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ABSTRACT Building change detection is a primary task in the application of remote sensing images,
especially in city land resource management and urbanization process assesment. Due to the rich textural
features of remote sensing images and the multiscale characteristics of buildings, it is still a huge challenge
to effectively filter out irrelevant change information (e.g., roads) and fuse multiscale building features.
To date, deep learning-basedmethods have demonstrated powerful capabilities in this field. To fill these gaps,
this study proposes a multiscale supervised fusion network (MSF-Net), which is an attention mechanism-
based approach for building change detection using bi-temporal high-resolution satellite imagery. Especially,
we built a dual-context fusion module to obtain abundant global context information of buildings and
suppressing irrelevant features. We also used channel attention mechanism, selective kernel convolution
and multiscale supervision module to fuse multiscale feature of buildings. The ablation experiments verified
the availability of these modules. The MSF-Net model has been tested on the LEVIR-CD building change
detection dataset. Compared with other state-of-the-art change detection methods, the study showed that
our method obtained 0.8866 and 0.8130 in F1-score and Intersection over Union (IOU), respectively. The
results indicate that the MSF-Net method has stronger multiscale building feature extraction capability and
suppression ability of irrelevant features, which could produce clearer building boundaries andmore accurate
building change maps.

INDEX TERMS Remote sensing, building change detection, deep learning, attention mechanism, multiscale
feature.

I. INTRODUCTION
Building change detection is a task that makes use of satellite-
based remote sensing images of the same area in different
periods, to identify the generation or disappearance of
building objects. SinceWeismiller proposed the image differ-
ence method for coastal zone environmental monitoring [1],
remote sensing change detection has been developed for more
than forty years and has been playing an important role in
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land surveys [2], [3], natural environment monitoring [4], [5],
disaster assessment [6] and urban research [7], [8]. High-
resolution remote sensing images have become an important
data source for change detection, due to their rich ground
object texture features and ground object multiscale features.
Meanwhile, how to fuse multiscale features of ground objects
and remove irrelevant ground objects change information are
huge challenges.

There are two main branches of change detection:
traditional methods and deep learning-based methods [9].
Traditional change detection methods can be divided into

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30925

https://orcid.org/0000-0002-5631-1997
https://orcid.org/0000-0001-8987-7930
https://orcid.org/0000-0003-2380-3722
https://orcid.org/0000-0002-2559-0241


J. Chen et al.: MSF-Net: Multiscale Supervised Fusion Network for Building Change Detection

three classes: methods based on image arithmetic, meth-
ods based on image transformations and methods based
on post-classification. Image arithmetic methods include
image difference [10], image ratio [11], Change Vector
Analysis (CVA) [12], [13], among others. These methods
obtain a feature map by subtraction or division, and
then determine a segmentation threshold to generate the
change map. They ignore the context information and cause
a lot of salt-and-pepper noise [14]. Methods based on
image transformation include Principal Component Analysis
(PCA) [15], Multivariate Alteration Detection (MAD) [16],
Iteratively Reweighted Multivariate Alteration Detection
(IRMAD) [17], Kernel Slow Feature Analysis (KSFA) [18],
etc. They transform the image into a specific feature space,
highlight the changed area and suppress the unchanged
area. However, it is a hard process to choose the most
appropriate method for different area. The post-classification
change detection method, classify the ground objects of
the images firstly, then generates the change maps by
comparative analysis of these images. The change detection
accuracy depends on the classification accuracy, and the
classification process requires manual labeling of samples.
With the continuous launching of high resolution optical
remote sensing satellites (WorldView-3, GF-2), the accuracy
of remote sensing images is increasing, the huge amount
of data and the fine and complex texture features in high-
resolution images bring new challenges to traditional change
detection [19]–[21].

