
Received February 11, 2022, accepted March 12, 2022, date of publication March 16, 2022, date of current version March 24, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3160198

Balanced Computing Offloading for Selfish IoT
Devices in Fog Computing
SUN YU-JIE , WANG HUI , AND ZHANG CHENG-XIANG
School of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321000, China

Corresponding author: Wang Hui (hwang@zjnu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 62171413.

ABSTRACT Fog computing, which provides low-latency computing services at the network edge, is an
enabler for the emerging Internet of Things (IoT) systems. Offloading tasks to the fog that is closer to IoT
users for processing has become a means to ensure that tasks are completed quickly. Fog computing cannot
only reduce the congestion of the backbone network but also ensure that the task is completed within the
specified time. Since fog resources are limited, there will be resource competition among IoT devices. How
to quickly and efficiently make an optimal computation offloading decision for individual selfish IoT devices
is a fundamental research issue. This article regards the process of multiple IoT devices competing for fog
devices as a game and proposes a distributed computation offloading algorithm. The goal is to optimize the
balance of computation delay, energy consumption, and cost for fog nodes. The competition between IoT
nodes eventually reaches an equilibrium point, that is the Nash equilibrium point. We prove the existence of
Nash equilibrium by Weighted Potential Game. In addition, if a large number of IoT devices select the same
node for offloading, which will cause the fog node to run out of power and make some networks unable
to work normally. Further, causing part of the network to be paralyzed. Therefore, the paper considers the
fairness of offloading to extend the network life cycle. A calculation rate adjustment algorithm is designed
for the fairness of offloading to ensure that fog nodes do not run out of power and fail. This paper not only
fully considers the performance of the IoT device, but also considers the fairness of the fog. Numerous
experiments proved the effectiveness of the proposed algorithm.

INDEX TERMS Internet of Things, fog computing, computation offloading, Nash equilibrium.

I. INTRODUCTION
International Data Corporation (IDC) predicts that the
number of sensors connected to the network will increase
to 30 billion, and the number of connected devices will
increase from 50 billion to 1 trillion by 2022. All these
devices are connected to the network and construct the
Internet of Things (IoT) systems [1]. As the increasing num-
ber of computation-intensive applications (e.g., augmented
reality and face recognition) appears, higher requirements
of computing power are placed on IoT devices. The IoT
devices with limited memory and computing power cannot
handle computation-intensive applications effectively. How
to deal with the data generated by a large number of devices
has become a problem. It is inefficient to offload tasks
to the cloud data center because this will cause network
bandwidth overhead, as much of the data can be filtered
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due to high redundancy. Besides, the long distance between
the IoT devices and the cloud data center also lead to
unacceptable task processing delay, huge transmission energy
consumption, poor support to mobility, and problems of
security[2]–[5]. Therefore, fog computing is proposed. Fog
servers are a cloud of servers close to the ground or the
edge. Cisco proposed the concept of fog computing, which
introduced fog as a cloud near the ground or edge [6], [7].
Not only can fog computing handle low-latency tasks but
also effectively reduce network congestion [8], [9]. As a
supplement to cloud computing, fog computing extends the
functions of cloud computing to the edge[10]. Fog computing
consists of a large number of geographically distributed fog
servers. Compared with the cloud, the computing power and
storage capacity of fog nodes are very limited[11], [12].
Therefore, how to effectively distribute fog resources is a
very important but problematic issue [13]. There is currently
no uniform method. Some researchers adopt a centralized
resource allocation method and can get a better allocation
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method. Nevertheless, selfish IoT users are interested in
optimizing their quality of experience (QoE) individually.
They may not follow the strategies that aim to optimize
the overall system performance. This will inevitably cause
competition between IoT devices. So this paper we design
a distributed computation offloading method for delay-
sensitive tasks. This article regards IoT device competition
with fog resources as a game. This article regards the
competition of IoT devices with fog resources as a game.
Each device makes the most beneficial computing offloading
decision based on the choices of other devices. And prove
that this game will eventually reach a Nash equilibrium
point. Task offloading schemes focusing on minimizing the
computation delay or total energy consumption in existing
literature may lead to extremely heavy burdens on the fog
nodes that are close to the fog nodes or have high processing
capabilities, which will result in the death of some important
fog nodes and even serious network problems. A large
number of IoT devices select the same node for offloading,
which will cause the fog node to run out of power and make
some networks unable to work normally. So we design a
computation rate adjustment(CRD) algorithm to reduce the
unfairness of offloading. The contributions of this paper can
be summarized as follows.
• This paper solves a multi-objective optimization prob-
lem which concludes the task processing delay, energy
consumption, and the cost of offloading.

