes from the extracted deep features. During online processing,
PCA-CBVR measures the degree of similarity between the category prototypes and the
extracted deep features of the user’s query video. Then, the PCA-CBVR method predicts the
user’s query video category based on the measured similarity scores and fine searches of
the predicted category database videos to find the video most similar to the user’s query
video. Finally, as a result of the fine search, it returns the top-k videos most similar to the
user’s query video.

TABLE 1. Table of abbreviations.

may be very similar frames in the same context of a certain
duration. In this step, we obtain the meaningful key-frames
[11], [12] or uniformly sampled frames [8], [13]. The second
step is feature extraction. In this step, we extract a color
features histogram [14] of the sampled frames using tradi-
tional computer vision techniques or deep features [15]–[17]
of the sampled frames using a convolutional neural network
(CNN). The last step is the distance calculation step which
compares extracted features from both the database videos
and the query video in terms of the Euclidean distance or
cosine similarity metric. Finally, the database video with the
shortest distance relative to the query video is retrieved as the
video most similar to the query video.

Recently, with the development of deep learning tech-
niques, several deep learning approaches, especially 2D and
3D CNNs, have been widely applied as aspects of CBVR
methods. 3D CNNs represent the spatial and temporal fea-
tures of videos well compared to 2D CNNs [18]. However,
3D CNNs are inefficient compared to 2D CNNs because
3D CNNs require too much video data and long processing
times for 3D kernel optimization [19]. To overcome these
problems, the recent research has fine-tuned pre-trained 3D
CNNs on large-scale video datasets, resulting in a better 3D
CNNmodel that requires less effort than amodel trained from
scratch [20].

Although the deep learning approach-based CBVR meth-
ods have been studied actively, there are still research prob-
lems to be addressed. In this paper, we tackle the following
four major challenges. The first challenge is the informa-
tion loss problem because of dimension reduction. Many of
CBVR methods applied the dimension reduction to video
data to compress the deep features for low computation
resources. However, the deep feature information would be
lost when trying to reduce the dimensions of these fea-
tures. The second challenge is re-training the classifier when
the database is updated. Many of CBVR methods used the
trained classifiers based on the database videos to predict
the user’s query video category. However, in the real world,
tons of new videos are constantly generated, thus the database
must be updated. Consequently, the classifiers also must be
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re-trained to fit the updated database and this re-training
process requires a lot of time and computing resources. The
third challenge is the novel domain adaption ability to reduce
training cycle, which is a closely related issue with the second
challenge.When the database is updated, there is a possibility
of adding novel categories not just adding videos of existing
categories. As aforementioned, since re-training the classi-
fiers requires a lot of time and resources, if the CBVRmethod
adapts the novel categories and domains without additional
re-training, then we could save a lot of time and resources.
The last challenge is frame sampling problem for effective
video retrieval. Since the lengths of videos are variable and
sometimes very long, the CBVR methods need to sample the
frames of videos. Thus, the performance of CBVR methods
depend on the performance of frame sampling because if we
retrieve relevant frames more than meaningless frames then
they would contain better information of the videos.

To solve the aforementioned four problems, we propose
a CBVR method based on prototypical category approxi-
mation (PCA-CBVR) which calculates category prototypes
of deep features to predict the user’s query video category
efficiently without using any dimension reduction algorithms
and classifiers. After predicting the user’s query video cat-
egory, the proposed PCA-CBVR utilizes a fine searching
step to find videos from the predicted category videos in
database, of which are the most similar to the user’s query
video. Since the PCA-CBVR does not reduce the dimension
of deep features and predicts the user’s query video category
based on similarity measurement without classifiers, it does
not have an information loss problem and need to re-train the
classifiers when the database is updated. Moreover, we apply
fine-tuning with a few-shot learning approach to the PCA-
CBVR and verify that it increases novel domain adaptation
ability through cross-domain evaluation. Finally, we find that
the PCA-CBVR performance depends on the frame sampling
methods. When salient frame sampling method is applied
shows better performance than just simple uniform frame
sampling. Figure 1 and Table 1 present an overview of the
proposed PCA-CBVR method and abbreviations used in this
paper.

This paper is organized as follows. Section II provides a
brief introduction to research related to CBVR methods that
use CNNs and the few-shot learning method. In Section III,
PCA-CBVR is proposed and the details of PCA-CBVR are
explained. Section IV analyzes the proposed PCA-CBVR
performance with the uniform and salient frame sampling
methods and assess the domain adaptation ability based on
several benchmark datasets. Finally, concluding remarks fol-
low in Section V.