Due to the excellent processing capability of big data,
deep learning [22], [23] is becoming more widely applied
in remote sensing [24]–[26], and achieved excellent results
in change detection [27]–[32]. Daudt et al. proposed
Fully Convolutional Early Fusion (FC-EF) [33] based
Fully Convolutional Networks (FCN) [34], Peng et al.
proposed Unet++ Multiple Side-Outputs Fusion network
(Unet++_MSOF) [35] based on Unet++ [36], [37]. They
combine two single-temporal images with channel number
C into 2C data in channel-wise, then input the data
into the network to identify the changed areas. They
did not extract the depth feature of the single temporal
image, limit the change detection accuracy. To solve
this problem, Zhan et al. used a deep Siamese con-
volutional network to detect changes in optical aerial
images [38], the network simultaneously extracts the feature
information of two images, generates the distance map,
and finally obtains the change map through threshold
segmentation, which achieved good results. Daudt et al.
first proposed end-to-end fully convolutional Siamese net-
works for change detection, named Fully Convolutional
Siamese-Concatenation (FC-Siam-conc) and Fully Convolu-
tional Siamese-Difference (FC-Siam-diff) [33]. Thereafter,
dual-task constrained deep Siamese convolutional network
(DTCDSCN) [39], pyramid feature-based attention-guided
Siamese network (PGA-SiamNet) [40], Siamese NestedUNet
Networks [41], NestNet [20] and others have been proposed,
improve the accuracy of change detection.

Building change detection need filter irrelevant changes,
the network should pay attention to building information
and suppresses other information. The wide application
of attention mechanism [42]–[45] in deep neural network
(DNN) [46]–[50] brings further inspiration. Chen et al.
built a dual attentive fully convolutional Siamese networks
(DASNet) [14], DASNet uses the dual-attention mecha-
nism to reconstruct the features of two single temporal
images separately, it can obtain long-range dependencies and
more differential feature representations. Jiang proposed an
attention-guided Siamese network (PGA-SiamNet) based on
a pyramidal structure [40], it captures possible variations
using a convolutional neural network in the pyramid. The
global co-attentive mechanism was introduced to emphasize
the importance of correlations between input feature pairs.
Zhang et al. proposed deeply supervised image fusion net-
work (DSIFN) [19], introduced a spatial attention mechanism
(SAM) [51] and a channel attention mechanism (CAM) [52]
in the network. The attention module fuse the depth
original image features with the image difference features,
effectively improved the accuracy of the change map. The
deeply supervised attention metric-based network (DSAM-
Net) [53] and attention-based deeply supervised network
(ADS-Net) [54], introduced the convolutional block attention
module (CBAM) [55], [56] for feature reconstruction of scale
information, also achieved good results.

Remote sensing images have multiscale features, to fuse
them effectively, multiscale fusion module is carried out in
the change detection network. PSPNet-CONC [57] intro-
duces the Pyramid Scene Parsing (PSP) module [58] for
multiscale feature extraction. Unet++_MSOF and NestNet
perform multiscale feature fusion based on the dense skip
module of the Unet++ network, they also introduce a multi-
output fusion strategy at the output module to improve
the detection accuracy. ADS-Net fuses the scale features
corresponding to other branches in the decoding module,
calculates the F1-score of each scale output, and performs
the weighted fusion of change maps based on the F1-score,
to further improve the accuracy of building change detection.
Fang et al [59] proposed SNUNet-CD, which improved the
UNet++ network structure by fusing its four outputs. It can
generate a change map with multiscale information through
the Ensemble Channel Attention Module (ECAM) attention
module in the output stage of the network.

Taking the LEVIR-CD dataset [60] as an example,
the state-of-the-art network achieves a maximum of 88%
and 79% in F1-score and IOU, and there is still some
space for improvement. In order to better fuse multiscale
feature of buildings and remove irrelevant ground objects
change information, we proposed MSF-Net: A building
change detection network based on attention mechanism.
We enhance the building feature extraction capability and
filter out irrelevant information by introducing multiple
attention mechanisms, it can make MSF-Net focus on the
building information. To enhance the multiscale feature
fusion capability, we introduced multiscale fusion module
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andmultiscale supervisionmodule. Thesemodules alsomake
the detected building boundaries more complete. We used the
LEVIR-CD building change detection dataset to verify the
accuracy of our model.

II. MATERIALS AND METHODS
A. NETWORK STRUCTURE
TheMSF-Net model consists of encoding module (Fig. 1(a)),
decoding module and output module (Fig. 2). Specifically,
in the encoding module, five different scales of building
information are extracted from bi-temporal remote sensing
images simultaneously. Then, the extracted feature informa-
tion of five different scales are sent to five dual-context fusion
module respectively, to obtain the image difference feature
map. Finally, the image difference feature map is sent to the
decoding module to extract the building change information.
The decoding module reconstructs the feature maps by fusing
multiscale features through the channel attention mechanism,
then generates four building change feature output maps with
the same size but different scale information. In the output
module, the four building change feature output maps are
merged using the channel attention mechanism, to obtain the
final building change map of the network, while a multiscale
supervision strategy is added in the output module to improve
the accuracy of building change detection.