• This article regards the competition of IoT devices
with fog resources as a game. Each IoT device tries
to minimize its objective function. And prove that
this game will eventually reach a Nash equilibrium
point by Weighted Potential Game [14]. Based on the
game, this paper design offloading algorithm(DTO)
and ε Distributed task offloading algorithm(ε-DTO). ε
Distributed task offloading algorithm convergence speed
is fast, but the optimization effect is reduced.

• To prevent the failure of fog nodes and affect the
operation of the network. And fairness is important
for extending the network lifetime [16], [28]. The
computational offloading in this paper takes into account
the fairness of offloading. This paper proposed a
computation rate adjustment(CRD) algorithm to reduce
the unfairness of offloading.

II. RELATED WORKS
In this section, we survey the existing literature on com-
putation offloading. Offloading is not a trivial issue in fog
computing. A large body of recent research worked on
addressing the challenges in offloading. The four offload
methods were proposed in [15]. 1) Local Mobile Execution,
2) D2D Offloaded Execution, 3) Direct Fog Offloaded
Execution, 4) D2D-Assisted Fog Offloaded Execution. This
article mainly considers two offloading methods 1 and 3.
In [16], the tasks are divided into three categories:
1) hard-deadline-based tasks 2) soft-deadline-based tasks and
3) no-deadline-based tasks. In this paper, we mainly focus on

hard-deadline-based tasks. Hard-deadline-based tasks mean
that if the processing time of tasks exceeds the deadline,
it is failed. It is also called a delay-sensitive task. In this
paper, we mainly focus on latency-sensitive tasks. From the
algorithm point of view, the current articles are divided into
two categories. One is the approximate algorithm and the
other is the meta-heuristic algorithm.

In [17] The Gale-Shapley (GS) algorithm is applied to
reach a stable matching to achieve many-to-many computa-
tion offloading. However, this algorithm needs a central node
to collect all information from edge nodes to make a decision.
Once the central node collapses, the algorithm will collapse.
Artificial Neural Networks (ANN) were used to predict the
offloading time and find the optimal device to offload in [18].
The fog server sends the trained model to the edge node. This
paper does not take into account the size of the ANN model
and it mainly optimizes the calculation delay. In [19], The
interior point method is used to optimize the task calculation
delay and calculation energy consumption at the same time
to obtain the optimal offloading power and the appropriate
offloading task size. This article only considers a single fog
node and does not consider the case of multiple fog nodes.

In addition to the myopia algorithm proposed in the above
article, a large number of articles use heuristic algorithms for
computational offloading. In [20], two nature-inspired meta-
heuristic schedulers, namely ant colony optimization (ACO)
and particle swarm optimization (PSO) are used to propose
two different scheduling algorithms to make an optimal
decision. In [21], it transforms the non-convex problem into
a convex one to minimize energy consumption under the
latency constraint and finite MEC computation capacity. and
apply convex optimization to solve it. It assumes that the
equipment is non-selfish and will follow the overall goal
of minimizing the decision. However, in most cases, the
equipment is selfish and only considers the maximization of
its interests. In [22], this work first investigates aMEC system
consisting of mobile devices and heterogeneous edge servers
that support various radio access technologies. An optimal
offloading node selection strategy is formulated as a Markov
decision process (MDP) and solved by employing the
value iteration algorithm (VIA). However, this article only
focuses on time. In [23], it formulates the problem into
a multiobjective model with two scheduling objectives,
involving deployment cost and service latency. multi-replicas
Pareto ant colony optimization (MRPACO) is proposed
to solve the offloading problem. The weighted total cost
combines delay and energy consumption is taken as the
optimization goal. First, a reinforcement learning algorithm
Q-learning based on theMarkov decision process is proposed
to solve the problem for minimizing weighted total cost [24].