II. RELATED WORKS
In this section, we discuss the research related to the
proposed PCA-CBVR. In Section II-A, CBVR research
based on CNNs for retrieval performance improvements
and the unique frame extraction strategy are explained.
In Section II-B, few-shot learning methods are described,

as we fine-tune the CNNs using the few-shot learning
approach for better video retrieval performance on cross-
domain video contents. Table 2 summarizes the character-
istics and differences between related research and the pro-
posed PCA-CBVR.

A. USE OF CNNs FOR CBVR
CNNs are widely used in computer vision tasks, especially
with large-scale image datasets [23] and video datasets
[24], [25]. Given the performance improvements of CNNs on
computer vision tasks, they have been also applied in CBVR
research.

The first approach is to use 2D CNNs to extract the deep
features of videos for CBVR. Yu et al. [15] extracted deep
features using pre-trained 2D CNNs on ImageNet [23] and
quantized the extracted deep features for computational effi-
ciency. They showed that deep features were more efficient
for CBVR compared to other low-level features. Yu et al. [26]
also modified the architecture of 2D CNNs and utilized more
data to improve the performance capabilities of existing 2D
CNNs. Furthermore, they proposed a new feature fusion
method to improve both the performance and robustness.
Suo et al. [27] modified the proposed SimHash [28] algo-
rithm to reduce the dimensions of deep features and increase
the retrieval performance efficiency. Moreover, they calcu-
lated the distance between two deep features of the frames
for precise retrieval. Anuranji and Srimathi [16] proposed
stacked heterogeneous multi-kernel 2D CNNs to capture
complex deep features, also using, bidirectional LSTM to
train the temporal information, with the results of LSTM then
passed to a fully connected layer to obtain the binary hash
code. Abed et al. [12] proposed a new key-frame extraction
method based on 2D CNNs and proved that it was efficient
on CBVR by integrating it into the CBVR system.

The second approach is to use 3D CNNs for CBVR. The
aforementioned studies applied 2D CNNs to video data; how-
ever, videos are a sequence of frames that contain temporal
information. Thus, recent research applied 3DCNNs that rep-
resent video data including temporal information more effi-
ciently. Ullah et al. [17] used a pre-trained C3D model [18]
on the Sports-1M dataset [24] and reduced the dimensional-
ity by means of PCA to generate the hash code. However,
according to work by Hara et al. [19], Kataoka et al. [20],
and Tran et al. [29], working with the Sports-1M dataset is
not easy because it contains more videos than the Kinetics
400 and Kinetics 700 datasets [30], [31], and their annota-
tions are noisier than those of these Kinetics datasets. They
also demonstrated that 3D ResNets (R3D) [32], [33] and
R(2+1)D [29] models could outperform C3D and that a
model pre-trained on the Kinetics 700 dataset was better
than one pre-trained on the Kinetics 400 dataset. Therefore,
we utilize the R3D and R(2+1)D models pre-trained on the
Kinetics 700 dataset to extract the deep features of videos
efficiently.

The aforementioned previous CBVR research attempted to
compress the deep features for low computation resources.
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TABLE 2. Comparison of deep learning-based CBVR methods based on the four research challenges, which are dimension reduction, retraining classifiers,
frame sampling strategy, and cross-domain testing.

However, the deep feature information would be lost when
trying to reduce the dimensions of these features. Therefore,
in this paper we use the proposed category prototypes from
Snell et al. [34], which are the mean values of the deep fea-
tures of videos in the same category without the use of any
dimension reduction algorithm. These category prototypes
help not only to reduce the computation cost but also classify
the query video category without classifiers. More details of
PCA-CBVR are explained in Section III.

B. CROSS-DOMAIN GENERALIZATION WITH
FEW-SHOT LEARNING
To train and optimize the CNNs successfully, a large and
well-labeled training dataset is essential. However, a large
dataset labeled by humans is difficult to obtain, and when
the training dataset is not well-labeled or is insufficiently
labeled, the CNNs are over-fitted relative to the dataset.
To overcome this problem, few-shot learning methods, which
learn from only a few datasets and generalize to different
novel classes, have been proposed. Vinyals et al. [35] pro-
posed a matching network that utilizes a memory and atten-
tion mechanism for rapid learning. They also provided the
mini-ImageNet dataset as a few-shot learning method bench-
mark. Snell et al. [34] proposed a prototypical network that
generates prototypes by calculating the mean of deep features
for each class in support sets and calculating the Euclidean
distance between prototypes and the query data to classify
the query data. Sung et al. [36] proposed a relation network
that applied trainable distance calculation model for further
generalization instead of using a fixed distance calculation
such as the Euclidean distance. Recently, Chen et al. [21] and
Tseng et al. [22] also showed that few-shot learning methods
worked well for cross-domain generalization.