1) ENCODING MODULE
The encoding module is composed of Siamese network
with shared weights, each branch of which has five layers
of encoding blocks (Fig. 1(a)). Encode1 includes two
3 × 3 convolutional layers, while encode2 is composed
of a 2 × 2 max pooling downsampling layer and two
3 × 3 convolutional layers. To enhance the extraction ability
of deep building features, encode3-5 are all composed of a
2 × 2 max pooling downsampling layer and three 3 × 3
convolutional layers. In the five layers of encoding blocks,
the BatchNorm regularization and ReLU activation functions
are added after each convolution operation. It is worth noting
that most state-of-the-art network direct uses a difference
operation or channel series operation to fuse bi-temporal
images. However, MSF-Net inputs the bi-temporal feature
map into dual-context fusion module for bi-temporal images
fusion, to focus on the characteristic information of buildings,
as shown in Fig. 1(b). Specifically, in the dual-context fusion
module, two context modules extract the global building
context information and local building context information
of the single-phase image respectively, as shown in Fig. 1(c).
Then the global and local building context information are
sent to the two channel attention mechanism respectively,
to obtain the important features of buildings on the channel
dimension. Finally, the difference operation is performed,
to obtain the difference feature map of buildings in the
bi-temporal images, and reduce the difficulty of feature
extraction of changing buildings in the decoding module.

In Fig. 1, (a) represents the basic structure of encoding
module, Dual-context Fusion1 - 5 represents dual-context
fusion module as shown in (b). Each dual-context fusion
module is composed of the context module (c) and feature
fusion module, feature fusion module is composed of two
CAM modules. The CAM module in (c) is shown in Fig. 3.
Scale1 - 5 represents five different scales of output.

2) DECODING MODULE
The decoding module of MSF-Net consists of four branches,
each of which has a different number of decoding layers
according to the different input feature scales (Fig. 2). Except
for the last layer of decoding, the feature map size is
restored through the upsampling module after each decoding
layer. The features corresponding to the same scale in the
encoding module are fused through the channel attention
mechanism, to recover the original edge feature information
of the building. After decoding at the last layer, the selective
kernel convolution mechanism [61] is used for the final
feature extraction of changed buildings, and the network
learns the appropriate convolutional kernel size by itself
to enhance the feature extraction effect of different scales.
In the decoding module, each decoding layer is composed
of a 3 × 3 convolution and the BatchNorm regularization
and ReLU activation functions. Each upsampling module
consists of bilinear interpolation and 1 × 1 convolution.
The channel attention mechanism module is shown in
Fig. 3; the selective kernel convolution module is shown
in Fig. 4.

In Fig. 2, Scale1-5 are the five different scales of
encoding output, the blue arrow represents the decoding
layer of the network. CAM represents the channel attention
mechanism (Fig. 3), SK represents the selective kernel
convolution (Fig. 4).

3) OUTPUT MODULE
A multi-output fusion module is designed in MSF-Net,
as shown at the bottom of Fig. 2. After the SK decoding
layer of each branch, the building change map of each branch
is obtained through 1 × 1 convolution layer. To integrate
the building change characteristics of each branch, MSF-
Net performs a BatchNorm regularization operation on the
outputs of the four branches. Then, the four outputs are
combined into multiscale feature maps according to the
channel. Finally, the building change results with different
scales are given different weights through the channel
attention module, and the final building change map of
the network is generated through 3 × 3 convolution. The
BatchNorm regularization operation is added after the branch
output, to reduce the over-fitting phenomenon caused by
continuous convolution in the output module. In the network
output module, a multi-output supervision strategy is added
to calculate the loss of four branch outputs and final outputs
with different weights, to improve the multiscale building
detection capability of the network.
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FIGURE 1. Diagram of Encode Module. (a) basic structure of encoding module, (b) dual-context fusion module, (c) context
module.