From a structural point of view, the current computing
offloading methods are divided into two types, one is a
centralized algorithm, the other is a distributed algorithm.
The centralized algorithm can get better optimization results,
but the algorithm complexity is high and the number of
communications is large. Such as [17], [18], [21] is a
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centralized algorithm. In [25], [26], [29], they proposed
the distributed computation offloading algorithm. And they
proved the Nash equilibrium through the potential game or
weighted potential game. The goal of optimization is not
considered comprehensive. At the same time, the problem
of offloading balance is not considered. This article also
considers the task processing delay, energy consumption, and
the price of the fog node. At the same time, the offloading
balance is considered based on the idea of maximizing the
network life cycle. In [30], these two articles talked about
the fairness of offloading, which can delay the network life
cycle. Their focus is on maximizing the network life cycle.
In [31]–[33], they apply a drift-plus-penalty based Lyapunov
optimization approach to efficient provision of both job
assignment and resource allocation. These articles also use
distributed algorithms but consider long-term performance.

It can be seen that most of the papers mentioned above
only consider time delay, energy consumption, or the cost
of using fog nodes. This paper considers the task processing
delay, calculation energy consumption, and the calculation
cost of the fog node. This article formulate the computation
offloading as a distributed game to minimize the combination
of latency, or energy consumption and offloading cost.
In addition, the fairness of offloading is also considered,
which is of great significance for maximizing the network life
cycle.

The remainder of this article is organized as follows. In
Section III, we introduce the system model. In section VI,
we formulate the computation offloading as a distributed
game. Distributed task offloading algorithm(DTO) and ε

Distributed task offloading are proposed to solve the offload-
ing question. computation rate adjustment(CRD) algorithm
is proposed to ensure fairness between fog nodes. In section
V, we evaluate the performance of the proposed algorithm.
Finally, we conclude in section VI.

III. SYSTEM MODEL
We consider an IoT system with a hierarchical computing
structure and a set of IoT devices. This article divides the
tasks of IoT devices into two types: delay-sensitive and delay-
insensitive. This article focusesmore on delay-sensitive tasks.
The system model consists of three layers, the IoT layer,
the fog layer, and the cloud layer, as shown in FIGURE 1.
For convenience, the main notations used are summarized in
Table 1.

A. HIERARCHICAL STRUCTURE
Denote the set of N IoT devices and the set of M fog nodes
by N = {1,2,. . . . . . ,N} andM = {1,2,. . . . . . ,M}, respectively.
IoT devices can process tasks locally or offload to the second-
tier fog node and the third-tier cloud data center. If the task
is delay-insensitive, we can offload it to a cloud data center.
Tasks are processed in the cloud data center higher than the
fog nodes. Cloud data centers cannot meet the needs of delay-
sensitive tasks. So we offload the delay-sensitive tasks to fog
nodes. We use two items to describe the computation task of

TABLE 1. Major notations.

FIGURE 1. System model.

IoT device n (n ∈ N ), Tn = {Ln,Cn}, where Ln represents
the length of Tn and Cn represents the processing density (in
CPU cycles/bit) of Tn. Define the association vector of IoT
device n as an = {an,0, an,1, . . . . . . , an,M }, where an,x ∈
{0, 1}, x ∈ {0}

⋃
M , with

∑
x∈{0}

⋃
M an,x = 1. an denotes

offloading decision. If an,x is 1, the task is processed in
device x. an,0 means the task is processed locally. We further
define A = {aT1 , a

T
2 , . . . , a

T
n }

T . A includes the decision
of all IoT devices. Since fog nodes are heterogeneous, not
all fog nodes can be used to process tasks. Define another
vector bn = {bn,1, bn, 2 . . . . . . , bn,M}. bn represents the
connectivity between IoT device n and fog nodes. If bn,i is 1,
IoT device n can offload tasks to fog i.

B. TASK PROCESSED LOCALLY
if an,0 = 1, we processed the task locally. Let f Ln denotes the
processing capability (i.e., the amount of CPU frequency in
CPU cycles/s) at IoT device n. The power consumption for
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FIGURE 2. Communication between fog and IoT layer.