The proposed PCA-CBVR method is motivated by proto-
types from Snell et al. [34]. We consider the database videos
as a support set in the few-shot learning approach to classify
the query video without additional classifiers. Cross-domain
generalization is also important in the CBVR approach in
actual applications because users do not send query videos
which have the identical domain to the database videos.
Therefore, we conduct fine-tuning of the 3D CNN mod-
els on the UCF101 [37] dataset with the few-shot learning
approach and evaluate these outcomes on theActivityNet [39]
dataset (UCF101→ ActivityNet) in an effort to improve the

TABLE 3. Mathematical notations of PCA-CBVR.

cross-domain generalization ability of PCA-CBVR. More
details pertaining to the cross-domain generalization ability
of PCA-CBVR are given in Section IV-D.

III. PCA-CBVR
In this section, we explain the proposed PCA-CBVR method
in more details. The proposed PCA-CBVR method consists
following steps as shown in Figure 1.
• An offline process that calculates and saves the category
prototypes of database videos
1) Sample 16 frames as resized to 112 × 112 from

each database video uniformly.
2) Extract the deep features from the sampled frames

using pre-trained 3D CNNs which exclude the last
fully connected layer.

3) Calculate the category prototypes from the
extracted deep features of the database videos in
each category.

4) Save the category prototypes into a meta-database.
• An online process that retrieves the database video most
similar to the user’s query video

1) Sample 16 frames as resized to 112×112 from the
query video uniformly.

2) Extract the deep features from the sampled frames
using pre-trained 3D CNNs which exclude the last
fully connected layer.

3) Predict the query video category based on cate-
gory prototypes in the meta-database without clas-
sifiers.

4) Finely search for database videos in the predicted
category most similar to the user’s query video.
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FIGURE 2. Examples of query video category prediction without a classifier. The red, orange, and yellow circles are deep features of videos
in the database and the colors represent the categories in the database; i.e., in this example, there are three different categories in the
database, and the red, orange, and yellow categories contain four, five, and three videos, respectively. The circle with the question mark is
a deep feature of the query video. The red, orange, and yellow triangles in (b) and (c) are the centroids of the clusters and the dashed lines
represent each cluster. (a) Standard feature matching to predict the query video category by comparing the deep feature of the query video
with the deep features of every video in the database. (b) Semi-prototype feature matching to predict the query video category by
comparing the deep features of the query video with the deep features of semi-prototypes in the database. The deep features of the
semi-prototypes are calculated according to the centroids of the clusters. In this example, the numbers of clusters for each category,
Kred , Korange, Kyellow , are set to 2, which is in the range of (1, |Vc |). We refer to this as a semi-prototype because there are several deep
features for the one category. (c) Prototype feature matching to predict the query video category by comparing the deep feature of the
query video with the deep features of the prototypes in the database. The deep features of the prototypes are calculated according to the
centroids of clusters and the numbers of clusters for each category, Kred , Korange, Kyellow , are set to 1. We refer to these as prototypes
because there is one deep feature for one category.

There are two main parts of the proposed PCA-CBVR.
The first part is category classification of the user’s query
video, which is done by measuring the similarity between
the category prototypes and the deep features of the query
video. The other part is a fine search based on the query video
category predicted in the first step to obtain the videos most
similar to the query video. In the following subsections, the
details of each step and organized mathematical notations in
Table 3 are explained.

A. USERS’ QUERY VIDEO CATEGORY PREDICTIONS
WITH PROTOTYPES
We still need to re-train the classifier when the database is
updated. For example, if some novel categories of videos are
added to the database, the former trained classifier cannot
then recognize the added categories. Therefore, in this paper,
we use the proposed prototypical category approximation
technique from Snell et al. [34] to classify the query video
without a classifier.

We usually predict the query video category by comparing
the query video with every video in the database, as shown in
Figure 2(a). However, this approach requires a considerable
computation cost, long times, and much memory. Instead,
we utilize the K-means clustering algorithm to reduce deep
feature matching points, as shown in Figures 2 (b) and (c).
For clarification, we redefine the K-means clustering terms
as shown in Table 4.