B. DUAL-CONTEXT FUSION MODULE
The dual-context fusion module consists of two parts,
context module and feature fusion module. The context
module consists of a local context information branch and

two global context information branches. The local context
information branch retains original information. In the two
global context information branches, firstly, the 1× 1 feature
map is obtained by global max pooling and global average
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FIGURE 2. Diagram of decode module.

pooling respectively. After 1 × 1 convolution, BatchNorm
regularization operation and ReLU activation function, it is
passed into the bilinear interpolation upsampling module,
to recover the feature map with the same size as the input
feature size. Finally, the concatenation operation is used
to merge the information of the three branches according
to the channel, and then through 1 × 1 convolution,

BatchNorm regularization operation and ReLU activation
function, a single temporal image feature map with context
information is generated. The feature fusion module is
composed of two channel attention mechanism. The bi-
temporal images feature maps processed by the context
module are passed into the two channel attention mechanism
branches, and after obtaining important information on each
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FIGURE 3. Flowchart of channel attention mechanism.

temporal image channel dimension, the difference operation
is performed to obtain the bi-temporal images building
difference feature maps.

C. CHANNEL ATTENTION MECHANISM
A multiscale feature fusion on the channel dimension intro-
duces some unnecessary features, which adds difficulty to the
extraction of changing buildings. To make the network focus
on important channel information and suppress unimportant
channel information, MSF-Net introduces a channel attention
mechanism. The process of the whole channel attention
mechanism is shown in Fig. 3. First, the feature map of size
(H × W × C) is changed into a global feature vector of
size (1 × 1 × C) using the global average pooling operation
(H denotes the height of the feature map,W denotes the width
of the feature map, and C denotes the number of feature
map channels), and then two two-dimensional convolution
operations are performed on the global feature vector to
make it have nonlinear features. The size of the convolution
kernel for both convolution operations is 1 × 1, and the
number of convolution kernels is C/r and C, respectively
(r denotes the scaling ratio, and r is 16 in the dual-context
and decoding module, and r is 2 in the output fusion module).
The results after the second convolution are passed through
the Sigmoid activation function to obtain the weight coeffi-
cients of different channels, which are multiplied with the
original feature map to obtain the feature map with channel
attention.

D. SELECTIVE KERNEL CONVOLUTION
In a standard convolutional network, the receptive field size
(convolutional kernel size) of each layer of the network
neurons is the same. However, inMSF-Net, the four decoding
branches have different scales of changing buildings. Tomake
each branch find the perceptual field size suitable for
the given scale, MSF-Net introduces a selective kernel
convolution module after the last decoding layer, which can
adjust the convolutional kernel size adaptively to improve
the ability of building change detection. The flow of the
convolutional kernel selection module is shown in Fig. 4.
First, the input feature map is convolved through three
convolutional branches to generate three scales of feature

maps, each convolutional branch consists of two-dimensional
convolution, BatchNorm regularization, and ReLU activation
function. To reduce the number of parameters, the 5 × 5
convolution is replaced with the dilated convolution with a
3 × 3 kernel and dilation size 2, while 7 × 7 convolution is
replaced with the dilated convolution with a 3× 3 kernel and
dilation size 3. After that, the three scales of the feature maps
are summed up to obtain the multiscale feature map with
three scales of information. Next, the global average pooling
operation is performed on the multiscale feature map to
obtain the channel-wise feature vectors, and then the feature
vectors are squeezed using a two-dimensional convolution
operation with a convolution kernel size of 1 × 1, the
squeezed feature vectors are then subjected to three separate
feature excitation operations using a 1 × 1 convolution
operation, and finally the channel weight coefficients of each
branch are obtained by the Softmax activation function. The
weighting coefficients of the three branches are multiplied
with the corresponding three scale feature maps to obtain
the weighted three-branch feature maps. Then add the three-
branch weighted feature maps to generate the output feature
maps of each decoding branch of MSF-Net.

In Fig. 4, gp represents global average pooling operation,
fc1 and fc2 represents fully connected operations with
convolution kernel of 1 × 1, sm represents the softmax
activation function.

E. LOSS FUNCTION
Loss function is an important component of DNN. In the
remote sensing building change detection task, only a
small portion of buildings usually change, which creates a
problem of extreme imbalance between positive and negative
samples. In order to overcome the negative impact of sample
imbalance on detection accuracy, two loss functions (Binary
Cross Entropy Loss and Dice Loss) were selected for loss
calculation in this paper. The effectiveness of this combi-
nation has been demonstrated in the literature [19], [20].
For our multi-output network structure, we define a new
loss function calculation formula. First, we calculate the
loss of each output (Out1-4 and Final Out), and then sum
them according to different weights to get the final loss.
Finally the back propagation [62]–[64] is applied to optimize
the model parameters. The total loss function is defined
as follows:

L =
5∑
i=1

ωi L ibranch+Lfinal_out (1)

where ωi represents the loss weight of ith branch output, after
many experiments, we assigned five weights as (0.5, 0.5,
0.75, 0.75, 1). L ibranch and Lfinal_out represents the output loss
and final output loss of each branch respectively. Each branch
is composed of Binary Cross Entropy Loss and Dice Loss,
as shown in Equation (2):

L ibranch = L ibce+L
i
dice (2)
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FIGURE 4. Flowchart of selective kernel convolution.