IoT device n is expressed as follows [26]–[28]:

pLn = kL
(
f Ln
)3

(1)

where kL is a coefficient related to the power of IoT device n.
The time for local processing in IoT device n as follows:

tLn =
LnCn
f Ln

(2)

Accordingly, the energy consumption of IoT device n for
local processing is expressed as:

ELn = pLn t
L
n = kLLnCn

(
f Ln
)2

(3)

C. TASK OFFLOADED TO FOG
As shown in Figure 2, the IoT device can offload tasks to
the fog nodes in the area. There is more than one such fog
node, how should we choose. When

∑
x∈M an,x = 1, the

task is offloaded to fog. We assume the task is offloaded
to fog m. The offloaded time of the task includes two-part,
one is the transmission time and another is processing time.
In this article, we do not consider the time of data return, the
processing result is generally very small. Accordingly, when
transmitting task Tn, the transmission time is expressed as:

t trn =
Ln
Rmn

(4)

where Rmn represents the transmission rate between IoT user
n and fog m [24], [25]. Let pn denotes the transmission
power. And the energy consumption for transmitting task is
expressed as:

E trn = pnt trn =
pnLn
Rmn

(5)

Let fm denotes the processing capability of fog node m. The
fog node will evenly allocate CPU resources for each task.
The execution time of tmn is expressed as:

tmn =
LnCn

∑N
i=1 ai,m
fm

(6)

Offloading tasks to the fog node can save energy, but because
the operation and calculation of the fog node require costs,
the fog node will charge a certain amount of waste from the
IoT device. To motivate more IoT devices to offload tasks,

we define the cost of processing a bit in fog node m is
expressed as:

c = Ln

(
αm − βm

N∑
i=1

ai,m

)
(7)

αm and βm is set by fog node m. αm represents the cost for
processing one bit. βm is the discount coefficient.

D. PROBLEM STATEMENT
Due to the selfish nature of the device, each devicemaximizes
its interests as much as possible.We define the utility function
of IoT device n as:

Un(an,A−n) = an,0 ∗ (λEELn + λ
T tLn )

+

M∑
m=1

an,m(λEE trn + λ
T (t trn + t

m
n )+ λ

Cc)

(8)

where A−n is decision of all IoT devices except n. The goal
of the target IoT device is expressed as:

min
an

Un(an,A−n) (9a)

s.t.
∑

m∈{0}
⋃
M

an,m = 1 (9b)

an,m ≤ bn,m ∀m ∈ M (9c)
an,m ∈ {0, 1} ∀m ∈ M (9d)

(9a) ensures that the task can only be offloaded to at most one
fog node. (9b) indicates that the selected fog node should be
connected to the IoT device.

IV. COMPUTATION OFFLOADING
We formally define game G = {N ,A,U}. which consists of
three parts:
• N is the set of players and N represents IoT devices in
this article

• A is the set of decision space of all IoT devices.
• U is the set of the utility of all players, Un is the utility
of IoT device n.

Each IoT device will maximize its interests according to (9),
which will eventually reach a Nash Equilibrium. A−n denotes
the offloading decisions for all IoT devices except n.
Definition 1 (Nash Equilibrium): For gameG,we callA∗ =(
a∗1, a

∗

2, . . . . . . , a
∗
n
)
Nash Equilibrium if and only if no IoT

devices can further improve its utility by changing its decision
at the equilibrium point A∗.

un(a∗n,A
∗
−n) ≤ un(an,A

∗
−n) ∀an ∈ A ∀n ∈ N (10)

A. NASH EQUILIBRIUM EXISTENCE
Definition 2 (Weighted Potential Game): Define a W =

(w1,w2, . . . . . . ,wn) denotes a vector of positive numbers.
A game is called a weighted potential game if it admits a w-
potential function P such that for every player n ∈ N and
offloading vectors an, a′n ∈ A

Un(an,A−n)− Un(a′n,A−n)

= wn(P(an,A−n)− P(a′n,A−n)) (11)
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The user scheduling game G possesses at least one NE when
game G is a weighted potential game. Since the weighted
potential game has the finite improvement property (FIP) that
any better response updating process must be finite and lead
to aNash Equilibrium. Sowefirst proveG is a potential game.