Equation (1) is a generalized form to predict the query
video category without a classifier, as follows:

cq = category

(
argmax

df c

(
df q · df c

‖df q‖ × ‖df c‖

))
(1)

TABLE 4. Redefined terms depending on the range of the
hyperparameter K of the K-means clustering algorithm, where Kc is the
number of clusters in category c and |Vc | is the number of videos of set
Vc = {v1, . . . , v|Vc |} in specific category c .

where cq is the query video category that we want to predict,
and df q and df c denote the deep features of the query video
and the cluster centroids of the database videos, respectively.
Equation (1) is intended to compare the deep features of the
query video and the cluster centroids in the database based
on the cosine similarity measurement and then predict the
query video category as the category of the most similar
cluster centroid with the greatest degree of cosine similarity.
In contrast to Snell et al. [34], we employ cosine similarity in
Equation (1) to increase the performance. The performance
comparison between using Euclidean distance and cosine
similarity is presented in Section IV-G and Table 8. If the
number of clusters in each category is set to 1, then it is
the proposed PCA-CBVR and there is no need to apply the
K-means clustering algorithm because the deep features of
each category, df c, are calculated as follows:

df c =

∑
v∈Vc df v
|Vc|

(2)

In this equation, df v represents the deep feature of v, which is
a video from set Vc = {v1, . . . , v|Vc|} in category c, and |Vc|
is the number of videos that correspond to category c.
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FIGURE 3. The process of the PCA-CBVR method. The squares, circles, and
triangles indicate the raw videos, deep features of the videos, and the
category prototypes, respectively. In this example, there are three
categories, shown in red, orange, and yellow, and the user’s query video
category is red. First, PCA-CBVR extracts the deep features of database
videos and calculates the prototypes of each category. Then, it calculates
the cosine similarities between the deep features of the user’s query
video and those of each prototype and predicts the user’s query video
category as the prototype category which has the highest degree of
cosine similarity. Finally, PCA-CBVR undertakes fine searching to retrieve
the most similar video from the database of videos in the predicted
category. During the fine search process, it calculates the cosine
similarities between the deep features of the database videos in the
predicted category and the user’s query video and retrieves the top K
most similar video with the top K highest degree of cosine similarity.
In this example, K is set to 2.

B. FINE SEARCHING ON THE SELECTED
EMBEDDING SPACE
In section III-A, we predict a query video’s category effi-
ciently using the aforementioned prototypes. After predict-
ing the query video’s category, it then becomes necessary
to retrieve the video most similar to the user’s query video
among the database videos in the predicted category. There-
fore, the second step of PCA-CBVR is a fine search, which
proceeds as follows:

vr = video

argtopK
df cq

(
df q · df cq

‖df q‖ × ‖df cq‖

) (3)

where vr is the retrieved video, argtopK returns the arguments
which have top K rank, and df q and df cq are the deep features
of the query video and database videos in the predicted query
video’s category, respectively. Equation (3) is used to com-
pare the deep features of the query video and database videos
in the predicted query video’s category based on the cosine
similarity measurement and to retrieve the video most similar
to the query video. Figure 3 explains the overall process of
PCA-CBVR, including the category prediction of the user’s
query video and the fine search process to retrieve the most
similar video.

FIGURE 4. The summarized 3D CNN architecture information which is
used in this paper. Input size has five dimensions which are (batch size ×
channel size × sequence size × height × width). The R3D and R(2+1)D
with 18 and 34 layers are composed of basic blocks, and ones with
50 layers are composed of bottleneck blocks. To extract deep features,
we exclude the last fully connected layer, thus the output shape of deep
features is (batch size × 512) for 3D CNNs with 18 and 34 layers and
(batch size × 2048) for 3D CNNs with 50 layers, respectively.

IV. EXPERIMENTS AND RESULTS
In this section, we verify the performance outcomes of the
proposed PCA-CBVR in different situations. First, we eval-
uated the proposed PCA-CBVR performance based on dif-
ferent combinations of 3D CNNs and depths to determine
the best feature extractor. Then, we verified that the pro-
posed PCA-CBVR with the selected feature extractor 3D
CNN outperforms other video retrieval methods on certain
datasets. Second, we conducted experiments to demonstrate
the domain adaptation ability of the proposed PCA-CBVR by
fine-tuning based on the few-shot learning approach. Third,
we showed the benefit of fine searching compared to random
selection to return the best recommending results. Fourth,
we applied different frame sampling approaches to the pro-
posed PCA-CBVR, specifically uniform frame sampling and
salient frame sampling based on the prototypes, and showed
that the salient frame sampling approach based on the pro-
totypes outperforms the uniform sampling approach. Fifth,
we showed that cosine similarity boosts PCA-CBVR perfor-
mance compared to Euclidean distance. Finally, we analyzed
video retrieval time to discuss the computational complexity
of PCA-CBVR.