1) BINARY CROSS ENTROPY LOSS
Due to the superiority of Binary Cross Entropy Loss in
handling unbalanced classification samples, we use it as part
of the loss function, which is calculated as:

Lbce = −
1
N

N∑
n=1

[yn log σ (xn)+ (1− yn) log(1− σ (xn))]

(3)

where N represents the total number of pixels, yn represents
the true value of pixel point N (0 or 1, 0 represents unchanged
pixel and 1 represents changed pixel), σ represents the
sigmoid activation function, xn represents the predicted value
of pixel point N .

2) DICE LOSS
Dice Loss can improve segmentation performance and
weaken the effect of class imbalance problems. It canmeasure
the similarity between the forecast map and the real value on
the ground, and when combined with the binary cross entropy
Loss, can improve the stability of training losses. Dice Loss
is calculated as follows:

Ldice = 1−
2 · Y · softmax(X )
Y + softmax(X )

(4)

where Y denotes the true value and X denotes the predicted
value.

III. EXPERIMENTS
A. DATASETS AND PREPROCESSING
To verify the availability of the proposed network, we used
the LEVIR-CD building change detection dataset to compare
it with the other state-of-the-art networks. The dataset
consists of 637 pairs of high-resolution remote sensing
images with a size of 1024 × 1024 pixels and a resolution of
0.5m/pixel. It covers various types of architectural changes,
such as villas and large garages, taken at different times
from 2002 to 2018 in Texas, USA. To reduce the pressure
on the GPU memory, we clip the dataset into 256 × 256
image pairs, and used the same method as the original paper
to segment the data sets, generating a total of 7120 pairs

of training data sets, 1024 pairs of validation data sets, and
2048 pairs of test data sets. To prevent over-fitting in the train
process and enhance the robustness of the network, a random
data enhancement was carried out on the training set during
training.

B. PARAMETER SETTING
MSF-Net is built with the Pytorch library and the program-
ming environment is PyCharm. The training period is set to
150 epochs in the training process, the batch size is 10, and
the initial learning rate is 0.001. The learning rate is adjusted
using the equal-interval adjustment strategy (StepLR), which
is reduced to half of the original rate every 10 epochs of
iteration. The experiments were run on a workstation with
AMDRyzen 9 5950X 16-Core (3.4GHz, 128RAM) CPU and
Nvidia GeForce RTX 3090 (24GB) GPU.

C. EVALUATION METRIC
The accuracy of the model was evaluated using Precision (P),
Recall (R), F1-score (F1), and IOU. Precision reflects the
precision of the model to detect change pixels, the higher the
Precision, the higher the correct rate of change pixels detected
by the model. Recall reflects the check-all rate of the model,
the higher Recall, the more change pixels the model detects.
F1-score takes both indicators into account, so a higher F1-
score indicates a better model. IOU indicates the overlap
rate between the change map and the ground truth, a higher
IOU means a better detection for the model. The metrics are
calculated as shown below:

P =
TP

TP+ FP
(5)

R =
TP

TP+ FN
(6)

F1 =
2P× R
P+ R

(7)

IOU =
TP

TP+ FP+ FN
(8)

where TP represents the number of pixels that have changed
and are predicted to change, TN represents the number of
pixels that have not changed and are predicted not changed,
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FIGURE 5. Test results of MSF-Net in three scenes.

FP represents the number of pixels that have not changed
but are predicted to change, and FN represents the number
of pixels that have changed but are predicted to remain
unchanged.

D. COMPARISON METHODS
We selected the classical change detection networks and the
state-of-the-art network to conduct a comparative test on the
proposed MSF-Net.

(1) Unet++_MSOF: the Unet++ model is improved by
adding amultiple side-outputs fusionmodule to improve
the accuracy of change detection.