Un(an,A−n)

= an,0 ∗ (λEELn + λ
T tLn )

+

M∑
m=1

an,m(λEE trn + λ
T (t trn + t

m
n )+ λ

Cc)

= an,0 ∗ (λEkLLnCn
(
f Ln
)2
+ λT

LnCn
f Ln

)

+

M∑
m=1

an,m(λT (
Ln
Rmn
+
LnCn

∑N
i=1 ai,m
fm

)

+λE
pnLn
Rmn
+ λcLn

(
αm − βm

N∑
i=1

ai,m

)
) (12)

Un(an,A−n)− Un(a′n,A−n)

= (an,0 − an,0′)(λEkLLnCn(
f Ln
)2
+ λT

LnCn
f Ln

)+
M∑
m=1

(an,m − an,m′)(λT (
Ln
Rmn

+
LnCn

∑N
i=1 ai,m
fm

)+ λE
pnLn
Rmn

+λcLn

(
αm − βm

N∑
i=1

ai,m

)
) (13)

We first define the functionQ(A) as the weighted aggregate
utility of all users

Q(an,A−n) =
N∑
n=1

1
λT

Un(an,A−n) (14)

We further define the function Q(A)′as the weighted aggre-
gate utility of all users if each user is alone in the game

Q(an,A−n)′ =
N∑
n=1

1
λT

Un(an, 0) (15)

0 represents no other players. We define a function P (A).

P(an,A−n) =
Q(an,A−n)+ Q(an,A−n)′

2
(16)

We use the function defined in (16) and wn = 1
λT

, the proof
process is expressed as follows.

P(an,A−n)− P(an′,A−n)

=
Q(an,A−n)− Q(a′n,A−n)

2

+
Q(an,A−n)′ − Q(a′n,A−n)

′

2
=

N∑
n=1

1
2λT

(Un(an,A−n)

−Un(a′n,A−n))+
N∑
n=1

1
2λT

(Un(an, 0)− Un(a′n, 0))

=
1
λT

(an,0 − an,0′)(λEkLLnCn
(
f Ln
)2
+ λT

LnCn
f Ln

)

+

M∑
m=1

1
λT

(an,m − an,m′)(λT (
Ln
Rmn
+
LnCn
fm

)+ λE
pnLn
Rmn

+λc(Ln(αm − βm)))

+

N∑
k=1,k 6=n

M∑
m=1

1
2
(αn,m − αn,m′)αk,m

LnCn
fm

+

N∑
k=1,k 6=n

M∑
m=1

1
2
αk,m

′(αn,m − αn,m′)
LnCn
fm

−

N∑
k=1,k 6=n

M∑
m=1

λc

2λT
(αn,m − αn,m′)αk,mβm

−

N∑
k=1,k 6=n

M∑
m=1

λc

2λT
αk,m

′(αn,m − αn,m′)βm

=
1
λT

(an,0 − an,0′)(λEkLLnCn

×

(
f Ln
)2
+ λT

LnCn
f Ln

)+
M∑
m=1

(an,m − an,m′)(λT (
Ln
Rmn

+
LnCn

∑N
i=1 ai,m
fm

)+ λE
pnLn
Rmn

+λcLn

(
αm − βm

N∑
i=1

ai,m

)
)

=
1
λT

(Un(an,A−n))− Un(an′,A−n))

In conclusion, the user scheduling game G is a weighted
potential game with the potential function as given in (16).
There exists at least one NE point. At the Nash Equilibrium
point, no IoT user would change its decision thus no update
message would be broadcasted.

B. DISTRIBUTED ALGORITHM FOR TASK OFFLOADING
The centralized algorithms are generally time-complex and
require a management center to supervise them. Once the
central server crashes, the entire program will not run. So this
article uses a distributed task offloading method. So this
article uses a distributed task offloading method. Algorithm
pseudo-code shows in Algorithm 1. From algorithm 1, we can
get the time complexity of the algorithm is proportional to
the number of competing IoT devices. And we prove the
offloading game G is a weighted potential game. FIP is a
feature of the potential function. FIP shows that the algorithm
can reach a Nash equilibrium in a finite number of steps [25],
[26], [29]. Therefore, our algorithm has a time complexity of
O(SN ). S represents the number of steps the IoT device takes
to reach the Nash equilibrium.