Figure 4 shows summarized 3D CNNs architecture which
was applied in the experiments along with the number of
layers and the input size used in this paper. In the experiments,
each category was clustered as one cluster. It means that
videos in the same category have the same category prototype
which is a mean vector of video features of that category.
Moreover, we provide the codes used in this paper, which are
available onGitHub.1 Details of the datasets, the performance

1https://github.com/titania7777/PCA-CBVR
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FIGURE 5. Accuracy and mAP results of PCA-CBVR on the (a) UCF101, (b) HMDB51, and (c) ActivityNet datasets depending on the 3D CNN feature
extractors, which are R3D and R(2+1)D models with different depths. We applied 3D CNNs that were pre-trained on kinetics 700 without any fine-tuning.

evaluation metrics, and the experimental results are explained
in the following subsections.

A. DATASETS
We used the UCF101 [37], HMDB51 [38], and Activi-
tyNet [39] datasets, which are representative video datasets
widely used in human activity analyses. The UCF101
dataset is a trimmed dataset with 13,320 YouTube videos
in 101 action categories, and the numbers of videos for
training and testing are 9,537 and 3,738, respectively. The
HMDB51 dataset is also a trimmed dataset with 6,766 videos
from YouTube, movies, and web in 51 action categories,
and the numbers of videos for training, validation and test-
ing are 3,570, 1,666 and 1,530, respectively. On the other
hand, ActivityNet is an untrimmed dataset with 19,994 web
videos in 200 action categories, and the numbers of videos
for training, validation and testing are 10,024, 4,926 and
5,044, respectively. The above three datasets help to con-
firm retrieval performances on each trimmed and untrimmed
video, and (trimmed → untrimmed) videos cross-domain
adaptation ability. We consider the training data and test data
in the UCF101 and HMDB51 datasets as the database videos
and the query videos in the video retrieval task, respectively.
The ActivityNet dataset does not provide true labels for test
data; thus, we consider the validation data as query videos
in the video retrieval task. For video data preprocessing,
we applied uniform frame sampling to sample 16 frames in
each video and resized the sampled frames to 112× 112.

B. EVALUATION METRICS
To evaluate the video retrieval performance, we used the
top1 and top5 accuracy and mAP for information retrieval as

evaluation metrics. The accuracy metric is used here because
the PCA-CBVR performance depends on the query video
category prediction ability. ThemAP for information retrieval
is different from that for classification. We used Equation (4)
to measure the mAP in the information retrieval context.

mAP =

∑Q
q=1AP (q)

Q
(4)

where AP is the average precision function and Q is the
number of queries. AP is defined as follows:

AP =

∑n
k=1 (P (k)× rel (k))

number of relevant videos
(5)

where P is the precision function that returns the cut-off k
precision, rel is a masking function that returns 1 if the video
at k is relevant or 0 otherwise, and n is the number of retrieved
videos. In the PCA-CBVR method, the AP result would be
1 or 0; therefore, the mAP of PCA-CBVR is identical to the
top1 accuracy.

C. PERFORMANCE ANALYSIS DEPENDING ON FEATURE
EXTRACTORS USING DIFFERENT COMBINATIONS
OF 3D CNNs AND DEPTHS
To select the best 3D CNN feature extractor, we evaluated
the PCA-CBVRperformancewith different feature extractors
which were R3D and R(2+1)D models pre-trained on the
Kinetics 700 dataset with different depths. Figure 5 shows
the PCA-CBVR results with the different combinations of
feature extractors. As shown in Figure 5, when we applied the
R3D model as a feature extractor, it outperformed compared
to when we applied the R(2+1)D model, and the deeper
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FIGURE 6. The five retrieval video results of PCA-CBVR on each of ten example user query
videos from the UCF101 dataset. The blue boxes (left side) are the user query videos, the
green boxes are successful retrieval results, and the red boxes are failed retrieval result. The
PCA-CBVR results depend on the classification performance; thus, if PCA-CBVR fails to find
the user’s query video category, it would then retrieve incorrect videos.

networks showed better performance as well. The best perfor-
mance overall was achieved when we applied R3D50 (R3D
model with 50 depth layers) as a feature extractor. The over-
all performance of PCA-CBVR on the ActivityNet dataset
was not as good compared to the outcomes on the UCF101
and HMDB51 datasets, because the ActivityNet dataset is
an untrimmed dataset, on the other hand, the UCF101 and
HMDB51 datasets are trimmed datasets. In other words, the
ActivityNet dataset has much noisier frames which are not
closely related to the video context compared to the UCF101
and HMDB51 datasets.