(2) Siam-conc: Combining the Unet++ network with the
Siamese structure, the bi-temporal images are processed
using concatenation operations in the encoding stage and
then fed into the decoder for feature extraction.

(3) Siam-diff: Proposed at the same time as Siam-conc,
it differs from it by using a difference operation to

process the bi-temporal images in the encoding stage and
then feeding it to the decoder for feature extraction.

(4) Siam-conc-diff: Proposed simultaneously with the first
two networks, the difference with them is that the bi-
temporal images and their differences are concatenated
before being fed into the decoder for feature extraction.

(5) STA-Net: A Siamese network based on the spatial-
temporal attention neural network, introducing a basic
spatial–temporal attention module and a pyramid
spatial–temporal attention module, it can captures long-
range spatial–temporal dependencies and learns multi-
scale feature information through the pyramid structure.

(6) SNUNet-CD: Based on Siamese UNet++, an Ensemble
Channel AttentionModule (ECAM) is added to combine
multi-branch outputs into one output, and the ECAM
module can refine the most representative features at
different semantic levels to improve detection accuracy.

(7) NestNet: Using absolute different operation to process
bi-temporal remote sensing images at each scale, the
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FIGURE 6. Comparison of building change detection with different networks for scene (a) in Fig. 5.

dense skip connections module is redesigned based
on the Unet++ model to learn multiscale feature
information.

E. COMPARISON OF EXPERIMENTAL RESULTS
We selected three scenes to test the accuracy of the MSF-Net,
and the test results are shown in Fig. 5.

The experimental result shows that MSF-Net get bet-
ter performance in detecting building boundary integrity,
as shown in scene (a). Scene (b) shows MSF-Net can
avoid false detection caused by light and other factors,
filter out irrelevant information. Scene (c) shows MSF-Net
can accurately distinguish buildings from roads and identify
changes in small buildings. It also shows that MSF-Net can
detect different scale building changes.

To further verify the effectiveness of the MSF-Net pro-
posed in this paper, we conducted comparison experiments
between the above seven methods and our proposed method

on the LEVIR-CD building change detection dataset, and
analyzed the effectiveness of the proposed network in the
detection of building changes in high-resolution remote
sensing images in both qualitative and quantitative aspects.
The results of the qualitative analysis of the comparison
experiments for the scenes in the three dashed boxes in
Fig. 5 are shown in Fig. 6-8, and the results of the quantitative
analysis are shown in Table 1.

Table 1 shows MSF-Net performs better than the other
state-of-the-art networks. Although Recall is 2.82% less
than for STA-Net, Precision, F1-score and IOU are 7.1%,
1.34% and 3.84% higher than it. Compared to other networks
with the best results Siam-conc-diff, Precision, Recall, F1-
score, and IOU are 0.39%, 2.84%, 2.34%, and 2.50% higher,
respectively. F1-score and IOU of MSF-Net are 3.37% and
4.29% higher than those of Unet++_MSOF, indicating that
early fusion affects the extraction of deep features of build-
ings and reduces the accuracy of building change detection.
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FIGURE 7. Comparison of building change detection with different networks for scene (b) in Fig. 5.

TABLE 1. Experimental results on the LEVIR-CD building change detection
dataset.

The comparison between Siam-conc, Siam-diff, Siam-conc-
diff and MSF-Net shows that the dual-context fusion module
can accurately obtain the global building context information
in the encoding stage, and avoid the influence of factors
such as light on building feature extraction. For STA-Net, the
spatial–temporal attention module was added to emphasize

the characteristics of changed areas. Although the Recall of
the model was greatly improved, the Precision of the change
pixels of buildings was reduced. The comparison between
SNUNet-CD and NestNet and MSF-Net shows that multi-
output fusion helps the model detect multiscale changed
architectural features and improve detection Precision.

MSF-Net has improved the boundary detection capability
due to the fusion of multiscale raw features, and detected
clear and more complete boundaries of changing buildings
(Fig. 6). The Siam-conc-diff encoding module concatenates
bi-temporal features and their differences feature maps,
NestNet uses absolute different operation to process bi-
temporal images, and both have achieved good results.
Unet++_MSOF lost the original feature information due to
the use of early fusion, the encoding modules of Siam-conc,
Siam-diff, STA-Net and SNUNet-CD lost a lot of original
information due to simple bi-temporal image concatenating
and difference operations, resulting in poorer change building
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FIGURE 8. Comparison of building change detection with different networks for scene (c) in Fig. 5.

detection. It illustrates that MSF-Net improves the drawback
of fuzzy building boundaries extracted by state-of-the-art
networks.