If we know a better decision A at the beginning of
the algorithm, the convergence speed of the algorithm will
increase a lot. We can use UCB, Thompson sampling, and
othermethods to determine the initial decision. In some cases,
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Algorithm 1: Distributed Task Offloading Algorithm
Input: Information about fog nodes(ie:fn)
Output: Offloading decisions of all IoT devices
Initialize an = (1, 0, . . . . . . , 0) for all IoT devices;
A = (a1, a2, . . . . . . , an);
while A is not changed do

All IoT device parallel compute the best decision
according(9); a∗n = argminan Un (an,A−n);
Compete for the decision updating opportunity;
if win the competition opportunity then

an = a∗n;
broadcast update message;

else
an keeps unchanged;

we can appropriately reduce the performance in exchange for
the algorithm to converge quickly. Sowe can useAlgorithm 2.
ε means acceptable utility loss. ε is customized by the user.
Algorithm 1 may get better Utility, but Algorithm 2 can
get faster convergence speed. We can choose an algorithm
according to the actual situation.

Algorithm 2: ε Distributed Task Offloading Algorithm
Input: Information about fog nodes(ie:fn)
Output: Offloading decisions of all IoT devices
Initialize an for all IoT devices according to Thompson
sampling;
A = (a1, a2, . . . . . . , an);
while A is not changed do

All IoT device will parallel compute the best
decision according(9);
a∗n = argminan Un (an,A−n);
if Un(an,A−n)− Un(a′n,A−n) > ε then

Compete for the decision updating opportunity;

if win the competition opportunity then
an = a∗n;
broadcast update message;

else
an keeps unchanged;

C. FAIRNESS BETWEEN FOG NODES
If most IoT devices in the network select the same fog
node for computing offloading, the energy of the fog node
will be exhausted quickly. And node failure can sometimes
cause partial paralysis of the network, so based on this,
we consider the balance of offloading. We will offload tasks
to nodes with sufficient power as much as possible. But it
is more complicated for IoT devices to monitor the power
of fog devices. So we let the fog nodes check their battery
periodically and adjust the processing rate. See Algorithm 3
for a specific method. The cycle time can be set by the fog

Algorithm 3: Calculation Rate Adjustment

a =total battery;
for End of a cycle do

b =remaining battery;
if Electricity is less than 50 percent then

fn = b
a fn

else
fn keeps unchanged;

providers. The degree of imbalance shows the imbalance
among the fog nodes and is expressed as follows [20]:

DI =
argmaxm

∑N
i=1 ai,mLn − argminm

∑N
i=1 ai,mLn∑N

i=1 Ln
m

(17)

Formula (18) can only reflect the difference between the node
with the largest processing capacity and the node with the
smallest processing capacity, but it cannot reflect the status
of all nodes. So we define the standard deviation of the load
imbalance.

V =

√∑M
m=1(

∑N
i=1 Lnai,m −

∑N
i=1 Ln
m )2

M
(18)

The larger the DI and V, the more unfair of offloading.
Otherwise, the offloading algorithm has good fairness.
In some scenarios, some nodes will be more important.
So that we can adjust the 50 percent in Algorithm 3.

V. PERFORMANCE EVALUATION
We set up 3 fog nodes and 20 IoT devices in the experiment.
The processing density of the fog node is evenly distributed
in [100000, 200000], and the processing density of the IoT
device is evenly distributed in [10000, 20000]. Length of
tasks generated by IoT devices ln and cn are distributed
in [1000, 2000][24]–[26]. Set λT , λE ,and λC to 0.4, 0.2,
0.2 respectively. λT , λE ,and λC can be set according to the
actual situation. If we pay more attention to processing time,
we can set λT larger. But we have to make sure that λT +
λE+λC = 1. The transmission power of the IoT device is set
to 0.02. Assume that the transmission rate between all nodes
is the same, which is 100. ε is evenly distributed in [0, 1]. ε
can be adjusted according to your needs. ε is usually not very
large and a large value will result in low utility. The software
environment we utilize is Python 3.7 on windows.