TABLE 5. The mAP comparison results of PCA-CBVR with the R3D50
feature extractor without any fine-tuning and state-of-the-art CBVR
methods.

Table 5 shows the mAP results of the proposed
PCA-CBVR with the R3D50 feature extractor, which shows
the best performance as shown in Figure 5, and other
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TABLE 6. The PCA-CBVR results, which are mAP (top5 accuracy), from the cross-domain (trained on UCF101 and evaluated on ActivityNet) evaluation
depending on the number of fine-tuned residual blocks with specific models and learning algorithms. The red and blue values indicate the best mAP and
top5 accuracy for each model, respectively.

video retrieval methods on different datasets. As shown in
Table 5, the PCA-CBVR without any fine-tuning showed a
poorer mAP outcome on the trimmed datasets compared to
Ullah et al. [17] and showed a better mAP outcome on the
untrimmed dataset compared to Anuranji and Srimathi [16].
In general, users not only send trimmed videos but also send
untrimmed videos as query videos; thus, good performance
on an untrimmed dataset such as ActivityNet is an the impor-
tant point in video retrieval tasks, and the proposed PCA-
CBVR showed better performance on an untrimmed dataset.
Moreover, when we fine-tuned R3D50 and R(2+1)D50
on the UCF101 dataset and applied the fine-tuned feature
extractor to the proposed PCA-CBVR, the corresponding
mAP results on the UCF101 dataset were 0.86 and 0.89,
respectively, outcomes higher than those in Ullah et al. [17].
Thus, if we fine-tuned the 3D CNN feature extractor on the
particular dataset and apply it to a video retrieval task on a
dataset in the same domain, the retrieval performance would
increase. However, the user’s query does not always involve
the same domain as the database videos. Accordingly, eval-
uation results from the same domain have less meaning than
the video retrieval performance in different domain videos.
To solve the cross-domain problem, we conducted more
experiments with fine-tuning based on the few-shot learning
approach. These results are discussed in Section IV-D.

Another possible reason why the proposed PCA-CBVR
without fine-tuning showed poorer mAP results on trimmed
datasets compared to Ullah et al. [17] is that Ullah et al.
used a novel deep feature selection mechanism to choose the
valuable features or frames. On the other hand, we applied
simple uniform frame sampling in this experiment. Thus, we

conducted more experiments to increase the performance of
PCA-CBVRby applying the salient frame sampling approach
instead of uniform frame sampling. These results are dis-
cussed in Section IV-F.

Figure 6 shows examples of the success and failure of
PCA-CBVR on the UCF101 dataset with ten different query
videos. The PCA-CBVR approach retrieved videos similar
to the user’s query video successfully at a rate of 80%.
As shown in Figure 6, failures, i.e., the Haircut and Tennis
Swing query videos, occurred when the query video and
the retrieved videos have similar backgrounds or activity
levels, as the proposed PCA-CBVR classifies the user’s query
video category only based on the generalized deep features
of the videos. These outcomes verify that the proposed PCA-
CBVR is easily governed by salient frames or by its video
representation ability. Therefore, we applied the salient frame
sampling approach and discuss the results in Section IV-F,
as mentioned earlier.

D. CROSS-DOMAIN EVALUATION FOR THE PCA-CBVR
DOMAIN ADAPTATION ABILITY
The domain of the user’s query video is not always iden-
tical to that of the database videos. Therefore, we need to
solve the cross-domain problem in the video retrieval task by
increasing the domain adaptation ability of CBVR methods.
In the proposed PCA-CBVR method, we fine-tuned a few
3D CNN feature extractors based on the few-shot learn-
ing approach, as the fine-tuning based on few-shot learning
is more appropriate to resolve the cross-domain problem
compared to that based on categorical learning. We con-
ducted fine-tuning based on categorical learning and few-shot
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FIGURE 7. Video retrieval results of the fine search and random selection. Three
example queries (Mixing, Shaving, Writing) and five retrieval results from the UCF101
dataset are shown. The blue boxes (left side) are the user’s query videos, the green
boxes are the fine search retrieval results, and the red boxes are the random
selection retrieval results. Fine searching catches more semantic information
successfully than the random selection method.

learning on all models up to 100 epochs and 3000 episodes,
respectively. Also, we utilized the stochastic gradient
descent (SGD) optimizer and the cross-entropy loss func-
tion in the training phase; the learning rate, momentum, and
weight decay were 1e-3, 0.9, and 1e-3 for categorical learning
and 1e-4, 0.9, and 1e-3 for few-shot learning respectively.