MSF-Net has shown excellent ability in filtering irrelevant
change information. In Fig. 7, the buildings in the two periods
images did not change, although the colors were different
due to the effects of light and other factors. MSF-Net did not
mistakenly detect buildings change because the dual-context
fusion module was used to remove the effects of these factors
during the encoding module. In contrast, other models fail
to remove the effects of light factors on building change
detection and incorrectly identify unchanged buildings as
changed. It indicates that MSF-Net has strong building
feature extraction ability, and can effectively suppress the
influence of other feature changes on building change
detection.

MSF-Net detected relatively complete change information
of buildings at different scales (Fig. 8), while other change
detection methods did not detect the change of small-scale

buildings due to the influence of light and roads. The results
indicate that MSF-Net can suppress unnecessary change
information, focusing on building information to improve the
detection accuracy of buildings. It also shows that MSF-Net
can simultaneously extract changing buildings at different
scales in the same scene.

F. ABLATION EXPERIMENTS
To verify the effectiveness of the multiple attention mech-
anisms and multi-output fusion modules proposed in this
paper, we designed three networks for the ablation exper-
iments. A baseline network with all attention mechanisms
andmulti-output fusionmodules removed, a baseline network
with multi-output fusion, and a baseline network with
both multi-output fusion and attention mechanisms. The
comparison results of the three networks are shown in Table 2.

The ablation experiments verified the availability of these
modules. In Table 2, after adding the multi-output fusion
module, the network has a decrease in Recall. The main
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TABLE 2. Verification result of the attention module and multi-output
fusion effectiveness.

reason is that too few samples of changing buildings will lead
to lowRecall of the network. Themulti-output fusionmodule,
on the other hand, performs multiple feature extractions of
buildings at multiple scales, which aggravates the negative
effect of too few samples of changing buildings to a certain
extent, thus reducing the Recall. But Precision got a great
improvement, and the two integrated indexes, F1-score and
IOU have also been improved, indicating that the multi-
output fusion module focuses on improving the detection
Precision of changing buildings. After continuing to add
the attention module, the model has a slight decrease in
Precision, but Recall improves by 3.43%, and F1-score and
IOU improve by 2.28% and 2.85%, respectively, indicating
that the model has stronger learning ability after adding the
dual-context fusion module, the channel attention module,
and the selective kernel convolution module. The ablation
experiment demonstrates that the proposed multi-output
fusion module and attention module proposed in this paper
are effective. These two modules enhance MSF-Net’s ability
to extract building features, filter irrelevant change informa-
tion, and also improve multiscale fusion capabilities, making
the detected building change boundaries more complete.
It improves the shortcomings of the state-of-the-art network.

IV. CONCLUSION
In this paper we proposed a multiscale supervised fusion
network based on the attention mechanism for building
change detection in high-resolution remote sensing images.
We introduced a new dual-temporal image fusion module
to limit the effects brought by factors such as illumination
on building extraction. We also introduced multiple attention
mechanisms to exclude the irrelevant changes and focus
on building changes, enhanced building feature extraction
capabilities. In addition, we designed a multi-output fusion
module to enhancemultiscale information fusion capabilities,
increased the precision of building change detection. We also
designed an ablation experiment to verify the effectiveness
of the proposed module. Combining the quantitative and
qualitative analysis, we can see that our network focuses
on extracting the change information of buildings, and can
extract building features at different scales at the same time,
which improves the extraction ability of change buildings.
At the same time, the extracted boundaries are more complete
and clear. The F1-score and IOU have improved significantly
compared to state-of-the-art networks, demonstrating the
contribution of MSF-Net to building change detection.

Although our network achieved good results, it still
has some limitations. The network introduces attention
mechanisms and multi-output fusion module to enhance the
extraction of buildings, which suppresses the influence of
other feature changes and improves the detection precision of
the model, but also makes the network too strict in detecting
buildings, and there is the phenomenon of missing detection
of changing buildings. This makes the Recall of the network
lower than that of STA-Net, which will be the direction of our
future efforts.

Our future work will incorporate the use of multi-source
multispectral image data and radar data to improve further the
ability of building change detection. In addition, we intend to
apply building change detection to specific types of changes
and explore what kind of types of changes have occurred.
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