See from FIGURE 3, We compare the proposed algorithm
with LCO(Local computation Only) and RCO(Random
computation offload) algorithms, and the DTO algorithm
can achieve the smallest cost. Followed by the ε-DTO
algorithm. Although the ε-DTO algorithm does not achieve
the smallest utility, its convergence speed is faster than the
DTO algorithm. The LRO algorithm, because it chooses to
process locally every time, so the processing speed remains
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FIGURE 3. Average utility in different iterations.

FIGURE 4. Average processing time in different iterations.

unchanged. The randomness of the RCO algorithm is too
large, and occasionally it can achieve good results, but it is
unstable.

FIGURE 4 shows the processing time of different iter-
ations. We can see that the average task processing time
is the same as the overall utility trend in FIGURE 3.
Because the RCO algorithm selects the node to offload
randomly, the effect is very unstable. The two algorithms
we proposed can achieve an almost similar effect. In terms
of processing time alone, our proposed algorithm is also
superior to other algorithms. FIGURE 5 shows the average
energy consumption in different iterations. We can see from
FIGURE 5 that our proposed algorithm is superior to other
algorithms. ε-DTO converges faster but doesn’t get better
energy consumption. DTO converges slower but the effect
is better. In different situations, we can choose different
algorithms.

FIGURE 6 shows the average utility value under different
numbers of IoT devices. Run 1000 rounds for each number
of nodes to average the utility value. As the number of IoT
increases, the utility will increase due to the heavier load
of the fog node. Overall showing an upward trend. When
the number of IoT is small, RCO can achieve better results.
However, once the number of IoT devices increases, the RCO

FIGURE 5. Average energy consumption in different iterations.

FIGURE 6. Average utility with different IoT numbers.

FIGURE 7. DI with different IoT numbers.

algorithm may cause multiple IoT devices to compete for
the same fog node, increasing the utility function. And our
proposed algorithm is more stable and will not lead to a high
failure rate.

DI reflects the difference between the node with the largest
processing capacity and the node with the smallest processing
capacity. FIGURE 7 shows DI in different IoT numbers.
Since the LCO algorithm always chooses local processing,
the value of DI is always 0. It can be seen that the DI with
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FIGURE 8. V with different IoT numbers.

a large DTO is higher than the LCO and RCO. This shows
that although the DTO algorithm reduces utility, it makes
the network unfair, which leads to premature failure of
some nodes. To solve this problem, we propose the CRD
algorithm, the combination of DTO and CRD algorithm,
which effectively reduces the DI and improves the fairness
of the algorithm.
V reflect the status of all node. It can be seen from FIGURE

8 that the V of RCO is the smallest. This is because when
there are enough tasks, the RCO algorithm selects each node
more averagely. The RCO algorithm is fair in the long run, but
does not achieve good performance. Compared with the other
algorithm, the algorithm combining DTO and CRD greatly
increases fairness while ensuring the consistency of utility.

VI. CONCLUSION
This article takes the process of IoT device competition
for fog nodes as a game. And uses the finite improvement
property of the Weighted Potential Game to prove the Nash
equilibrium. And this article considers offloading fairness,
which can delay the life cycle of the network, and will not
allow a single fog node to process too many tasks and run
out of energy. Based on the game, this paper design Dis-
tributed task offloading algorithm(DTO) and ε Distributed
task offloading algorithm(ε-DTO). The computation rate
adjustment(CRD) algorithm further improves the balance
of offloading. The experiment proves that the proposed
Distributed task offloading algorithm can get the best utility.
ε Distributed task offloading can get a good utility and better
convergence speed. And DTO combines with CRD greatly
improves the fairness of the original algorithm.

We can consider more detailed information(channel selec-
tion, power control, etc) to minimize utility in future work.
We can use methods such as deep learning[34], [35] to
determine a better initial offload decision.We can also offload
tasks to multiple fog nodes for parallel processing. This
involves the issue of offloading orders. Andwe can study how
to put services in the right place to minimize the objective
function[23], [36], [37].
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