To produce the cross-domain problem in the video retrieval
task, we assumed that untrimmed dataset was the user’s
query videos and that the trimmed small-size dataset as the
database, meaning that the user’s query videos have a differ-
ent domain from the database videos and that the database
videos are not sufficient to train the model. To investigate
the video retrieval performance in the cross-domain problem,
we fine-tuned the model on the UCF101 dataset, which was
considered as containing small-sized database videos, and
evaluated it on the ActivityNet dataset, which was consid-
ered as containing untrimmed user’s query videos. We used
64 batch sizes for the categorical learning algorithm and a
5-way 1-shot, 5-way 5-shot, and 5-way 10-shot scenarios
for the few-shot learning algorithm. For few-shot learning,
we used the prototypical few-shot learning algorithm pro-
posed by Snell et al. [34]. Despite the fact that the categor-
ical and few-shot training strategies are different, we still
assign certain constraints to the few-shot learning strategies.
In summary, fine-tuning based on categorical learning used
9,537 videos in 101 categories, and fine-tuning based on

few-shot learning used 9,283 videos in 71 categories for
training. The remaining videos in 30 categories can never be
used with fine-tuning based on few-shot learning.

Table 6 shows the PCA-CBVR results (mAP and top5
accuracy) on the cross-domain task, referring to the training
of the models on the UCF101 dataset and their evaluation
on a different dataset, the ActivityNet dataset in this case.
We fine-tuned each model based on the categorical learning
and few-shot learning approaches to show that the few-shot
learning approach outperforms on the domain adaptation
task. We trained different numbers of residual blocks of
R3D and R(2+1)D from the bottom of the model to verify
how many blocks must be fine-tuned for the best domain
adaptation ability. As shown in Table 6, the few-shot learning
approach showed better performance than the categorical
learning approach, and when we fine-tuned more blocks,
the performance increased. In this cross-domain experi-
ment, the overall best performance was achieved when we
applied the R(2+1)D50model with fine-tuning of four blocks
with the few-shot learning approach using the 5-way 1-shot
scenario.

E. RANDOM SELECTION VS. FINE SEARCHING
After the proposed PCA-CBVR predicts the user’s query
video category, there is one remained step in the video
retrieval task; to return the video most similar to the user’s
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TABLE 7. The PCA-CBVR performance comparison results between
uniform and salient frame sampling, which are mAP (top5 accuracy)
outcomes. The red and blue values indicate the best mAP and top5
accuracy outcomes for each model, respectively. For this, we applied 3D
CNN models that were pre-trained on kinetics 700 without any
fine-tuning.

query video from the predicted category database videos.
There are two possible ways to do this: random selection and
fine searching. Random selection retrieves random videos
from the predicted category database videos; however, even if
they are the videos from the same category, the detailed con-
text of each video can differ. For example, videos in the bas-
ketball category are taken from different places, i.e., a street,
an indoor court, and an outdoor court. Thus, to retrieve the
videomost similar to the user’s query video, random selection
from the predicted category is not feasible.

To retrieve the video most similar to the user’s query
video more accurately, we apply a fine searching step after
category prediction by PCA-CBVR, with a fine search also
done based on the deep features calculated from PCA-CBVR.
Figure 7 shows typical results of video retrieval based on
random selection and fine searching. As shown in Figure 7,
fine searching retrieved a video more similar to the user’s
query video compared to random selection by considering
the detailed semantic information. For example, when the
user’s query video category was predicted as ‘‘Mixing,’’ the
fine searching approach retrieved videos in the same con-
text, including those with the mixing ingredients, the mixing
bowl, and the whisk. On the other hand, the random selec-
tion approach retrieved videos from the same category, but
they were different in terms of the detailed context, such
as different mixing ingredients with different cooking tools.
Another example is the ‘‘Shaving’’ video. The fine searching
approach was able to retrieve videos from the same context,
showing a man shaving while using shaving cream. On the
other hand, the retrieved videos when using the random selec-
tion approach included different context videos, in this case
showing a man using an electric razor. The last example is the
‘‘Writing’’ video. In this example, the fine search approach

TABLE 8. The PCA-CBVR performance comparison results between
Euclidean distance and cosine similarity metric, which are mAP (top5
accuracy) outcomes. The red and blue values indicate the best mAP and
top5 accuracy outcomes for each model, respectively. For this,
we applied 3D CNN models that were pre-trained on kinetics
700 without any fine-tuning.

retrieved videos in the same context, in which a person writes
on a whiteboard. On the other hand, the videos retrieved
by the random selection method included those in different
contexts, where a person was writing on a blackboard.

F. UNIFORM FRAME SAMPLING VS. SALIENT
FRAME SAMPLING
The proposed PCA-CBVR method utilizes prototypes to
predict the user’s query video category, and the prototypes
are generalized features of videos’ deep features devised by
taking the correspondingmean values. Thus, if there aremany
outliers in the deep features, this will affect the representation
ability of the prototypes for the category. This problem is
moderated by the frame sampling method.

To determine the capabilities of the frame sampling
method, we conducted experiments to compare the uni-
form frame sampling with salient frame sampling [40].
Yoon et al. [40] proposed the salient frame sampling method;
the proposed salient frame sampling method eliminated
meaningless and outlier frames from the video by using the
mean of all deep features of the frames in the video. Table 7
shows the mAP and top5 accuracy results when applying
uniform frame sampling and salient frame sampling to the
proposed PCA-CBVR. As shown in this Table 7, the salient
frame sampling method [40] shows better results than uni-
form frame sampling in most cases.

G. EUCLIDEAN DISTANCE VS. COSINE SIMILARITY
To calculate the ranking score, we can consider two simple
metrics which are Euclidean distance and cosine similarity.
To decide which metric is better, we conducted experiments
to compare the PCA-CBVR performance based on Euclidean
distance and cosine similarity and Table 8 shows the compari-
son results. As shown in Table 8, cosine similarity helps boost
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FIGURE 8. Video retrieval time results on UCF101 depending on the
number of queries. We excluded additional processes like video load,
deep feature extract, and feature load, to analyze pure PCA-CBVR
computational cost.

up PCA-CBVR performance compared to Euclidean distance
in most case. This means the similarity factor is more appro-
priate in the proposed PCA-CBVR than the distance factor,
thus we applied the cosine similarity instead of Euclidean
distance.

H. RETRIEVAL TIME ANALYSIS DEPENDING ON THE
NUMBER OF QUERIES
In this subsection, we discuss the proposed PCA-CBVR
retrieval time. In these experiments, we excluded irrelevant
components to know pure PCA-CBVR performance, such as
video load, deep feature extract time, and feature load time.
We only included subsections III-A and III-B processing
time. We used Intel Xeon Silver 4215R 3.2GHz CPU, Sam-
sung (16GB × 3) 2,666MHz RAM and Samsung 870 EVO
2TB SSD for experiments. According to Figure 8, the pro-
posed PCA-CBVR computation time is almost linear with
a 1/6230 slope depending on the number of queries. More-
over, for the video retrieval process, we utilized a 2k byte
(32 bits × 512) array for 18 and 34 layers 3D CNN models
output and an 8k byte (32 bits× 2048) array for 50 layers 3D
CNN models output per each video retrieval in theoretically.

V. CONCLUSION
This paper proposed what is termed the PCA-CBVR method
to retrieve videos most similar to users’ query videos based
on the videos’ contexts without any additional information
such as tags, among other types. The proposed PCA-CBVR
method consists of two main steps: category prediction of the
user’s query video and fine searching to retrieve the video
most similar to each user’s query video. To reduce the com-
putational cost while maintaining meaningful information of
the videos for the user query video category prediction step,
the PCA-CBVR calculates prototypes of the deep features
for each category instead of using a dimension reduction
strategy or generating binary hash codes as in previous CBVR
research. Video category prediction of the user’s query based
on the prototypes was efficient because there is no need
to train the classifier, even when the database is updated.
The experimental results here showed that the proposed
PCA-CBVR performed better with an untrimmed dataset

compared to the outcome state-of-the-art CBVR research,
with fine searching based on deep features retrieving the
videos most similar to the user’s query video by consid-
ering the detailed context information. Moreover, to solve
the cross-domain problem associated with the CBVR task,
we fine-tuned the 3DCNN feature extractor based on the few-
shot learning approach, and the PCA-CBVR with fine-tuned
feature extractors showed better domain adaptation ability.
To improve the performance of the PCA-CBVR, we also
applied salient frame sampling to PCA-CBVR instead of uni-
form frame sampling. As a result, the mAP and top5 accuracy
rates were improved. As a future work, we would improve the
proposed PCA-CBVR by analyzing 3D CNNs architecture
and prototypes property using explainable AI (XAI) tech-
niques and also by utilizing concatenated low level features
such as color and texture from frames [41] and trajectory
features [10], [42]. Moreover, we would apply the proposed
PCA-CBVR to augmented reality (AR) and virtual real-
ity (VR) applications to recommend the proper videos to add
and edit the contents based on the user’s current situation in
real-time.
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